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Abstract

We introduce a novel approach for a complete functional identification of bio-
physical spike-processing neural circuits. The circuits considered accept multi-
dimensional spike trains as their input and are comprised of a multitude of tem-
poral receptive fields and of conductance-based models of action potential gener-
ation. Each temporal receptive field describes the spatio-temporal contribution
of all synapses between any two neurons and incorporates the (passive) process-
ing carried out by the dendritic tree. The aggregate dendritic current produced
by a multitude of temporal receptive fields is encoded into a sequence of action
potentials by a spike generator modeled as a nonlinear dynamical system. Our
approach builds on the observation that during any experiment, an entire neural
circuit including its receptive fields and biophysical spike generators, is projected
onto the space of stimuli. The projection is determined by the input signals used
to identify the circuit. Employing the reproducing kernel Hilbert space (RKHS)
of trigonometric polynomials to describe input stimuli, we quantitatively describe
the relationship between underlying circuit parameters and their projections. We
also derive experimental conditions under which these projections converge to the
true parameters. In doing so, we achieve the mathematical tractability needed to
(i) characterize the biophysical spike generator and (ii) identify the multitude of
receptive fields. The algorithms obviate the need to repeat experiments in order
to compute the neurons’ rate of response, rendering our methodology of interest
to both experimental and theoretical neuroscientists.
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1 Introduction

Understanding how neural circuits perform computation is one of the most chal-
lenging problems in neuroscience. For the fruit fly (Drosophila), the advent of
the genome sequence, coupled with extensive anatomical and electrophysiological
studies, has led to an exponential growth in our knowledge about the organization
of many neural circuits, including detailed knowledge about circuit connectivity,
circuit inputs and outputs, as well as morphological and biophysical properties of
individual neurons (Chiang et al., 2011; Liang and Luo, 2010; Yaksi and Wilson,
2010; Chou et al., 2010; Gouwens and Wilson, 2009). Combined with the power-
ful genetic tools for visualizing, activating and deactivating specific circuit compo-
nents, these advances raise the possibility of providing a comprehensive functional
characterization of information processing within and between neurons.

To this day, a number of methods have been proposed to quantify and model
neuronal processing (see (Wu et al., 2006) for an in-depth review). The majority
of these methods assume that the input to a neural circuit is continuous and that
the output is generated by a point process (e.g., Poisson process). In biological
neural circuits, however, the inputs for most neurons are spike trains generated
by presynaptic cells and the outputs are determined by a multi-dimensional dy-
namical system (Izhikevich, 2007). Furthermore, the highly nonlinear nature of
spike generation has been shown to produce interactions between stimulus fea-
tures (Slee et al., 2005; Hong et al., 2007) that profoundly affect the estimation
of receptive fields (Pillow and Simoncelli, 2003). Hence, there is a fundamental
need to develop tractable methods for identifying neural circuits that incorporate
biophysical models of spike generation and receive multi-dimensional spike trains
as input stimuli.

Here we describe a new methodology for a complete neural circuit identifi-
cation that takes the above-mentioned considerations into account. Our neural
circuit models admit multidimensional spike trains as input stimuli. They also
incorporate nonlinear dynamical system (Hodgkin-Huxley, Morris Lecar, hard-
threshold TAF, etc.) models of the spike-generating mechanism. The nonlinear
contribution of a dynamical system such as the Hodgkin-Huxley neuron model is
stimulus-driven. It changes from one spike to the next and thus affects receptive
field estimation if not properly taken into account.

Our approach builds on the observation that during any experiment, a neural
circuit is projected onto a particular space of input signals, with the circuit pro-
jection determined by how well the input space explores that circuit. Employing
reproducing kernel Hilbert spaces (in particular, spaces of bandlimited functions)
to model the input stimuli, we quantitatively describe the relationship between
the underlying circuit parameters and their projections. We also derive condi-
tions under which these projections converge to the true parameters. In doing
so, we achieve the mathematical tractability needed to characterize biophysical
spike generators and to identify the multitude of receptive fields in neural circuits
with full connectivity. We estimate all model parameters directly from spike times
produced by neurons and repeating the same stimulus is no longer necessary.



2 Problem Statement and Modeling

Consider the simple neural circuit depicted in Fig. 1(a). The postsynaptic neuron
shown in gray receives its feedforward spiking input from three cells that are high-
lighted in red, cyan and green. Presynaptic action potentials, depicted as spikes
on the axon terminals, are processed by the dendritic tree of the postsynaptic cell
and the resulting dendritic current is encoded into a single postsynaptic train of
action potentials by the axon hillock. For the postsynaptic neuron in Fig. 1(a) we
seek to (i) characterize the encoding carried out by the axon hillock and (ii) iden-
tify the dendritic processing of presynaptic spikes, assuming that both presynaptic
and postsynaptic spike times are available to an observer.

A block diagram representation of the postsynaptic neuron in Fig. 1(a) is
shown in Fig. 1(b). Spikes from M € N different neurons arrive at times (s}*)kez,
s € R, m = 1,..., M, forming M input spike trains s™. Since in biological
neurons spikes typically arrive via multiple synapses at different locations on the
dendritic tree, we model the processing of each spike train s with a temporal
receptive field A™ that describes the combined spatio-temporal contributions of
all synapses from neuron m,m = 1,2, ..., M. Such a temporal receptive field can
capture not only the overall excitatory /inhibitory nature of synapses, but also the
time-domain analog processing carried out by the dendritic tree. The aggregate
dendritic current v = ) v™, m = 1,..., M, produced in the tree is then encoded
by a biophysical spike generator model (e.g., the Hodgkin-Huxley model) into a
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Figure 1: Problem Setup (a) A simple neural circuit in which a neuron receives
spiking input from multiple presynaptic cells. (b) Block diagram of the circuit
in (a). Spatiotemporal dendritic processing of spike trains s™, m = 1,..., M,
M € N, is described by M temporal receptive fields with kernels A™. Action
potentials are produced by a biophysical spike generator. (c) A canonical neural
circuit model with a spiking feedforward input, lateral connections and feedback.



sequence of spike times (¢ )xrez-

Generalizing the ideas above, one can consider more complex spiking neural
circuits, in which (i) every neuron may receive not only feedforward inputs from
a presynaptic layer, but also lateral inputs from neurons in the same layer and
(ii) back-propagating action potentials (Waters et al., 2005) may contribute to
computations within the dendritic tree. A two-neuron circuit incorporating these
considerations is shown in Fig. 1(c). The processing of lateral inputs in layer 2
is described by the temporal receptive fields (cross-feedback filters) h?'? and h??!,
while various signals produced by back-propagating action potentials are modeled
by the temporal receptive fields (feedback filters) h2! and h?%2.

In what follows we show that the elementary building blocks of spiking neural
circuits, including temporal receptive fields and spike generators, together with
all inputs and outputs, can be naturally defined as elements of a reproducing
kernel Hilbert space (RKHS), thereby making circuit identification mathemati-
cally tractable. Without loss of generality, we choose to work with the space of
trigonometric polynomials H:

Definition 1. The space of trigonometric polynomials H 1is the Hilbert space of
complez-valued functions u(t) = S, wey(t), where e(t) = exp (jIQt/L) /VT,
l = —L,...,L, is an orthonormal basis, u; € C, t € [0,T]. Here, T = 2wL/<)
15 the period, € is the bandwzdth cmd L is the order of the space. Endowed with
the inner product (u, w) fo dt H is a reproducing kernel Hilbert space

(RKHS) with a reproducing kernel (RK) given by K(s,t) = Zl:_L ei(s)e(t).

Remark 1. The key property of an RKHS is the reproducing kernel property:

(u(-), K (1)) = u(t),
for allu e H and t € [0,T].

2.1 Modeling Dendritic Processing

We assume that the precise shape and amplitude of action potentials received by
the postsynaptic cell is of no particular significance in neural information pro-
cessing. Although such information can be readily incorporated into the methods
outlined below, it can be challenging to obtain in practice as it requires simultane-
ous intracellular (whole-cell) recordings from multiple presynaptic cells. Making a
less stringent assumption that only the timing of action potentials is important, we
take each spike arriving at a time s, to be a Dirac-delta function (¢t — s ), t € R,
so that the train of spikes s™ from a presynaptic neuron m, m =1, ..., M, is given
by s™(t) = > ez 0(t — s3'), t € R (see Fig. 1). The spike times s} correspond to
peaks (or throughs) of action potentials and can be readily obtained by extracellu-
lar recordings. Given presynaptic spike trains s™, m = 1, ..., M, and corresponding
temporal receptive fields with kernels h™ (Fig. 1(b)), the aggregate postsynaptic
current amounts to v(t) = S0 (5™« h™)(t) = M Y kez M (t — s7), where
(s™ % h™) denotes the convolution of s™ with A™.
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Figure 2: Modeling a single spike. (top row) A spike §(¢) at the input to
a temporal receptive field produces a kernel h at its output. (bottom row) If
a spike is replaced with the RK K(¢,0) € H, the receptive field output is the
signal Ph(t) that closely approximates the output h produced by the spike §(t)
ont € [0,T].

We model kernels h"™ as finite-energy functions with a finite temporal support
(memory) on the interval [0, 5], i.e., k™ belongs to the space H = {h € L*(R) |
supp(h) € [0,S5]}. Under quite natural conditions, each kernel A™ can be ap-
proximated arbitrarily closely (in the L? norm (Grafakos, 2008)) on [0, S] by its
projection Ph™ in the space of trigonometric polynomials H (see Definition 1).
The conditions for an arbitrarily-close L?approximation of the kernel h € H by its
projection PheH are (i) T > S and (ii) the bandwidth 2 and the order L of the
space H are sufficiently high (Lazar and Slutskiy, 2012). Thus,

1) — @ L2 ®) _
V(t) = K(t,sg) xh(t) = (Ph)(t —sx) — h(t—sk) = d(t —s) *h(t) = v(t),
where (@) and ®) follow from the sampling properties of the RK and the Dirac-delta
function, respectively.

In other words, if an input spike §(t — si) is replaced with K(¢, s;), the out-
put v" of the temporal receptive field converges in the L? norm (with increasing
bandwidth € and order L of the space H) to the output v elicitepd by the spike
d(t — s). This is also illustrated in Fig. 2, where we compare the output of a
temporal receptive field when stimulated with a delta function (top row) and an
RK (bottom row).

Example 1. Consider three arbitrarily chosen temporal receptive fields with ker-
nels h™, m = 1,2,3, each with a temporal support of 100 ms and bandlimited to
100 Hz. Given three spike trains s*, s%, s, shown in red, green and blue in Fig.
3(a) and an appropriate choice of the space H (here Q = 27 - 160 rad/s and L =
40 ), we choose spikes in any window of length T' (here T' = 2w L/Q = 0.25 s, shown
in yellow) and replace every such spike s’ with the sampled reproducing kernel
K(t,s)'). We thus obtain three continuous signals Ps™ = 1o 7s™ * K(t,0), m =
1,...,3, that are periodic on the real line, as depicted in Fig. 3(b). Note that sig-
nals Ps™ € H with Ps™ = > (Ps", ee,, m=1,...,3,l=—L,—L+1,..., L.
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Figure 3: Modeling spiking input. (a) Spike streams (s™)3 _, (red, green,

blue) at the input to a dendritic tree. Since streams have no beginning and end,
we pick out spikes in a window (yellow) of length 7. (b) Replacing spikes with
the sampled RKs results in continuous signals (Ps™)3 _; (red, green, blue). (c)
Passing signals (Ps™)3 _, through receptive fields (h™)3,_;, we obtain the current
v' which is the same on t € [0,T] N [U3 _, supp h™]° (green) as the current v
produced by the spiking input. (d) The error between v and v'.

Passing these three signals through the temporal receptive fields h™, m = 1,2, 3,
produces an aggregate dendritic current v’ = Y > | Ps™ x k™. The latter is in-
distinguishable from the true dendritic current v =72 _ s™x h™ on the interval
[0, T]N[US,_, supp h™]° (depicted in green in Fig. 3(c)). The error between v and
V' is shown in Fig. 3(d). Note that the approzimation does not work in the time
interval [0,T) N [U3,_, supp h™| because the filters are causal and have memory,
i.€., the spikes from both the present and the past affect the dendritic current.

2.2 Modeling Biophysical Spike Generators

The model of action potential generation can be chosen from a wide class of
spiking point neuron models, including nonlinear conductance-based models with
stable limit cycles (e.g., Hodgkin-Huxley, Fitzhugh-Nagumo, Morris Lecar (Izhike-
vich, 2007)), as well as simpler models such as the integrate-and-fire (IAF) or the
threshold-and-fire neuron model. Although these models are deterministic in their
original formulation, they can readily be extended to incorporate various noise
sources in the form of, e.g., random thresholds (Lazar and Pnevmatikakis, 2009)
or stochastic gating variables (Lazar, 2010) (see also section 3.3). Furthermore,



given the same input, even deterministic models typically do not produce the same
output since their response fundamentally depends on the initial conditions of the
dynamical system.

Here we focus on conductance-based neuron models only. For convenience of
the reader, we first briefly review the Hodgkin-Huxley point neuron model. We
then present another model, called the reduced project-integrate-and-fire neuron
with conditional phase response curves (reduced PIF-cPRC). This reduced model
can be used to accurately capture response properties of many point neuron mod-
els, including Hodgkin-Huxley, Morris-Lecar, Fitzhugh-Nagumo and others. Fur-
thermore, as discussed in section 3.1, the reduced PIF-cPRC model provides a
simple way to faithfully characterize the spike generation process of biological
neurons when the underlying neuron parameters are not known.

2.2.1 Conductance-Based Spike Generator Models

The point neuron models considered here are described but the set of differential

equations
dx T

E:f(x)—i—[[(t),o,o,...,O} , (1)
where the vector x describes the state of the point neuron, I(t), t € R, is the
aggregate dendritic current and x? denotes the transpose of x. A block diagram
of a biophysical neuron with a single temporal receptive field is depicted in Fig. 4.
Here the aggregate dendritic current is assumed to be of the form I(t) = v(t) + I,
where [, is a constant bias term and v(t) is the output of the temporal receptive
field with the kernel h processing the continuous input stimulus u, i.e., v(t) =

(uxh)(t), t € R.

Example 2. The biophysics of action potential generation is captured by the four
differential equations of the Hodgkin-Huzley neuron model (Johnston and Wu,
1994)

% = Iy~ guarn*h(V — ) — gren(V — By) — gu(V — Fy)
= (V)1 = m) = (V)
)

dh
5 = (V)L =m) = Bu(V)h
dn
= = (V)X =m) = 5. (V)n,
with
o (V) = 0.1(25 - V)/(e® i —1) Bn(V) = deTs
an(V) =007 Bu(V) =1/(™ 1 +1)
an(V) =0.01(10 = V)/(e' 0 —1) Ba(V) = 0.125¢0 ,

where V' is the membrane potential, m, h and n are gating variables and I, € R is
a constant input (bias) current. The original HH equations above can be compactly
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Figure 4: Block diagram of a simple [RF]-[Biophysical Neuron] circuit.
Aggregate current v produced by the receptive field is encoded by a nonlinear
dynamical system, e.g., Hodgkin-Huxley neuron, that is described by a set of
differential equations dx/dt = f(x).

written as dx/dt = £(x), where x = [V, m, h,n]T is a vector comprised of the mem-
brane voltage and sodium/potassium gating variables, while £ = [f1, f2, f3, f4]T is
the corresponding function vector. The sequence of spike times {ty }rez is obtained
by detecting the peaks of the action potentials of the first component of the vector
X, i.e., the membrane potential x1 = V.

2.2.2 Reduced Spike Generator Model

Using non-linear perturbation analysis, it can be shown that for weak input stimuli
the HH neuron (as well as many other conductance-based neuron models) are to
a first order input/output (I/O)-equivalent to a reduced project-integrate-and-
fire (PIF) neuron (Lazar, 2010). The PIF neuron is closely related to the ideal
integrate-and-fire (IAF) neuron, with an additional step of projecting the external
input current v(¢) onto the (infinitesimal) phase response curve (PRC) (Izhikevich,
2007) of the neuron:

tet1
[ - s = 3)
12

where ¢ = 0 — (tx+1 —t1) is the neuron’s phase advance or delay, 0 is the period of
the neuron and ¢'(t), t € [0,t,41—t1), is the PRC on a stable orbit. Eq. (3) is also
known as the t-transform of the reduced PIF neuron (Lazar, 2010). PRCs have
been studied extensively in the neuroscience literature and simply describe the
transient change in the cycle period of the neuron induced by a perturbation as a
function of the phase at which that perturbation is received (Izhikevich, 2007). For
multidimensional models such as the Hodgkin-Huxley model, the function ¢! is
the first component of the vector-valued PRC ¢ = [, p?, ¢3, |7, corresponding
to the membrane potential V.

For strong input stimuli that introduce large perturbations into the dynamics
of the neuronal response, the behavior of the neuron can be accurately described
by the reduced PIF-cPRC neuron, the reduced project-integrate-and-fire neuron
with conditional PRCs (Kim and Lazar, 2011):

/ "ol (s — t)u(s)ds = g, (4)

ti
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Figure 5: [RF]-Reduced PIF-cPRC neural circuit. Receptive field current v
is encoded by a reduced PIF neuron with conditional PRCs. Both the PRC ¢},
and the threshold ¢ are stimulus-driven and change at spike times.

where q; = 8 — (t)41 — tx) with & corresponding to the PRC (). In this model
the phase response curve is not frozen but conditioned on the input signal, as
visualized in Fig. 5. The aggregate current v generated by the receptive field
appears as an input to the PRC block. The latter depicts an entire family of
PRCs and produces a PRC ¢; that is conditioned on v. The receptive field
current is multiplied by the conditional PRC and the resulting signal v(t)p (t—t),
t € [tg,trs1), is encoded into a sequence of spikes by an integrate-and-fire type
model, in which the threshold ¢, is also conditioned on the input stimulus via the
PRC. The subscript k points to the fact that the PRC ¢} (¢) and the threshold dy,
may change at each spike time, depending on the input signal v.

3 Identifying Biophysical Neuron Models

In what follows we present a methodology for identifying neuron models consisting
of receptive fields and spike generators. In section 3.1 we discuss the identification
of the spike generator. Note that in the past literature the spike generator is called
the point neuron. The identification of dendritic processing is presented in section
3.2. Finally, in section 3.3 the identification of noisy neurons is discussed.

3.1 Identifying the Spike Generator

If parameters of the spike generator are not known a priori, we can use the reduced
PIF neuron with conditional PRCs introduced above to derive a first-order equiv-
alent model. In this case, identification of the spike generator calls for finding a
family of PRCs.

A number of different theoretical and experimental methods have been pro-
posed to compute phase response curves both in model neurons (Izhikevich, 2007)
and in biological neurons (Netoff et al., 2012). One of the most popular and
widely used methods involves delivering a perturbation that is infinitesimally-
small in amplitude and duration and measuring its affect on the timing of sub-
sequent spikes. Simple in its nature, this method requires delivering hundreds
to thousands of precisely-timed pulses of current at different phases to map out
the PRC. While easy to simulate in a model neuron, this procedure is a daunt-
ing task for any experimentalist working with biological neurons. Furthermore,



delivering perturbations that are infinitesimally small in duration is very diffi-
cult technically and the resulting perturbations are usually spread out in time.
An alternative method, referred to as Malkin’s approach or the adjoint method,
involves linearizing the dynamical system about a stable limit cycle and solving
the corresponding adjoint equations (Malkin, 1949; Ermentrout and Chow, 2002;
Izhikevich, 2007). The drawback of this method is that the differential equations
describing the dynamical system need to be known a priori.

Below we introduce a new method for estimating PRCs that does not require
knowing parameters of the dynamical system or delivering pulses of current at
different phases of the oscillation cycle. Instead, our method is based on inject-
ing a random current waveform and estimating the PRC from the information
contained in the spike train at the output of the neuron. Although similar in
spirit to what has been suggested in (Izhikevich, 2007) and (Netoff et al., 2012),
our approach is different in that (i) it does not use white noise stimuli and (ii)
it provides strong insight into how the perturbation signal affects the estimated
PRC. It is also worth pointing out that injecting truly white noise signals is not
possible in an experimental setting since all electrodes have finite bandwidths.
We demonstrate that if the bandwidth of the injected current is not taken into
account, the estimated PRC can be substantially different from the underlying
PRC of the neuron. Finally, when compared to standard pulse methods for es-
timating the PRC, our approach is more immune to spike generation jitter since
stimulus fluctuations are spread over the entire oscillation cycle as opposed to
being concentrated at a particular moment in time (Izhikevich, 2007).

Consider a point neuron model on a stable limit cycle with a period 0 that
is generated by an input bias current [, = const. Given a weak random input
signal u(t), t € R, the response of the point neuron is faithfully captured by the
reduced PIF neuron Eq. (4) as J;ik“ ot — tp)u(t)dt = q. For u € H with a
period T' = 2w L /), we get

/OT u(s) /OtHl_tk P (K (L, s — ty)dtds © /OT u(s)Pp' (s — tr)ds,

where P! € H is the PRC projection onto H and *) holds, provided that ¢, —
ty < T, since @!(t) = 0 for t > t; 1 — t;, for most neurons, including the Hodgkin-
Huxley neuron (Goel and Ermentrout, 2002). The inequality tx.1 — tx < T can
be easily satisfied by an appropriate choice of the space H.

By the Riesz representation theorem (Berlinet and Thomas-Agnan, 2004) it
follows that the right hand side of (5) is a linear functional and

/0 u(s)Pe' (s — te)ds = L(Pe') = (P, ¢r),

where ¢, € H. In other words, spikes time perturbations due to the weak random
input v € H can be interpreted as measurements of the projection Ppl. To
reconstruct P! from these measurements, we have the following result.

10



Theorem 1. Let {u'|u’ € H}Y, be a collection of N linearly independent weak
currents perturbing the Hodgkin Huzley neuron on a stable limit cycle with a period
Or. If the total number of spikes n = Zfil n' generated by the neuron satisfies
n > 2L+ N + 1, then the PRC projection Pt can be identified from a collection
of 1/0O pairs {(u’, T}, as

L
(Pph)(t) = Z Yien(t), (6)
I=—L
where ¢, = [l = —L,—L+ 1,....L, and ¥» = ®tq. Furthermore, ® =
[®L; @2 .., ®N] q = [q}; q% ...; V] and [d']r = ¢ with each ® of size (n' —
1) X (2L + 1) and q* of size (n* — 1) x 1. The elements of matrices ®' are given
by

L . . .
; 1 U, Llerim (th11) — erem(t),)] i (g i
[¢ ]kl = ﬁ Z +](lk—:1m)Q s b + u—l(tk—i-l - tk) (7)
m=—L,m#—1

forallk=1,2,..n—1,l=—-L,—L+1,...L, andt=1,2,...,N.

Proof: Since P! € H, it can be written as (Po')(t) = Sor_, de(t). Fur-
thermore, since the stimuli are linearly independent, the measurements (q,i);‘;jl

provided by the PIF neuron are distinct. Writing (5) for a stimulus u’, we obtain

L
g, = (Pe'. o) = > hidi,, (8)

l=—L

or ' = ®"p, with [q']y = ¢}, [®']u = ¢], and [3]; = 9. Repeating for all
i=1,..,N, we get q = ® with & = [®!; ®%; ...;®"] and q = [q'; ¢%; ...; "]
This system of linear equations can be solved for v, provided that the rank r(®)
of the matrix ® is r(®) = 2L + 1. A necessary condition for the latter is that the
total number n = ZzN:1 n® of spikes generated in response to all N signals satisfies
n > 2L + N + 1. Then the solution can be computed as ¢ = ®*q. To find the
coefficients ¢j ,, we note that ¢}, = Lj (e;). O

Remark 2. Theorem 1 shows that only the PRC projection P! can be recovered
from the recorded spike train. Note that Pyt is given by the projection of the
PRC ¢! onto the space of stimuli H and is, in general, quite different from the
underlying PRC. In a practical setting, H is determined by the choice of stimuli in
the experimental setup. Clearly, the bandwidth of the electrode/neuron seal plays
a critical role in the PRC estimate.

Remark 3. The random current waveforms {u'}Y | can be delivered either in
separate experiments or in a single experimental trial. Since the effects of a per-
turbation can last longer than a single cycle (Netoff et al., 2012), each current

11
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Figure 6: Estimating a single PRC of a HH neuron, [, = 70 uA/cm?. (a)
Injected spike-triggered random current waveform. (b) Corresponding membrane
potential of the neuron. Stable and perturbed orbit spikes are shown in green
and red, respectively. (c) Spike times used for the PRC identification. (d) HH
neuron response (blue trajectory) in the V-n phase plane. The stable orbit is
shown in pink. (e) The original PRC ', its projection Pp' (Eq. (6))) onto the
input current space and the identified PRC Py'* are shown in black, blue, and
red, respectively.

waveform may be followed by a quiescent period to ensure that one perturbation
does not influence the neuronal response to another perturbation. The resulting
“spike-triggered random injected current waveform” protocol minimizes interac-
tions between consecutive current waveforms and allows one to efficiently measure
the PRC projection P!,

Example 3. The proposed PRC identification procedure and its performance for
a Hodgkin-Huzley neuron are illustrated in Fig. 6. First, a constant bias current
I, = T0pA/em? injected into the neuron (Fig. 6a) places the state of the neuron
onto a stable limit cycle. The period of the oscillation 6 on that limit cycle can be
computed by recording ‘stable spikes’, produced in response to the constant current
and highlighted in green color in Fig. 6b. Next, a sequence of random current
waveforms with bandwidth Q@ = 2m - 524 rad/s and order L = 4 (Fig. 6a) is
injected into the neuron and the ‘perturbed spikes’ (highlighted in red, Fig. 6b) are
recorded. In this example, the waveforms are delivered at every other spike in order
to minimize the effect of one perturbation on the neuronal response to a subsequent
perturbation, (see also Remark 3). We demonstrate the perturbation experienced
by the dynamical system in Fig. 6d, where the Hodgkin- Huzley neuron response is
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MSE between the original and identified PRC vs. stimulus bandwidth
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Figure 7: PRC estimation is stimulus dependent. Mean-squared error (in
decibels) between the original and identified PRC is plotted as a function of the
stimulus bandwidth.

plotted in a two dimensional V-n phase-plane. The stable limit cycle produced by
the current I, is shown in pink and the perturbed trajectory around that limit cycle
is plotted in blue. The oscillation period on the stable limit cycle was found to be
0 = T7.627ms. Using 6 together with the injected current waveforms and produced
spike times (Fig. 6c), we identify the PRC projection Po'* and plot it together
with the theoretical value of the projection P! and the underlying PRC o' in Fig.
6d. Note that there is essentially no difference between the three waveforms in the
latter plot.

Remark 4. Note that the identification error in Fig. 7 decreases with increasing
bandwidth and eventually levels off, providing us with a measurement of the PRC
bandwidth. This is something that cannot be determined using the traditional
white noise and pulse methods. Furthermore, glass electrodes traditionally used in
the PRC' estimation naturally impose a bandlimitation. Traditional methods do
not take that fact into account and simply declare that the estimated PRC is the
underlying PRC of the neuron. Our results suggest that in reality the experimenter
often finds only the PRC projected onto the space determined by the input stimuli
employed and the electrode properties (bandwidth). As a result, different results
may be obtained in day-to-day experiments due to the variability in electrodes and
groups using different types of electrodes may come up with different estimates.

Example 4. In the above example, the bandwidth of the stimulus was Q =
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Figure 8: A family of Hodgkin-Huxley PRCs computed using the
method described in this section.

21 -524 rad/s and the PRC ©* was identified with a very high precision. In general
however, the projection P! is stimulus (bandwidth) dependent. This dependency
1s demonstrated in Fig. 7, where the mean-squared error between the identified
PRC projection Po'* and the original PRC @' as a function of the stimulus band-
width Q) is depicted. Several identification examples are shown as insets in the
plot. Note that the identified functions in the first two examples are very different
from the PRC estimated in Fig. 6d.

Example 5. An entire family of PRCs that was estimated using the above method
for 63 different limit cycles is shown in Fig. 8. As the input bias current I
increases, the limit cycle x° of the neuron shrinks (from blue to green Fig. 8a),
in the V. — n plane. At the same time, the period of the oscillation oy decreases
from 17.2ms to 7.6 ms (Fig. 8b). As a result, the temporal support of each PRC
decreases as well (Fig. 8d), requiring higher-bandwidth currents for estimating the
underlying PRC' at high spike rates. The entire family of PRCs as a function of
phase 0 € [0, 2r| and time t € [0, 0x] is shown in Fig. 8c and Fig. 8d, respectively.

3.2 Identifying Dendritic Processing

Once the biophysical spike generator has been characterized and the family of its
phase response curves computed, one can begin identifying the temporal receptive
fields describing the analog processing of incoming spikes by the dendritic tree. In
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what follows we use the notation s® = (s, s%, ..., sM%) to describe M spike train

sequences that stimulate the neuron on the " trial, i = 1,2, ..., N.

Theorem 2. Channel Identification Machine (CIM)

Let {s'}¥, be a collection of spike train M-tuples at the input to a neuron with
M temporal receptive fields h™ € H, m =1, ..., M. Furthermore, let the family of
conditional phase response curves o', corresponding to the membrane voltage V
be known and let (ti)kez, i = 1,..., N, be the sequence of spikes produced by the
neuron. Given a space H with T > S and sufficiently high order L and bandwidth
Q, the filter projections Ph™ can be identified from a collection of input and output
spike trains {s'}N| and {t' YN, as (PR™)(t) = Sor__, h*ei(t), m =1, ..., M. Here
the coefficients hi* are given by h = ®*q with q = [q}, 4%, ...,q™]|T, [q']x = ¢} and
h = [ht,, .. bt w2, B2, . RM BT provided that the matriz ® has
rank r(®) = M (2L + 1). The i row of matriz ® is given by @' &% ... ®Mi]
i=1,..,N, with [®™]; = /Ts™ LZ““ ot — th)ey(t)dt, where s = (Ps™ ¢e;)
and the column index | = —1L, ..., L.

Proof: Since each Ph™ € H, it can be written as (PR™)(t) = S2r_, hi"e(t).
Hence, for the m'™ component of the spike-train M-tuple Ps® we have (Ps™
™) (t) = VT ZZL:_ ; hitsTe(t) and the aggregate current produced by the den-
dritic tree is v*(t) = oM VT 1, hi"sie)(t), with v' € H. Substituting the
last expression into the t-transform (4), we obtain ¢} @ Li(v") © v L) =
SMoSE VT h{”s{’”@, where (@ and ® follow from the Riesz representation
theorem (Berlinet and Thomas-Agnan, 2004) with ¢} = ZIL:_ 1, Oirei(t). In matrix
form, we have * = [® &2 .. ®Mihwithh=[h', ... AL B2, .. K2 .. KM ..
T, [q'le = g, and [®@™], = VTs™¢;,. Repeating for all M-tuples Ps',
i =1,...,N, we obtain q = ®h. This system of equations can be solved for h,
provided that the matrix rank r(®) = M (2L + 1). To find the coefficients ¢j,

we note that @], = Li(e) = [1 @1 (t — t)ey(t)dt. O

t

Remark 5. To satisfy the condition r(®) = M(2L 4+ 1) of the CIM algorithm,
the neuron must produce a total of at least M(2L + 1) + N spikes in response to
all N spike-train M-tuples. If each M-tuple is of duration T, this condition can be
met by increasing the duration N'T of the experimental recording.

Example 6. Identification results for the circuit of Fig. 1(b) are presented in
Fig. 9. Here, a single neuron receives two spiking inputs, the analog processing of
which 1s described by two temporal receptive fields. Both temporal receptive fields
were chosen arbitrarily and had a positive mean in order to generate an excitatory
current when stimulated with spikes. Multiple recorded input spike trains s =
(s' s*) were used together with the output spike trains to identify the receptive
fields. Two spike trains from the first experimental trial i = 1 are shown in red
and green in Fig. 9(a). The aggregate current produced in the dendritic tree (Fig.
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Figure 9: Identifying receptive fields in cascade with a HH neuron. (a)
Feedforward input spike trains s™!, m = 1,2. (b) Induced aggregate dendritic
current v'(¢). (c) Membrane potential of the HH neuron as a function of time.
Red dots denote the peaks of action potentials. (d) Corresponding spike times
(t})kez- (e) HH neuron response in the V-n phase plane. (f-g) Identified receptive
field projections Ph™, m =1, 2.

9(b)) was then encoded into a sequence of action potentials (Fig. 9(c)) by the
Hodgkin-Huzley model with a bias I, = 0. The corresponding sequence of spike
times (t}.)kez as measured, e.g., in extracellular recordings, is shown in Fig. 9(d).
For clarity, the response of the HH neuron is also visualized in the V-n phase
plane in Fig. 9(e). Even for large perturbations of the dynamical system, the
presented algorithm allows one to faithfully identify the two dendritic processing
filters, shown in red and green in Fig. 9(f-g). The mean squared error between
the original and identified kernels is —27 dB.

3.3 Extension to Spike Generators with Stochastic Con-
ductances

Since all currents flowing through the neuronal cell membrane are generated by ion
channels, the opening and closing of which are probabilistic in nature (Johnston
and Wu, 1994), it is natural to introduce stochastic conductances into the differen-
tial equations describing a conductance-based spike generator model. This allows
one to incorporate the intrinsic noise observed in neuronal responses. For example,
a Hodgkin-Huxley neuron with stochastic conductances and an additively coupled
input current I(¢) can be described by the following equations (Lazar, 2010):
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dX = f(X)dt + [I(t),0,0,0)7dt + [0, dWs, dW5, dW,]",

where X = [X(t), Xa(t), X3(t), X4(#)]T is a stochastic process and W = [0, W(t),
Ws(t), Wi(t)]" is a vector of independent Brownian motions. This neuron is to a
first order I/O-equivalent to a project-integrate-and-fire (PIF) neuron with ran-
dom thresholds, for which the t-transform is given by

to+1
| ek I =gt e

123

where ¢} and g are provided by (4) and ¢ is the error term introduced by
stochastic conductances and effectively describes the spike jitter due to noise.

Example 7. Multiple histograms of inter-spike intervals produced by a Hodgkin-
Huzley neuron with stochastic conductances are shown in Fig. 10. Stationary
independent increments Wi(t) — W;(s), 1 = 2, ..., 4, of Brownian motions followed
a normal distribution with a mean pu = 0 and variance 0> = t — s = 107°.
When driven by an input bias current I, = const, the neuron produced inter-
spike intervals that followed a normal distribution, whose variance decreased with

increasing values of the current I,. The spike-time jitter was as big as 1 ms for
I, =12 pA/em?.

Estimating the PRC Family from Noisy Measurements

The methodology employed in Section 3.1 can be extended within an appropri-
ate mathematical setting to biophysical neuron models with stochastic conduc-
tances. Since inter-spike intervals of a Hodgkin-Huxley neuron with stochas-
tic conductances follow a normal distribution, we assume that g, ~ N(0,0?),
k = 1,/2\,...,71 — 1, are i.i.d.. In the presence of noise we can identify an esti-

mate Pl of Py! that is optimal for an appropriately defined cost function. For
example, we can formulate a bi-criterion Tikhonov regularization problem

N n—1 o 9 2
uin 537 (Pt —at) APt (9)
i=1 k=1

where the scalar A > 0 prov1des a trade-off between the falthfulness of the identi-
fied PRC projection 77901 to measurements (q;);{—; and its norm ||73g0 [E72

Theorem 3. Problem (9) can be explicitly solved in analytical form. The optimal

solution s achieved by
L
= Z wlel(t>7 (10)

l=—L

where ¢ = [VY];,] = —L,—L + 1,...,L, with ¥ = (®7® + \I)"'dfq, & =
[®L; &2 .. ®N] and B, i =1,2,..., N, as defined in (7).
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Figure 10: Spike timing jitter due to stochastic conductances (o = 1073).

Proof: Since the minimizer 75921 is in H, it is of the form given in (10). Substi-
tuting this into (9), we obtain

Jmin 199 = s+ A4 e

where ® = [®1; &2, ...; ®V]| with &' i = 1,2,..., N, as defined in (7). This
quadratic optimization problem can be analytically solved by expressing the ob-
jective as a convex quadratic function J(1p) = ¥ ®H 1p—2q @ +qf q+Iptiap
with # denoting the conjugate transpose. A vector 1) minimizes J if and only if
VJ =2(®H® + \I)ip — 2@ q =0, i.e., p = (PHLD + \I)"1dlq. O

Example 8. PRC identification results for a Hodgkin- Huxley neuron with stochas-
tic conductances are shown in Fig. 11. As before, stationary independent incre-
ments W;(t) — Wi(s), i = 2,...,4, of Brownian motions followed a normal distri-
bution with mean u = 0 and variance c*> =t — s = 107°.

Estimating Temporal Receptive Fields from Noisy Measurements
Similarly, the CIM methodology (Theorem 2) for identifying temporal kernels
describing the dendritic processing of incoming spikes can be can be extended
to the case when the spike times produced by the neuron are noisy. For each
temporal receptive field b, m =1, ..., M,

n—1

N N 2 |2
‘min ZZ(th,gbk ) +)\H73hm iy (11)
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Figure 11: Identifying PRC from noisy measurements (o = 1073).

where the scalar A > 0 provides a trade-off between the faithfulness of the identi-

—

fied filter projection Ph™ to measurements (g;);—; and its norm HWHH

Theorem 4. Problem (11) can be solved explicitly in analytical form. The optimal
solution is achieved by

PR (t) = Y Blelt), (12)

with ™ = (BH+A) 1B q, & = [B; B2 ...; Y] and [&]y = VTS [ ! (t—
. k
te(t)dt, i = 1,2,...,N.

Proof: Essentially similar to the proof of Theorem 3. U

Example 9. Identification of two temporal receptive fields in the presence of spike
generation jitter is shown in Fig. 12. The inset in plot Fig. 12(e) shows the effect
of stochastic conductances on the subthreshold behavior of the neuron. Although a
significant amount of noise is introduced into the system, we can identify optimal

—~ 1x — 2%
temporal receptive field estimates Ph  and Ph  that are very close to the under-
lying kernels h' and h?. The MSE of identification is on the order of —24 dB as
seen in Fig. 12(f-g).
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Figure 12: Identifying temporal receptive fields in a noisy circuit (o =
1073).

4 Identifying Spiking Neural Circuits

The methods presented in the previous section can be extended in two important
directions. First, very few neurons in any organism function in isolation from
each other, unless they are confined to the very sensory periphery. Most neurons
upstream of the periphery are usually part of a larger neural circuit and receive,
in addition to feedforward inputs, lateral inputs from other neurons in the same
layer. It is desirable to be able to take such inputs into account. Second, there is
increasing evidence that the processing of feedforward and lateral inputs by the
dendritic tree of a neuron depends on the spiking activity of the neuron itself and
that there is an interaction between external inputs and the back-propagating
action potential of the neuron (Stuart et al., 1997; Waters et al., 2005; Rézsa
et al., 2008; Casale and McCormick, 2011). It is instructive to be able to take
such interactions into account by introducing a feedback filter describing the effects
of action potential generation on the activity within the dendritic tree. Such a
filter can also capture the effects of various adaptation mechanisms observed in
all biological neurons. As adaptation may take place on many different timescales
(from milliseconds to several seconds), the temporal support of the feedback filter
need not be limited to a single cycle of oscillation.

In section 4.1 we present the identification methodology and simulation results
for circuits with feedforward and lateral spiking inputs. Finally, in section 4.2
feedback is present in the system. Two cases are distinguished: (i) the feedback is
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fast and essentially confined to a single inter-spike interval, and (ii) the feedback
effects are spread over multiple consecutive interspike intervals. In the former,
we demonstrate how such short-lived feedback can be captured by the family of
phase response curves. In the latter, we show how to identify the kernel in the
feedback path.

4.1 Circuits with Lateral Connectivity

Without loss of generality, consider Lewerl, Layer 2  Layer 2
the neural circuit in Fig. 13. It ——
is comprised of two second-layer neu- 11

rons, each receiving multiple feedfor- — (sie

’U1 11 (t)

ward spiking inputs (s7™)rez from the : : v
first layer. Here index j = 1,2 la- _ N v““(f/)/bJ

bels the neurons in layer 2 and index g MO

m = 1,.... M, with M € N, labels the E— Lateral Taput
input number. The processing of these n o PO gy

feedforward inputs is described by M g7, b

temporal receptive fields with kernels : : : v(t)] Picphysica
hY™ where j = 1,2 and m = 1,...,. M ' ' S5 fe

h12M (t)

as before, and the first index 1 labels (")
the input of the second layer. For sim-

o . Figure 13: A simple circuit with lateral con-
plicity, we assume that each neuron in nectivity.
layer 2 receives feedforward inputs only from layer 1 and that both neurons re-
ceive the same number of feedforward inputs M. In biological circuits, the number
of layers and the number of inputs from these layers would be specified by the
anatomy and prior knowledge about the circuit.

In addition to feedforward spiking inputs, each neuron receives a lateral spiking
input from the other neuron located in the same layer. The effects of these lateral
inputs are described by kernels h??! and h?'2, where the first index indicates the
output of layer number 2 and the last two indices specify the origin and destination
of spikes, respectively.

The aggregate dendritic currents v! and v?, produced by all feedforward tem-
poral receptive fields and cross-feedback, are encoded into sequences of action po-
tentials by biophysical spike generation models. The spike times (¢;)kez, (3)kez
comprise the output of the second layer.

To summarize, each neuron receives M inputs from a presynaptic layer and
1 input from its own layer. Using the recorded spike times (sim)kez and (ti)kez,
Jg =12 m = 1,..., M we would like to identify a total of 2M + 2 temporal
receptive fields. To that end, we have the following result:

Corollary 1. Let {s”}Y,, j = 1,2, be collections of spike train M-tuples at the
input of two Hodgkin-Huxley neurons with feedforward temporal receptive fields
htm ¢ H, j = 1,2, m = 1,.... M, and lateral receptive fields h*'2, h??'. Let
(t1 )kez and (12)kez be sequences of spike times produced by the two neurons. Given
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Figure 14: Identifying receptive fields in a circuit with lateral connec-
tivity. Feedforward and lateral connectivity kernels of circuit in Fig. 13 with
M = 2, as identified by the algorithm of Corollary 1.

a family of conditional phase response curves o', corresponding to the membrane
voltage V', as well as a space H with T' > S and sufficiently high order L and band-
width Q, the filter projections Ph?'2, Ph?*2 and PhY™, j = 1,2, m = 1,..., M,
can be identificd as (Ph2)(t) = Yr_, hi¥a(t), (Ph)(t) = Yr_, et
and (PRY™)(t) = Sk, h'™e(t). Here, the coefficients h?'2, hi*' and h’™ are
given by h = [®1; ®y] q with q = [q", ..., q",q*, ..., M7, [¢]x = ¢’ and h =
B b7, where b — [, pUY U2 Rl Rl LM pRamed2li
hi[(j medFUINT 5 — 1,2, provided each matriz ®; has rank r(®;) = (M +1)(2L+
1). The i™ row of ®; is given by (@), @7, .. <I>M’ CI'(M+1)] = 1,..., N, with
MAL)i \/_f’“rl (G mod2)+1]: e(t)dt, | = —L,..,L. The entries [®7"],

m=1, ...,M, are as gwen in Theorem 1.

Proof: The proof follows the one in Theorem 1, with the addition of lateral terms.
O

Example 10. Simulation results demonstrating the performance of the above al-
gorithm are shown in Fig. 14. We used M = 2 feedforward temporal receptive
fields per neuron, with each receptive field kernel having a different bandwidth be-
tween 27 - 30 rad/s and 27 -50 rad/s. The kernels had a positive mean to produce
‘excitatory’ currents when stimulated with spikes and had a temporal support on
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the interval [0,0.1] s. Kernels of the cross-feedback filters had the same temporal
support, but higher bandwidths of 2w - 75 rad/s and 27 -100 rad/s. Specific kernel
shapes for all receptive fields were arbitrarily chosen. All feedforward and lateral
spike trains were projected onto the space H with a bandwidth Q0 = 2 - 240 rad/s,
period T'= 0.25 s and order L = 60. We used a total of N = 120 experimental tri-
als, T' seconds each, for a combined duration of NT = 30 s to identify the kernels
of all 2M + 2 = 6 temporal receptive fields. The original feedforward kernels are
plotted in black in Fig. 14(a-d) while the identified kernels are shown in color, with
red and green kernels corresponding to the first and second receptive field of each
neuron (see also Fig. 13). Similarly, the original and identified cross-feedback
filters are shown in Fig. 14(e-f) in black and yellow colors, respectively.

4.2 Circuits with Lateral Connectivity and Feedback

Now consider the canonical circuit of Fig. 1(c). In addition to lateral connections
discussed in the previous section, this circuit incorporates feedback from each
neuron onto itself. Depending on the nature of the feedback and whether or not
it can be studied in isolation from other processes, there are several ways to take
it into account when modeling a biological neuron.

In one such model, due to a particular dendritic ion channel density or a
specific morphology and branching pattern of dendrites (Stuart et al., 1997), the
feedback is localized to the axon hillock and/or the soma of the neuron. While
such feedback may not necessarily affect the processing of synaptic inputs within
the dendritic tree, it can change the encoding properties of the spike generator.
We note that the latter is possible if the feedback is fast, i.e., it occurs on the time
scale of the nonlinear dynamical system generating the action potentials. In that
case, the feedback can be taken into account by computing the PRC of the spike
generator with feedback.

Example 11. In Fig. 15 we summarize the behavior of a Hodkgin-Huzley neuron
with a fast inhibitory feedback. The feedback kernel was modeled using an alpha
function and had a temporal support of 8 ms. As a result of the feedback current
injected into the neuron at every cycle, the behavior of the resulting point neuron
differs from that of the standard Hodgkin-Huxley neuron. For the same values of
current Iy, the limit cycles in Fig. 15(c) are larger in size when compared to those
in Fig. 8(a). At the same time, the period on the stable orbit is smaller as can be
seen by comparing Fig. 15(d) and Fig. 8(b). The observed phase response curves,
computed by the method presented in Section 2.2 and plotted in Fig. 15(c), are
different as well.

In other models the action potential propagates back through the entire neuron
affecting (i) either the dendritic tree alone or (ii) both the dendritic tree and
the spike generator. Both of these outcomes can be modeled by first computing
the family of PRCs and then estimating the feedback kernels h?!' and h??2. For
identifying the temporal receptive fields together with feedback and cross-feedback
kernels in the circuit of Fig. 1(c), we have:
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Limit cycles of the HH neuron in the V-n plane
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Figure 15: Change in the PRC of the neuron as a consequence of fast
feedback. (a) Feedback kernel with a temporal support of 8 ms (fast feedback).
(b) Family of measured phase response curves. (c) Limit cycles of the modified
dynamical system. (d) Period of the new system as a function of the injected
current.

Corollary 2. Let {s”}Y,, j = 1,2, be collections of spike train M-tuples at the
input of two Hodgkin Huxley neurons with feedforward temporal receptive fields
hm ¢ H, j = 1,2, m = 1,....M, lateral receptive fields h*'2, h?*' and feed-
back receptive fields h*'' and h**?. Let (t;)rez and (t2)kez be sequences of spike
times produced by the two neurons. Given a family of conditional phase response
curves @b, corresponding to the membrane voltage V', as well as a space H with
T > S and sufficiently high order L and bandwidth ), the filter projections
Ph2t, Ph¥2 PR22 P22 and PhRY™, j = 1,2, m = 1,...,M, can be identi-
fied as (PRA)(8) = Yok Wlei(t), (PRE2)(t) = Yo, Wiei(t), (PR (1) =
Sl hiPta(t) (PR#2)(1) = Yp_ hi*e(t) and (PRY™)(t) = 301 by e(t).
Here, the coefficients h?'', h?'2, h??', 3% and h)’™ are given by h = [®; ®,]*q
with q = [q", ..., a'V,q*, ..., a7, [@”]x = ¢/’ and h = [h'; h?], where

b = (A, a7 MR R R M R et il med 2l
2R, G = 1,2, provided each matriz ®; has rank r(®;) = (M+2)(2L+1).
The i™ row of ®; is given by [}, %, ..., @I, <I>£-M+1]Z <I>£-M+2]Z} i =1,...N, with
[(I)JM—H]z \/—f k+1 t[(g mod2)+1]i ( )dt and [(I)E‘M+2 \/_f k+1 t]z dtl _

—L,...,L. The entmes [q);m]kl, m=1,...M, are as given in Theorem 1.

Proof: The proof follows the one in Theorem 1, with the addition of lateral and
feedback terms. O
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Example 12. Two simulation results demonstrating the performance of the al-
gorithm in Corollary 2 are shown in Fig. 16 and Fig. 17. In both simulations,
the feedback kernels were chosen arbitrarily and had a temporal support of 100 ms.
Furthermore, we assumed that the feedback was not instantaneous and instead ar-
rived with a time delay that was random. For both simulations, the delay had a
normal distribution with mean p = 2ms and standard deviation o = 0.5ms. In
Fig. 16 we assumed that the distribution of the delay was known while in Fig. 17
we assumed that the delay could be measured for every spike. Note that even for
the case when only the distribution of the delay was known, all kernels could be
reasonably identified. Comparing Fig. 16 and Fig. 17, we see that while knowledge
of the delay in the feedback path considerably improves identification of the feed-
back filters, the two identified kernels h*'** and h®*** differ from the true kernels
R and h*?? in the neighborhood of t = 0. This most likely is a direct consequence
of the neuronal PRC being zero or very close to zero for the first few milliseconds
after an action potential is produced (see also Fig. 8). In other words, for a point
neuron such as the Hodgkin Huxley neuron, a perturbation applied immediately
after an action potential has, unless very strong, a minimal effect on the timing of
the next action potential. As a consequence, information about a feedback signal
R*Y(t — 1) that is triggered by an action potential produced at time t). cannot
be faithfully encoded by the neuron for some duration of time immediately after
t = t;. Note that this is not the case for feedforward and lateral inputs as spikes
from other neurons arrive at different times relative to the spikes produced by the
spike generator.
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Figure 16: Identifying spike-processing receptive fields and feedback with
additional unknown gaussian spike delays. Feedforward, lateral and back-
propagation kernels of circuit in Fig. 1(c), as identified by the algorithm of Corol-
lary 2.

Amplitude Amplitude Amplitude

Amplitude

(a) Original filter A'''vs. the identified filter Ph'!*

10
O—AM_
— 0 TTMSE(PRTT R =216.6dB ‘
— it
-10 " A
(b) Original filter h''2vs. the identified filter Ph!2*
10
O_MM_
——h'I2MSE(PARIZ AT =218 UdB‘
——ppin
-10 ;
(¢) Original filter h'?!vs. the identified filter Ph!?'*
10
0‘_/_/\/\%—
—— R ZIMSE(PA2T A12Y =-18.4dB) ‘
— i
_1on ; A I
(d) Original filter h'??vs. the identified filter Ph'?2*
10
OM—
E(PATT R =217 mu‘
_10 . . . A I I I
-0. 02 0 0.02 0.04 0.06 008 01 012 0.14
Time, [s]

Amplitude Amplitude Amplitude

Amplitude

Original filter h2''vs. the identified filter Ph2!*

(€)

10
O—L \_ =N\
—— WTTIMSE(PRIT 2T =4.9dB ‘
paitie
—10b w
(f) Original filter h??!vs. the identified filter Ph221*
10
o} —— Ve _//\ .
— 22 MSE(Ph??1 h22) =-11.1dB
e
—10b i
(9) Original filter h?'?vs. the identified filter Ph2!2*
10
o|— /\/\ SN\ - -
— 22 MSE(Ph?12h21) =-12.0dB
Pp:
—10=
(h) Original filter h???vs. the identified filter Ph22*
10
0
2h7 =-6.0dB
10 L L 7’7! — I I I
~ 2ol 02 0 0.02 004 006 0.08 0.1 0.12 0.14

Time, [s]

Figure 17: Identifying spike-processing receptive fields and feedback with
additional known gaussian spike delays.
propagation kernels of circuit in Fig. 1(c), as identified by the algorithm of Corol-
lary 2.

26

Feedforward, lateral and back-



5 A Brief Comparison with the GLM

Detailed conductance-based models can accurately reproduce neuronal responses
to stimuli (Koch and Segev, 1989; Bower and Beeman, 1995; Gabbiani and Cox,
2010). However, due to the relatively large number of parameters needed for their
description, biophysical models are computationally expensive. As a consequence,
simpler phenomenological models are often used.

In recent years, a particular phenomenological model called generalized linear
model (GLM) has become popular in the neuroscience community. A single-
neuron GLM is an extension of the well-known linear-nonlinear-Poisson (LNP)
model (Pillow, 2007). Similarly to the LNP model, the GLM omits the biophysics
of spike generation. Instead, it employs a static nonlinearity to map the output
of a set of linear filters into an instantaneous rate of neuronal response. However,
in contrast to the LNP model, the GLM includes a feedback filter in order to
overcome the inability of a simple Poisson spike generator to capture refractory
effects and adaptation often observed in biological neurons (Paninski, 2004).

Single-neuron as well as coupled GLMs that incorporate coupling between neu-
rons have been applied to many neural circuits in a number of sensory modalities
(Pillow et al., 2008; Babadi et al., 2010; Calabrese et al., 2011; Vidne et al., 2012).
However, it is not a priori clear to what extent simple static nonlinearities used
in GLMs can account for the highly nonlinear behavior of biophysical spike gen-
erators (Izhikevich, 2007). Furthermore, it is not clear how identification of the
underlying receptive fields as well as the coupling between neurons is affected when
spikes produced by an actual biophysical model are used in the GLM framework.

While all studies employing linear-nonlinear cascades (including LNP, GLM)
demonstrate their model performance by predicting the response of a neuron to
a novel stimulus, the identified and underlying filter kernels are rarely compared.
Although this may not be possible when the linear-nonlinear framework is applied
to real data, a simple check can be performed on simulated data. Furthermore,
the novel stimulus employed for cross validation is almost always chosen to have
the same statistical properties as the stimuli used in identification. Given the
theoretically infinite space of stimuli, this raises the question of how well the
model performs when other stimuli are used.

To provide an insight into the above issues and to compare the methodology
proposed in this paper with a linear-nonlinear approach, we carried out extensive
simulations with a circuit consisting of two coupled neurons (Fig. 1c). Each neu-
ron had only one feedforward filter and received the same external input as the
other neuron. We used a continuous feedforward signal as methods for identify-
ing feedforward filters with spiking input in the context of GLMs have not been
described or implemented. For illustrative purposes, the feedback filter in the
underlying model was set to zero. However, the identification algorithm was blind
to this fact and full connectivity was assumed during the identification procedure.

The first set of simulations was carried out with the spike generator modeled as
an integrate-and-fire (IAF) neuron. The IAF neuron is the best-known example
of a formal spiking neuron model and is the basis of many theoretical studies.
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Although it is an idealization of a biophysical spike generator, IAF-based models
have been found to reliably predict spike trains of many real neurons, including
neocortical pyramidal cells, retinal ganglion cells and lateral geniculate nucleus
neurons in the visual pathway (Keat et al., 2001; Rauch et al., 2003; Jolivet
et al., 2005). Moreover, the TAF model preserves many of the neurocomputational
properties of more complex point neuron models. Specifically, in the context of
the more general class of models discussed in this paper, the dynamics of spike
generation of the IAF neuron can be captured using phase response curves (PRCs).
However, in comparison to a full-blown biophysical model, the PRC of the TAF
neuron exhibits a simpler functional form. It is flat, or constant as a function of
phase, for an ideal IAF neuron and it is an increasing function of phase for the
leaky TAF neuron. For both the leaky and the ideal IAF neuron, the magnitude
of the PRC changes as a function of the bias current (Brown et al., 2004).

The results of the experiment are shown in Fig. 18. The red solid curve on the
bottom of the plot depicts the average identification error for all four kernels (two
feedforward and two lateral) as a function of the number of spikes used in the
proposed channel identification machine (CIM) algorithm. The error is plotted
on the logarithmic scale and a low identification error (—32dB; the smaller the
number, the better) is achieved for a only a few hundred spikes. The original and
identified kernels are shown in Fig. 19. Note that since the IAF PRC is not zero
right after the spike, the feedback kernels can be recovered (see also section 4.2).

The solid blue curve on the top of Fig. 18 corresponds to the average identifica-
tion error when exactly the same input signals and spike trains are provided to the
GLM with an exponential nonlinearity. The error does not appear to change with
the number of spikes and remains well above 0 dB. For comparison, the dashed
black line depicts the case when the GLM methodology is applied to a spike train
produced not by the IAF neuron, but a combination of a log-exponential nonlin-
earity and a Poisson spike generator, while the filters remain the same. The error
steadily decreases with the number of spikes provided to the algorithm, reaching
—15dB at 4,000 spikes (see Fig. S3 for a comparison of the identified and original
kernels).

These results may seem surprising and one might be tempted to think that the
GLM methodology does not recover the underlying kernels because the nonlinear-
ity is simply assumed to be exponential (as is often done in the literature (Pillow
et al., 2008)), rather than being derived from data. To test this hypothesis, we
estimated nonlinearities for both neurons and fitted them with log-exponential
functions, which provide an alternative choice of the nonlinearity that ensures
that the optimization problem is convex (supplementary Fig. S7 and S8). The
dash-dotted cyan curve in Fig. 18 shows that while the identification improves, it
does so only marginally. The actual kernels identified with 2, 600 spikes are shown
in Fig. 20.

Note that the magnitudes of all kernels are different from those of the underly-
ing filters. Given that the difference in kernel magnitude may be compensated by
the nonlinearity, the GLM data plotted in Fig. 18 were computed for normalized
kernels. In addition to the magnitude however, the temporal profiles of all kernels
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GLM Identification Error vs. CIM Identification Error
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are substantially different as well. While the identified feedback kernels shown
in Fig. 20(c) and Fig. 20(f) may be justified, given that a simple Poisson spike
generator without a feedback filter cannot describe a neuron’s dependence on its
own spiking history, the shape of feedforward and lateral filters should not change.

Nevertheless and quite surprisingly, when using these identified kernels to pre-
dict the neural circuit response to a novel stimulus having the same statistical
properties, perfectly matching PSTHs are obtained. This is demonstrated in Fig.
21, where we use an input signal drawn from the same RKHS and having the
same mean and variance. The input stimulus as well as the rasters and PSTHs
produced by the underlying neural circuit and the GLM model are shown in the
left and right column for the first and second neuron, respectively.

In other words, all filters of the GLM model were identified subject to the
specified nonlinearity and despite being substantially different from the underlying
filters, can in some cases predict the circuit output. This is noteworthy, because
identification of the GLM parameters is always verified by looking at the PSTH
produced by the model. However, since the nonlinearity provides a simplified
static description of the more complex spike generation dynamics, and since the
filters are fit to that nonlinearity, a question arises as to whether or not the
filter /nonlinearity combination fully captures the behavior of the neural circuit.

Intuitively, since the class of input signals is theoretically infinite, there must
exist stimuli for which the GLM prediction will break down. Indeed, this is the
case, as demonstrated in Fig. 22, were we use a novel stimulus with a time-varying
mean. The response of both neurons differs not only in magnitude, but also in
the temporal pattern produced, as highlighted by the PSTH differences in the
bottom row. Note, however, that this does not arise when a nonlinearity and a
Poisson spike generator are used in the underlying model instead (supplementary
Fig. S12).

In contrast to the GLM framework, the proposed approach identifies the neural
circuit in two steps: by identifying the spike generator PRCs through current
injections first and identifying the associated kernels using CIM second. Since
all filters are found subject to the spike generation dynamics captured by phase
response curves, they match the true filters (see Fig. S13 and S14 for the Hodgkin-
Huxley examples).

In that regard, although a direct comparison between the GLM and proposed
methods is enlightening, it is not a complete one. The GLM framework does not
require a separate characterization of the spike generator, and, as demonstrated,
does allow the construction of neural circuit models that can predict responses to
some novel stimuli. It may not always be possible to obtain intracellular recordings
from neurons in order to characterize the nonlinear dynamical system governing
the spike generation. At the same time, one should be careful about interpreting
identification results based solely on how well the identified model can predict the
PSTH to a particular stimulus. This is especially important, when the identified
parameters are used to infer circuit connectivity and to describe the processing
performed by the system. For these and other reasons, we view the two approaches
as being complementary to each other.
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Figure 21: The identified GLM model can predict the response to a
novel stimulus with the same statistics, despite using filters that are
substantially different from the underlying filters.
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6 Discussion & Future Work

In this paper we introduced a novel approach that provides a complete functional
identification of biophysical spike-processing neural circuits. The circuits con-
sidered accept multi-dimensional spike trains as their input and are comprised
of a multitude of temporal receptive fields and of conductance-based models of
action potential generation. Each temporal receptive field describes the spatio-
temporal contribution of all synapses between any two neurons and incorporates
the (passive, i.e., linear) processing carried out by the dendritic tree. The ag-
gregate dendritic current produced by a multitude of temporal receptive fields
is encoded into a sequence of action potentials by a spike generator modeled as
a nonlinear dynamical system. Full identification of biophysically-grounded cir-
cuits with single sample path spiking inputs and outputs (as typically obtained in
neurophysiology) has been an open problem until now.

Our approach builds on the observation that during any experiment, an entire
neural circuit including its receptive fields and biophysical spike generators, is
projected onto the space of stimuli. For a given neural circuit, the projection is
determined by the input signals used to identify the circuit parameters. Employ-
ing the reproducing kernel Hilbert space (RKHS) of trigonometric polynomials
to describe input stimuli, we quantitatively described the relationship between
underlying circuit parameters and their projections. We also derived experimen-
tal conditions under which these projections converge to the true parameters. In
doing so, we achieved the mathematical tractability needed to (i) characterize the
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biophysical spike generator and (ii) identify the multitude of receptive fields.

The identification approach developed here does not require using white noise
as input stimuli. Instead, all signals employed have a finite bandwidth in the
frequency domain. By modeling stimuli as elements of an RKHS, one can work
with bandlimited functions, while keeping the basic computational formalism of
the Dirac-delta distribution on the space of functions with continuous derivates
of any order (used in white noise analysis). Formally, the key relationship in an
RKHS providing this property is the reproducing kernel property (see Remark 1).
The identification algorithm for spiking input signals is based on the key observa-
tion that, given an appropriate choice of the RKHS H, the current produced by a
temporal receptive field in response to a spike §(t — ;) is indistinguishable from
the current produced in response to a reproducing kernel K (t,t;) € H. This leads
to a straightforward inner-product formulation of the receptive field contribution
to neuronal response. Importantly, presynaptic spikes need not be broadband
Poisson, a condition that is necessary to estimate the receptive field kernels in a
generalized Volterra model (GVM) (Lu et al., 2011). Clearly, the methodology
employed can be also applied to other RKHS models of the input space including
Sobolev spaces (see, e.g., (Lazar and Pnevmatikakis, 2010)).

Characterization of conductance-based spike generators is accomplished by
identifying a family (p})kez of phase-response curves (PRCs) that capture the
nonlinear dynamical contribution of the axon hillock to the neuronal response.
Although finding PRCs requires either prior knowledge of the biophysical model
or access to the cell to perform current injections, such a capability is becom-
ing more and more available, especially in smaller organisms such as Drosophila
melanogaster. We proposed a novel approach for estimating the PRCs that in-
volves injection of a constant-amplitude current to place the nonlinear dynamical
system onto a stable limit cycle, followed by injection of spike-triggered arbitrary
bandlimited current waveforms to perturb the system trajectory. In contrast to
standard methods, which require injecting hundreds to thousands of delta pulses
at particular phases of the oscillation, we employed perturbation signals that are
spread over the entire oscillation cycle. As a result, every perturbation signal ex-
plores not a small segment, but the entirety of the PRC, rendering the procedure
significantly more efficient when compared to traditional approaches (Izhikevich,
2007; Netoff et al., 2012) (see also section 3.1). Since the perturbation signals are
not concentrated at particular moments in time, the procedure is also intrinsically
more immune to experimental/system noise (see section 3.3) and allows one to
reproduce exactly the same current waveform for a reliable estimation of the PRC.

Moreover, the proposed approach provides a strong insight into how pertur-
bation signals affect the estimated PRC and establishes experimental guidelines
for its estimation. Conventional methods employ very brief and large pulses of
current (essentially, Dirac-like pulses) to estimate the PRC. What is generally
assumed is that these exact pulses infinitesimally perturb the dynamical system.
However, given the finite bandwidth of electrodes used in practice, the actual cur-
rent entering the neuron has a finite, not infinite, bandwidth and, consequently,
is quite different from a Dirac pulse. In that regard, we note that the identifica-
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tion error shown in Fig. 7 decreases with increasing bandwidth and eventually
levels off, thereby providing us with a measurement of the PRC bandwidth. This
result cannot be obtained by using conventional pulse-based methods, which sim-
ply declare that the estimated PRC is the underlying PRC of the neuron. Our
results suggest that in reality an experimenter often finds only the PRC projected
onto the space determined by the electrode properties (bandwidth) and the input
stimuli employed. Consequently, different results may be obtained in day-to-day
experiments due to electrode variability and research groups using different types
of electrodes may come up with different estimates.

Once the PRC family is computed, it can be used in conjunction with the
PIF-cPRC neuron (Fig. 5) to identify the multitude of temporal receptive fields
describing the processing of presynaptic spike trains. The PIF-cPRC neuron
is a reduced-parameter model that has been previously investigated in (Kim
and Lazar, 2011) and shown to provide a faithful input/output description of
conductance-based models for large-amplitude currents typically observed in ex-
periments. As with the PRC estimate, only a projection of the temporal receptive
field onto the input stimulus can be recovered. However, since input spikes may
not always be controlled (in contrast to PRC currents), the identification tractabil-
ity is afforded by an appropriate choice of the RKHS H into which these spikes
are embedded (Fig. 3). An observer can simply pick a particular time interval
containing spikes from a continuous spike stream (yellow region of Fig. 3) and
compute the aggregate current within a subset of that interval (green region of
Fig. 3). The computed and true currents are indistinguishable only in the green
region since the filters have memory (non-zero temporal support) and the value
of the dendritic current is affected not only by the spikes arriving at the present
moment but also by spikes from the past (basic property of convolution). In prac-
tice, the green region is determined by the difference between the period T of the
RKHS and the temporal support of the receptive field. Since an arbitrarily large
T can be selected, any finite-memory receptive field can be modeled.

The general approach presented here is both flexible and scalable. For spike
generators, it accommodates all spiking models for which the PRC can be com-
puted, including conductance-based models such as Hodgkin-Huxley, Morris-Lecar,
Fitzhugh-Nagumo, Wang-Buzsaki, Hindmarsh-Rose (see also a variety of models
described in Izhikevich (2007)), arbitrary oscillators with multiplicative coupling
(Lazar and Slutskiy, 2012) and simpler models such as the integrate-and-fire neu-
ron (Brown et al., 2004). In order to determine the PRC, the neuron has to be
driven to an oscillatory regime. However, it does not need to be tonically spiking
as the PRC methodology is applicable to bursting neurons as well (Brown et al.,
2004). For circuit architectures, our approach incorporates models with complex
connectivity, including circuits with a large number of feedforward, lateral and
feedback connections.

In the future, it would be instructive to extend the above methods in several
important directions. First, for many neural circuits it is desirable to be able to
take into account not only the spiking feedforward and lateral inputs, but also
various continuous inputs. Such mixed-signal models are important, for example,
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in studying circuits that have extensive dendro-dendritic connections (e.g., the
olfactory bulb (Urban and Sakmann, 2002)), or circuits that respond to a neu-
romodulator (global release of dopamine, acetylcholine, etc.). Second, important
models of sensory processing include receptive fields that are tuned not only to
temporal, but also spatial variations of stimuli (e.g., audition (Kowalski et al.,
1996), vision (DeAngelis et al., 1995)) and our results should be extended to these
models as well. Third, not all inputs may be recorded in a practical setting when
dealing with a very complex system. It would be helpful to extend the methods
presented here to the case when only a subset of all inputs is available to the ob-
server. Finally, while the employed spike generation models are highly non-linear,
the temporal model of dendritic processing is linear. Extending our framework to
nonlinear temporal processing would allow one to capture active processes likely
to take place in neuronal dendrites (Lazar and Slutskiy, 2013). These and other
related questions will be explored in greater detail elsewhere.
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