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ABSTRACT infinite time support and real-time algorithms that opemate

. L ._finite time intervals are computationally more demandirg [5
We consider the problem of reconstructing finite energy-stim : A .

. . . . Often, a good estimate of the bandwidth is not available be-
uli from a finite number of contiguous spikes. The recon-

. e . o cause of some nonlinear processing in the transduction path
structed signal satisfies a consistency condition: whesguhs T T
o . .~ way or elsewhere (e.g., contrast extraction in vision).
through the same neuron, it triggers the same spike train as . . . .
In this paper we investigate the problem of reconstructing

the original stimulus. The recovered stimulus hasto alsemi . . . : . e .
. . o stimuli from a population of spike trains on a finite time hori
imize a quadratic smoothness criterion. We show that under . . o

zon. The only assumption about the input stimuli is that they

these conditipns, the pr_ol_JIem of recovery has a unique SOIH%\ve finite energy, i.e., belong t&? on some time interval
tion and provide an explicit reconstruction algorithm fons 40 T]. The reconstruction problem is not one of perfect re-

uli encoded with a population of integrate-and-fire neuron . o o
. S covery. Rather signal recovery t®nsistenfand satisfies an
We demonstrate that the quality of reconstruction improves " . o . o
. A . optimal smoothness criterion. The consistency conditen r
as the size of the population increases. Finally, we demon-

strate the efficiency of our recovery method for an encodin guires that the reconstructed signal triggers exactly

S . . . . ike train when passed through the same neuron as the origi-
circuit based on threshold spiking that arises in neuromorp pIke P i 9 o 9
nal stimulus. The maximal smoothness criterion ensurds tha

engineernng. the problem has a unique optimal solution. The method was
Index Terms— time encoding, spiking neurons, consis-introduced in [6, 7] in the context of generalized sampling.
tent recovery. The paper is organized as follows. A brief introduction of
time encoding for bandlimited functions is provided in s&tt
1. INTRODUCTION 2. Section 3 formulates the problem of consistent recoastru

tion from a finite number of spikes and presents its solution

Formal spiking neuron models, such as integrate-and-firf®" Several types of spiking neuron models that arise in-prac
(IAF) neurons, encode information in the time domain [1]_t|ce. Explicit reconstrgchon schgmes are provided andnexa
Assuming that the input is bandlimited with known band-Ples are presented. Finally section 4 concludes our work.
width, a perfect recovery of the stimulus from the train of

spikes is possible provided that the spike density is above2. TIME ENCODING OF BANDLIMITED STIMULI

the Nyquist rate [2]. These results hold for stimuli encoded

with neuron popu|ation models of a wide Variety of Sensory_etz denote the space of bandlimited functions with finite en-
stimuli including audio [3] or video [4]. More generally, €rgy and bandwidtk. Letu = u(t),t € R, be a signal (stim-
Time Encoding Machines (TEMs) encode analog amplitudé!lus) inZ. The stimulus biased by a constant background
information in the time domain using On|y asynchronous Cir.CUrrentb is fed into an ideal IAF neuron with threshaicand
cuits [2]. Time encoding has been shown to be closely relatetiitegration constant. Let (¢),k € Z, denote the output
to traditional amplitude sampling. This observation has erspike train of the neuron.

abled the application of a large number of results obtainedi A complete description of the encoding circuit above is

irregular sampling to time encoding. provided by the-transform. The latter can be written as
A common underlying assumption of TEM models is that thit
the input stimulus is bandlimited with known bandwidth. Al- / (b4 u(s))ds = K
tr

though realistic for sensory stimuli, the bandlimitedlass
sumption has some caveats. Bandlimited functions require &r in inner product form

This work was supported by NIH grant number R01 DC008701+&l a (u, g * 1[tk,tk+1]> = K0 = b(thy1 — th) := Qg 1)
NSF grant number CCF-06-35252. E.A. Pnevmatikakis wasslgported . . .
by the Onassis Public Benefit Foundation. Proceedings df¥A&SP 2009, whereg(t) = sin(Qt)/7t,t € R, is the impulse response
Taipeh, Taiwan, April 19-24, 2009. of a low pass filter with bandwidtf2. Note that from the



spike train(t;), k € Z, a series of projection&, ¢;) with Remark 1. The consistency condition was introduced in the
k= g * 1, 1,..), k € Z, can be obtained. Therefore, stim- context of signal independent sampling in [9] and requires
ulus recovery can be readily obtained from these projestionthat the reconstructed signal provides the same samples as
if these projections span the whole spaeperfect recovery the original one when sampled with the same device, i.e,

of the signal is possible. The recovery is in addition stable , ,

provided that the seip;,), k € Z, forms a frame foE [8]. (u, d3.) = (4, &3, ()

Theorem 1. The bandlimited stimulug = u(t),t € R,can  forall j = 1,2,..., N andk = 1,2, ...,n;. Note however that
be perfectly recovered from the spike trdtn), k € Z, ifthe  in the neural context, the sampling functiopg are signal
density of the spike traii) satisfies the conditio® > /7.  dependent.

If this condition holds, the recovered signal takes the form ) o _ _
Since we have a finite number of spikes, the sampling

u(t) = Z e (t), functions cannot form a frame fdt?([0, 7']) [8] and there-

kez fore perfect recovery is not possible. We seek instead a con-
sistent reconstruction which is also optimal in the sensa of
certain criterion. We choose the plausible criterion of max
mum smoothness which is equivalent to minimizjiid/||2. If

with ¢, (t) = g(t — sk), sk = (tx + tx4+1)/2 and the coeffi-
cientsc;, = [c]i are given in vector form by

c=G*q, a reconstruction satisfies the above, it is called tbptimal
consistent reconstruction af
whereG™ denotes the pseudoinverse®f [q]; = ¢x, and The following notation will be used throughout this
the matrixG has entrie§G|x; = (¢, 1), k,l € Z. section. The vectoy is a column vector defined ag =

q',...,qV]7 with ¢/ = [q{,...,qijfl]T,j =1,2,...,N.
he vectorp, r, ¢ are of the same dimensions and similarly
defined. The matrixG is a block square matrix defined

Proof: The proof is based on density results for frames o
complex exponentials and frame theory. See [3] for detalls.

11 1N
The key condition for perfect recovery in Theorem 1 calls G e G - g
for the spike density to be above a certain threshold whicRSG = Lo andG" = [Gjl,i,j =
depends on the bandwidth of the signal. Thus, there is a deep GgNt . GNN
connection between time encoding and traditional ampditud1, ... , N,k =1,... ,M; —1,l=1,...,n; — 1.

sampling. Extensions to encoding bandlimited stimuli a we
as space-time (video) signals with a population of neurons i3 1. Representation with a Population of LIF Neurons
cascade with receptive fields have also been reported [3, 4].

The perfect recovery results mentioned above are baséePnsiderV leaky integrate-and-fire (LIF) neurons where neu-
on the premise that the bandwidth of the encoded stimulus /9N has threshold”, biast’, resistance?’ and capacitance
known. In sensory systems, however, itis common to find tha” - Neuronj fires a spike when it's membrane potential hits
the bandwidth of the signal that enters the soma of the neurdf threshold and then it resets its membrane potential to 0.
is unknown. Furthermore, stimuli have limited time support! hei-transform of the population can be written as
and the neurons respond with a finite number of spikes. v 4
/_'““ [u(s) + ble~ w6 ds = 169

t]

k

3. RECOVERY OF FINITE-LENGTH STIMULI

Let © be a signal of finite length and energy, i.e., € or in inner product form as

L*([0,77). In what follows we assume that the input stimulus

JN\N —
u is fed to a population o neurons. Let;, denote the:-th (w, dr) = ai, 3)
spike of the neurori, with & = 1,2,...,n;, wheren; isthe  \ith
number of spikes that the neurgproduces; = 1,2,..., N. _
As in section 2 the spiking of the neuron can be associated ikt
=€ O Ly (t)

with the projection (measurement) of the stimulus on a set o]
of functions. Through the use of thetransform we can
determine both the sampling functions and the result of the

projection based only on the knowledge of the spike times.

iy

q, =Ci§7 — Y RICY (1 — exp (_tkg;c—jk)) ,

forallj,j =1,2,...,Nandallk,k =1,2,...,n; — 1. We
have the following:

Definition 1. A reconstruction based on the spike times
(t1),5 = 1,2,...,N,k = 1,2,...,n; is called consistent

provided that the reconstructed stimulastriggers exactly Theorem 2. Assume that at time O the membrane potential
the same spike train as the original stimulus of all neurons is at the rest value 0. The optimal consistent



reconstruction: is unigque and can be written as 1 Neuron SNR=14.9dB 2 Neurons SNR=26.2dB

N n;—1 . 1 1
~ _ i1 °
U(t) _a0+a1t+z Z c;g k(t)7 (4) % 0 0
j=1 k=1 =
h -1 -1 — Original
where 0 005 01 015 02 0 005 01 [——Recovered
) Time [sec] Time [sec]
t?c+l tj 3 Neurons SNR=31.4dB 4 Neurons SNR=35.1dB
J _ 3 k1S
Pl (t) = / [t — s]” exp (— fitel ) ds. (5) . .
th o
3
. . . . . =) 0
The reconstruction coefficients are given in matrix form by g
<
-1 -1
G +
Qo pr q 0 005 01 015 02 0 005 01 015 0.2
aq — 00 pT . 0 (6) Time [sec] Time [sec]
)
c 0 0 rT 0

‘ Fig. 1. Consistent reconstruction from a finite number of
—t ) spikes with an ensemble of LIF neurons.

pi — RiCI

Jj o
tep1t

v = mo ((% ) - (i - mor) e e

) gorithm is shown in Fig. 1. The input stimulus was a bandlim-
ited function with2 = 27100 rad/sec restricted to the time
G?z = ;’Mm_ interval [0, 200] msec. Four different LIF neurons encoded
the stimulus. As it can be seen, the signal-to-noise ratio in
creases with the number of neurons, i.e., the number of spike
Proof: The unique representation result of (4) together withyains used for recovery. This is consistent with the etiof
(5) and (6) are a direct consequence of the main result of [6],y jntuitive argument that increasing the number of nesiron

To get some intuition, note that the quadratic criterionigads to an improved representation of the sensory world.
||a||? can be written in a bilinear form a x* 4, @), where

D is the fourth order differential convolution kernel

_d*(t)

j ) An example of the performance of the consistent recovery al-

3.2. Representation with an ON-OFF AER Neuron

) In this section we consider a silicon neuron model that
dt has been used in the context of address event representa-
Then, the reconstruction functions of (5) can be obtained astion (AER) for silicon retina and related hardware applica-
tions [10]. The spiking mechanism is threshold based and
w-}% = ¢-;% * f, (7) simple reset mechanisms are included (see Fig. 2). The ON-
OFF AER generates a spike whenever a chanigaletected.
wheref(t) = |t|?, is a Green’s function fob, i.e., it satisfies  Thet-transform of the ON-OFF AER neuron amounts to

D f(t) = 3(t). .
1 - N - 2 1 = 1
Moreover, the sef1,t} forms a basis for the kernel of the u(ty) =u(0) +9 <k IZ; L <tk}> L

guadratic criterion and the entriespfandr are given by . (10)
j i j j w(t?) =u(0) =48 [ k— 1 = ¢2.
p.;c — <1’¢i>v T.;c — <t7¢,7€) (8) ( k) ( ) < ; {t}<ti}> dy;
Now # satisfies (3) since from (6) we have that As in the previous examples, the above equalities can also be
expressed in inner product form of (3) with} (¢) = 6(t — t},)
ao forall j,j = 1,2and allk,k = 1,...,n;. Note that in this
[ pr G ] e | =a. (9)  case, the spiking of the silicon neuron acts as an irregatar s
c pler on the input stimulus. We have the following theorem:
Finally, since each neuron starts from its reset level the rdheorem 3. The optimal consistent reconstructian
constructed signal will generate exactly the same spikegim ny
Thus, the reconstruction is consistent. O a(t) = ag + art + Z Ayl (t), (11)

j=1 1



Spike triggered reset to zero

Fig. 2. Encoding with an AER Neuron.

where _ _
Uit = lt—4° (12)
The coefficientsy, a; andc are given by(6) with
m=1 r=t, Gi=(.¥).  (13)
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Fig. 3. Recovery from an ON-OFF AER Neuron.

We demonstrated that the algorithm performs well in practic
and that it is suitable when certain signal characterigties
unknown. Our work further enhances the view of neural en-
coding as a set of projections of the stimulus on a family of
sampling functions; it thereby builds a strong connectien b
tween representation in the spike domain and traditiomat sa

Proof: Same as in Theorem 2. Note that, as in Theorem Zling theory. Extensions will be presented elsewhere.

(12) can be obtained from (7) and (13) from (8). O
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