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ABSTRACT

We consider the problem of reconstructing finite energy stim-
uli from a finite number of contiguous spikes. The recon-
structed signal satisfies a consistency condition: when passed
through the same neuron, it triggers the same spike train as
the original stimulus. The recovered stimulus has to also min-
imize a quadratic smoothness criterion. We show that under
these conditions, the problem of recovery has a unique solu-
tion and provide an explicit reconstruction algorithm for stim-
uli encoded with a population of integrate-and-fire neurons.
We demonstrate that the quality of reconstruction improves
as the size of the population increases. Finally, we demon-
strate the efficiency of our recovery method for an encoding
circuit based on threshold spiking that arises in neuromorphic
engineering.

Index Terms— time encoding, spiking neurons, consis-
tent recovery.

1. INTRODUCTION

Formal spiking neuron models, such as integrate-and-fire
(IAF) neurons, encode information in the time domain [1].
Assuming that the input is bandlimited with known band-
width, a perfect recovery of the stimulus from the train of
spikes is possible provided that the spike density is above
the Nyquist rate [2]. These results hold for stimuli encoded
with neuron population models of a wide variety of sensory
stimuli including audio [3] or video [4]. More generally,
Time Encoding Machines (TEMs) encode analog amplitude
information in the time domain using only asynchronous cir-
cuits [2]. Time encoding has been shown to be closely related
to traditional amplitude sampling. This observation has en-
abled the application of a large number of results obtained in
irregular sampling to time encoding.

A common underlying assumption of TEM models is that
the input stimulus is bandlimited with known bandwidth. Al-
though realistic for sensory stimuli, the bandlimitedlessas-
sumption has some caveats. Bandlimited functions require an
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infinite time support and real-time algorithms that operateon
finite time intervals are computationally more demanding [5].
Often, a good estimate of the bandwidth is not available be-
cause of some nonlinear processing in the transduction path-
way or elsewhere (e.g., contrast extraction in vision).

In this paper we investigate the problem of reconstructing
stimuli from a population of spike trains on a finite time hori-
zon. The only assumption about the input stimuli is that they
have finite energy, i.e., belong toL2 on some time interval
[0, T ]. The reconstruction problem is not one of perfect re-
covery. Rather signal recovery isconsistentand satisfies an
optimal smoothness criterion. The consistency condition re-
quires that the reconstructed signal triggers exactly the same
spike train when passed through the same neuron as the origi-
nal stimulus. The maximal smoothness criterion ensures that
the problem has a unique optimal solution. The method was
introduced in [6,7] in the context of generalized sampling.

The paper is organized as follows. A brief introduction of
time encoding for bandlimited functions is provided in section
2. Section 3 formulates the problem of consistent reconstruc-
tion from a finite number of spikes and presents its solution
for several types of spiking neuron models that arise in prac-
tice. Explicit reconstruction schemes are provided and exam-
ples are presented. Finally section 4 concludes our work.

2. TIME ENCODING OF BANDLIMITED STIMULI

LetΞ denote the space of bandlimited functions with finite en-
ergy and bandwidthΩ. Letu = u(t), t ∈ R, be a signal (stim-
ulus) in Ξ. The stimulus biased by a constant background
currentb is fed into an ideal IAF neuron with thresholdδ and
integration constantκ. Let (tk), k ∈ Z, denote the output
spike train of the neuron.

A complete description of the encoding circuit above is
provided by thet-transform. The latter can be written as

∫ tk+1

tk

(b+ u(s)) ds = κδ

or in inner product form

〈u, g ∗ 1[tk,tk+1]〉 = κδ − b(tk+1 − tk) := qk, (1)

whereg(t) = sin(Ωt)/πt, t ∈ R, is the impulse response
of a low pass filter with bandwidthΩ. Note that from the



spike train(tk), k ∈ Z, a series of projections〈u, φk〉 with
φk = g ∗ 1[tk,tk+1], k ∈ Z, can be obtained. Therefore, stim-
ulus recovery can be readily obtained from these projections;
if these projections span the whole spaceΞ perfect recovery
of the signal is possible. The recovery is in addition stable
provided that the set(φk), k ∈ Z, forms a frame forΞ [8].

Theorem 1. The bandlimited stimulusu = u(t), t ∈ R, can
be perfectly recovered from the spike train(tk), k ∈ Z, if the
density of the spike trainD satisfies the conditionD > Ω/π.
If this condition holds, the recovered signal takes the form

u(t) =
∑

k∈Z

ckψk(t),

with ψk(t) = g(t − sk), sk = (tk + tk+1)/2 and the coeffi-
cientsck = [c]k are given in vector form by

c = G+q,

whereG+ denotes the pseudoinverse ofG, [q]k = qk, and
the matrixG has entries[G]kl = 〈φk, ψl〉, k, l ∈ Z.

Proof: The proof is based on density results for frames of
complex exponentials and frame theory. See [3] for details.�

The key condition for perfect recovery in Theorem 1 calls
for the spike density to be above a certain threshold which
depends on the bandwidth of the signal. Thus, there is a deep
connection between time encoding and traditional amplitude
sampling. Extensions to encoding bandlimited stimuli as well
as space-time (video) signals with a population of neurons in
cascade with receptive fields have also been reported [3,4].

The perfect recovery results mentioned above are based
on the premise that the bandwidth of the encoded stimulus is
known. In sensory systems, however, it is common to find that
the bandwidth of the signal that enters the soma of the neuron
is unknown. Furthermore, stimuli have limited time support
and the neurons respond with a finite number of spikes.

3. RECOVERY OF FINITE-LENGTH STIMULI

Let u be a signal of finite length and energy, i.e.,u ∈
L2([0, T ]). In what follows we assume that the input stimulus
u is fed to a population ofN neurons. Lettjk denote thek-th
spike of the neuronj, with k = 1, 2, . . . , nj , wherenj is the
number of spikes that the neuronj produces,j = 1, 2, . . . , N .
As in section 2 the spiking of the neuron can be associated
with the projection (measurement) of the stimulus on a set
of functions. Through the use of thet-transform we can
determine both the sampling functions and the result of the
projection based only on the knowledge of the spike times.

Definition 1. A reconstruction based on the spike times
(tjk), j = 1, 2, . . . , N, k = 1, 2, . . . , nj is called consistent
provided that the reconstructed stimulusû triggers exactly
the same spike train as the original stimulusu.

Remark 1. The consistency condition was introduced in the
context of signal independent sampling in [9] and requires
that the reconstructed signal provides the same samples as
the original one when sampled with the same device, i.e,

〈u, φj
k〉 = 〈û, φj

k〉, (2)

for all j = 1, 2, ..., N andk = 1, 2, ..., nj. Note however that
in the neural context, the sampling functionsφk are signal
dependent.

Since we have a finite number of spikes, the sampling
functions cannot form a frame forL2([0, T ]) [8] and there-
fore perfect recovery is not possible. We seek instead a con-
sistent reconstruction which is also optimal in the sense ofa
certain criterion. We choose the plausible criterion of maxi-
mum smoothness which is equivalent to minimizing‖û′′‖2. If
a reconstruction̂u satisfies the above, it is called theoptimal
consistent reconstruction ofu.

The following notation will be used throughout this
section. The vectorq is a column vector defined asq =
[q1, . . . ,qN ]T with qj = [qj

1, . . . , q
j
nj−1]

T , j = 1, 2, . . . , N .
The vectorsp, r, c are of the same dimensions and similarly
defined. The matrixG is a block square matrix defined

asG =







G11 . . . G1N

...
. . .

...
GN1 . . . GNN






andGij = [Gij

kl], i, j =

1, . . . , N, k = 1, . . . ,Mi − 1, l = 1, . . . , nj − 1.

3.1. Representation with a Population of LIF Neurons

ConsiderN leaky integrate-and-fire (LIF) neurons where neu-
ronj has thresholdδj , biasbj, resistanceRj and capacitance
Cj . Neuronj fires a spike when it’s membrane potential hits
its threshold and then it resets its membrane potential to 0.
Thet-transform of the population can be written as

∫ t
j

k+1

t
j

k

[u(s) + bj ]e−
t
j
k+1

−s

RjCj ds = Cjδj

or in inner product form as

〈u, φj
k〉 = qj

k, (3)

with

φj
k = e−

t
j
k+1

−t

RjCj 1[tj

k
,t

j

k+1
](t)

qj
k = Cjδj − bjRjCj

(

1 − exp

(

−
t
j

k+1
−t

j

k

RjCj

))

,

for all j, j = 1, 2, . . . , N and allk, k = 1, 2, . . . , nj − 1. We
have the following:

Theorem 2. Assume that at time 0 the membrane potential
of all neurons is at the rest value 0. The optimal consistent



reconstruction̂u is unique and can be written as

û(t) = a0 + a1t+
N
∑

j=1

nj−1
∑

k=1

cjkψ
j
k(t), (4)

where

ψj
k(t) =

∫ t
j

k+1

t
j

k

|t− s|3 exp

(

−
t
j

k+1
−s

RjCj

)

ds. (5)

The reconstruction coefficients are given in matrix form by





a0

a1

c



 =





p r G

0 0 pT

0 0 rT





+

·





q

0
0



 , (6)

pj
k = RjCj

(

1 − e−
t
j
k+1

−t
j
k

RjCj

)

rj
k = RjCj

(

(

tjk+1 −RjCj
)

−
(

tjk −RjCj
)

e−
t
j
k+1

−t
j
k

RjCj

)

Gij
kl = 〈φi

k, ψ
j
l 〉.

Proof: The unique representation result of (4) together with
(5) and (6) are a direct consequence of the main result of [6].

To get some intuition, note that the quadratic criterion
‖û‖2 can be written in a bilinear form as〈D ∗ û, û〉, where
D is the fourth order differential convolution kernel

D =
d4δ(t)

dt4
.

Then, the reconstruction functions of (5) can be obtained as

ψj
k = φj

k ∗ f, (7)

wheref(t) = |t|3, is a Green’s function forD, i.e., it satisfies

D ∗ f(t) = δ(t).

Moreover, the set{1, t} forms a basis for the kernel of the
quadratic criterion and the entries ofp andr are given by

pj
k = 〈1, φj

k〉, rj
k = 〈t, φj

k〉. (8)

Now û satisfies (3) since from (6) we have that

[

p r G
]

·





a0

a1

c



 = q. (9)

Finally, since each neuron starts from its reset level the re-
constructed signal will generate exactly the same spike times.
Thus, the reconstruction is consistent. �
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Fig. 1. Consistent reconstruction from a finite number of
spikes with an ensemble of LIF neurons.

An example of the performance of the consistent recovery al-
gorithm is shown in Fig. 1. The input stimulus was a bandlim-
ited function withΩ = 2π100 rad/sec restricted to the time
interval [0, 200] msec. Four different LIF neurons encoded
the stimulus. As it can be seen, the signal-to-noise ratio in-
creases with the number of neurons, i.e., the number of spike
trains, used for recovery. This is consistent with the evolution-
ary intuitive argument that increasing the number of neurons
leads to an improved representation of the sensory world.

3.2. Representation with an ON-OFF AER Neuron

In this section we consider a silicon neuron model that
has been used in the context of address event representa-
tion (AER) for silicon retina and related hardware applica-
tions [10]. The spiking mechanism is threshold based and
simple reset mechanisms are included (see Fig. 2). The ON-
OFF AER generates a spike whenever a changeδ is detected.
Thet-transform of the ON-OFF AER neuron amounts to

u(t1k) =u(0) + δ ·

(

k −

n2
∑

l=1

1{t2
l
<t1

k
}

)

:= q1k

u(t2k) =u(0) − δ ·

(

k −

n1
∑

l=1

1{t1
l
<t2

k
}

)

:= q2k.

(10)

As in the previous examples, the above equalities can also be
expressed in inner product form of (3) withφj

k(t) = δ(t− tjk)
for all j, j = 1, 2 and allk, k = 1, . . . , nj . Note that in this
case, the spiking of the silicon neuron acts as an irregular sam-
pler on the input stimulus. We have the following theorem:

Theorem 3. The optimal consistent reconstructionû

û(t) = a0 + a1t+
2
∑

j=1

nj
∑

k=1

cjkψ
j
k(t), (11)
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Fig. 2. Encoding with an AER Neuron.

where
ψj

k(t) = |t− tjk|
3 (12)

The coefficientsa0, a1 andc are given by(6) with

pj
k = 1, rj

k = tjk, Gij
kl = 〈φi

k, ψ
j
l 〉. (13)

Proof: Same as in Theorem 2. Note that, as in Theorem 2,
(12) can be obtained from (7) and (13) from (8). �

In hardware implementations, the input to an ON-OFF AER
neuron is usually the temporal contrast of the (positive) in-
put photocurrent. Withv the input photocurrent the temporal
contrastu is defined as

u(t) =
d log(v(t))

dt
=

1

v(t)

dv

dt
.

In such a case, it is clear that even when the input bandwidth
of the photocurrentv is known, the effective bandwidth of the
actual inputu to the neuron cannot be analytically estimated.

Fig. 3 shows an example. The input photocurrentv was
a positive bandlimited function withΩ = 2π40 rad/sec. The
temporal contrastu (blue line) was fed into an ON-OFF AER
neuron and was recovered using (a) the consistent recovery
algorithm (green line) and (b) the perfect recovery algorithm
(described in section 2) withΩ′ = Ω (red line) and with
Ω′ = 5 · Ω (light blue line). For the consistent recovery
the SNR recorded was 37.65 [dB] whereas for the perfect re-
covery algorithm with assumed effective bandwidth, the SNR
was 8.37 [dB] and 8.38 [dB], respectively. The consistent re-
covery algorithm clearly outperforms the perfect recoveryal-
gorithm with assumed effective bandwidth.

4. CONCLUSIONS

We presented a new framework for the recovery of stimuli
encoded into a finite number of spikes. The framework as-
sumes that a parametric description of the encoding mecha-
nism is available. Under the assumption that the recovered
signals satisfy a quadratic smoothness criterion, we derived
an algorithm to reconstruct consistent stimuli of finite energy.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−300

−200

−100

0

100

200

300

Time [sec]

A
m

pl
itu

de

 

 

Original
Consistent
TDM Ω′= Ω
TDM Ω′= 5Ω

Fig. 3. Recovery from an ON-OFF AER Neuron.

We demonstrated that the algorithm performs well in practice
and that it is suitable when certain signal characteristicsare
unknown. Our work further enhances the view of neural en-
coding as a set of projections of the stimulus on a family of
sampling functions; it thereby builds a strong connection be-
tween representation in the spike domain and traditional sam-
pling theory. Extensions will be presented elsewhere.
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