
Time Encoding Using Filter Banks
and

Integrate-and-Fire Neurons ∗

Aurel A. Lazar
Department of Electrical Engineering

Columbia University, New York, NY 10027
aurel@ee.columbia.edu

January 22, 2004

Abstract
Time encoding is a mechanism of mapping amplitude information into a time

sequence. We show that time encoding based on filter banks and integrate-and-
fire neurons provides, under natural conditions, an invertible representation of
information, i.e., a stimulus can be recovered from its multidimensional spike train
representation loss-free.

1 Introduction

A key question arising in theoretical neuroscience is how to represent an arbitrary stim-
ulus as a sequence of action potentials [1]. The temporal requirements imposed on this
representation might dependent on the information presented to the sensory neurons.
For example, the temporal precision of auditory processing involves measurements of
interaural time delays with sub millisecond accuracy [9]. Rapid intensity transients ap-
pear to be a key stimulus feature for triggering precisely timed spikes [15]. The nervous
system uses ensembles of neurons to encode information but direct experimental insights
into the operation of biological neural networks is scarce [16].

In [13] the question of stimulus (signal) representation was formulated as one of time
encoding, i.e., as one of encoding amplitude information into a time sequence. Formally,
a time encoding of a bandlimited function x(t), t ∈ R, is a representation of x(t) as a
sequence of strictly increasing times (tk), k ∈ Z (see Figure 1.
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Figure 1: Time Encoding and Decoding.

There are two natural requirements that a time encoding mechanism should satisfy.
The first is that the encoding should be implemented as a real-time asynchronous cir-
cuit. Secondly, the encoding mechanism should be invertible, that is, the amplitude
information can be recovered from the time sequence with arbitrary accuracy. A Time
Encoding Machine (TEM) is the realization of such an encoding mechanism.

The first example of a Time Encoding Machine satisfying the above requirements
was given [13]. It consists of a feedback loop that contains an adder, a linear filter
and a noninverting Schmitt trigger. The invertibility property of the TEM is due to a
representation of the bandlimited function x(t), t ∈ R, as a discrete set of integral values∫ tk+1

tk
x(u)du evaluated on time intervals that satisfy in average the Nyquist rate. Hence,

under simple conditions, bandlimited signals encoded with the Time Encoding Machine
can be recovered loss-free from the time sequence at its output. A Time Decoding
Machine (TDM) is the realization of an algorithm for stimulus recovery with arbitrary
accuracy.

The average rate of (tk)k∈Z in [13] is proportional with the bandwidth of the stimulus.
Clearly the output of a neuron can not support large spike averages and a natural physical
limit has to be imposed in modelling of sensory neurons. A number of sensory systems,
including the retina [14] and the cochlea [9] have been modelled as a bank of filters, with
each of the filters feeding a signal into an integrate-and-fire neuron. Such a model is a
possible realization of time encoding using filter banks and integrate-and-fire neurons.
This model raises a number of questions. The one addressed in this paper is whether
such a model is invertible and if so, what algorithm achieves perfect stimulus recovery.

Using the theory of frames ([6], [10], [7], [20], [5]) we shall derive a channelization
of the bandwidth of the stimulus that leads to a multidimensional time encoding rep-
resentation of the stimulus (tmk )k∈Z, 1 ≤ m ≤ M , where M is the number of channels.
By choosing M , the transfer function of the filters describing the filter bank, and the
parameters of the integrate-and-fire neuron model, the average spike rate at the output
of each integrate-and-fire neurons can be controlled. We shall demonstrate that time
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encoding based on filter banks and integrate-and-fire neurons provides, under certain
natural conditions, an equivalent representation of information, i.e., the stimulus (x(t)),
t ∈ R, can be recovered loss-free from its multidimensional spike train representation
(tmk ), k ∈ Z and m = 1, 2, ..., M . If the m’th integrate-and-fire neuron is characterized
through an arbitrary, possibly time varying threshold δm(t), k ∈ Z and m = 1, 2...,M
that satisfies a simple upper bound condition the stimulus can be perfectly recovered if
(tk, δ

m(tmk )) is known for all k ∈ Z and m = 1, 2...,M .
This paper is organized as follows. A canonical model for using filter banks and

integrate-and-fire neurons for time encoding and stimulus recovery is introduced in sec-
tion 2. Perfect stimulus recovery is detailed in Section 3. The analysis and synthesis of
time encoding and decoding is presented in sections 3.1 and 3.2, respectively. Section 4
concludes the paper.

2 A Canonical Model for Time Encoding with Filter

Banks

The canonical model for time encoding and decoding consists of an information represen-
tation (analysis) subsystem and an information recovery (synthesis) subsystem. These
are shown in Figures 2 and 4, respectively. The representation subsystem consists of a
generic filter bank followed by a cascade of TEMs. The recovery subsystem consists of
a cascade of TDMs followed by appropriately chosen filters.

The filter banks can be designed using various methodologies. The one considered
here is based either on the wavelet transform or the Gabor transform ([5], [7], [20]).
The conditions for invertibility on the generated filter banks are quite standard. Infor-
mally, they only require that overall no signal frequency is lost due to filtering. This
does not rule out overcomplete representations. Since under this condition the filter
bank representations (e.g., the wavelet and Gabor) are invertible in their own right,
the signal can be recovered loss-free from the multidimensional time sequence. Figures
(2) and (4) depict the case where the filter bank is realized using wavelets. In the lan-
guage of information theory, the Wavelet Time Encoding subsystem might represent the
transmitter whereas Wavelet Time Decoding subsystem might represent the receiver of
a communication system.

The output of each filter on the transmitter side is encoded with a TEM modelling
the operation of an integrate-and-fire neuron. The TEM consists of a bias, an integrator
and a thresholding device (see Figure 3). Its basic operation is very simple. The bounded
signal |xm(t)| ≤ c < b, m = 1, 2, ..., M , is biased by a constant amount b before being
applied to the integrator. This bias guarantees that the integrator’s output ym(t) is
an increasing function of time. When the output of the integrator reaches a (time
dependent) threshold value δm(tmk ), a spike is triggered at time tmk at the output of the
m’th device. Immediately thereafter the system is reset to an initial state, assumed here
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Figure 2: Wavelet Time Encoding.

to be 0. Therefore, a spike is triggered when the output of the integrator reaches the
triggering mark δm(tmk ) (called a quanta). Using a signal-dependent sampling mechanism,
the TEM maps the amplitude information of (xm(t)), t ∈ R, into timing information
(tmk ), k ∈ Z and m = 1, 2, ..., M . Recovery is only possibly if the threshold function δ(t)
is known at least at the trigger times (tmk ), k ∈ Z and m = 1, 2, ..., M .

Filter bank representations of bandlimited signals have been extensively studied in
the literature (see, e.g., [4] and the references therein). However, the sampling of the
output of the filter bank is achieved by traditional amplitude sampling and, therefore,
the data set for representing stimulus information is substantially different from ours.
Note that, as in the case of the single TEM, the values of the time sequence (tmk )k∈Z can
be represented using N bits. If the threshold function is known, only these values need to
be transmitted to the receiver. This represents an enormous reduction of transmission
capacity when compared to the scheme provided by [19]. The latter operates with clock
based sampling and generates an exponentially higher bit rate (N as opposed to logN)!

3 Perfect Stimulus Recovery

In what follows we shall show that under certain conditions the Canonical Model allows
for perfect stimulus recovery. We shall investigate the structure of the analysis part of
the Canonical Model in section 3.1. The synthesis part is presented in section 3.2.
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Throughout this paper f will denote the stimulus and h the mother wavelet. s
denotes the dilation factor. Both f and h have finite energy, that is f, h ∈ L2(R). We
shall define the following three operators:

• Dilation Operator
(Dsh)(u) = |s|1/2h(su) (1)

• Translation Operator
(τth)(u) = h(u− t) (2)

• Involution Operator
h̃(u) = h̄(−u) (3)

where the bar stands for complex conjugate.

3.1 Analysis

As already mentioned we shall consider the filter bank to have a wavelet representation.
The mathematical formalism that we are using, however, it it not limited to such a
construction. Gabor filter bank constructions will not be explicitly described due to
space limitations. However, our methodology covers these constructs as well.

3.1.1 Wavelet Representation

The continuous wavelet transform (CWT) is given by:

(Whf)(t, s) =< f, τtDsh >= |s|1/2

∫

R
f(u)h̄(s(u− t))du

= |s|1/2

∫

R
f(u)h̃(s(t− u))du = (f ∗Dsh̃)(t).

(4)

In order to deal with practical implementations, there is a need to sample the time-
scale plane. A class of sampling sets that facilitates a simple filter bank implementation
is given by:

Γ = {t, sm}m=1,2,...,M (5)

and the analysis filter bank is specified by:

(Whf)(t, sm) =< f, τtDsmh >= (f ∗Dsmh̃)(t) = xm(t). (6)

The mother wavelet h, the number of filters M , and the scales {sm} determine the
frequency ranges over which the analysis filter bank operates.
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3.1.2 Time Encoding and Representation

To simplify the notation in this section with will drop the upper index m of xm(t).
We shall assume that x = x(t), t ∈ R, with |x(t)| ≤ c < b, is a finite energy signal
on R bandlimited to [−Ω, Ω]. Note that the bandwidth of each filter depends on the
bandwidth of the mother wavelet and the dilation factor.

1
κ

∫ ym(t)

b

xm(t)

δm

Spike triggered reset

(tmk , δm(tmk ))k∈Z

Figure 3: Time Encoding with the Integrate-and-Fire Neuron.

The integrator constant κ, the upper bound of neuron threshold δ, the bias b in
Figure 3 are strictly positive real numbers and x = x(t) is a Lebesgues measurable
function that models the input signal to the TEM for all t, t ∈ R. The output of the
integrator in a small neighborhood of t0, t > t0 is given by:

y(t) = y(t0) +
1

κ

∫ t

t0

[x(u) + b]du. (7)

Note that, due to the bias b, y = y(t) is a continuously increasing function.

Remark 1 Informally, the information of the input (x(t))t∈R is carried by the signal
amplitude whereas the information of the output signal is carried by the trigger times
tk and threshold values δ(tk), for all k, k ∈ Z. A fundamental question, therefore, is
whether the Time Encoding Machine encodes information loss-free. Loss-free encoding
means that x(t) can be perfectly recovered from (tk, δ(tk))k∈Z.

Lemma 1 (t-Transform) For all input signals x = x(t), t ∈ R, with |x(t)| ≤ c < b,
and threshold functions δ(t), t ∈ R, with 0 < δ(t) ≤ δ, the output is a strictly increasing
set of trigger times (tk), k ∈ Z, obtained from the recursive equation

∫ tk+1

tk

x(u)du = −b(tk+1 − tk) + κδ(tk+1). (8)

for all k, k ∈ Z.
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Proof: The Time Encoding Machine is described in a small neighborhood of t0, t > t0,
by:

1

κ

∫ t

t0

[x(u) + b]du = δ(t). (9)

Since the left hand side is a continuously increasig function and the threshold function
is bounded 0 < δ(t) ≤ δ and continuous, there exists a time t = t1, t0 < t1, such that the
equation above holds. Thus, the (output) sequence of times (tk)k∈Z, is strictly increasing
for all k, k ∈ Z, and the recursion (8) follows.

Corollary 1 (Upper and Lower Bounds for Trigger Times) For all input signals
x = x(t), t ∈ R, with |x(t)| ≤ c < b, the distance between consecutive trigger times tk
and tk+1 is given by:

0 < tk+1 − tk ≤ κδ

b− c
, (10)

for all k, k ∈ Z.

Proof: Since |x(t)| ≤ c, it is easy to see that

−c(tk+1 − tk) ≤
∫ tk+1

tk

x(u)du ≤ c(tk+1 − tk). (11)

By replacing the integral in the inequality above with its value given by equation (8)
and solving for tk+1 − tk we obtain the desired result. The upper bound is achieved for
a constant input x(t) = c and δ(t) = δ, for all t, t ∈ R, respectively.

Remark 2 If x(t) is a continuous function, by the mean value theorem there exists a
ξk ∈ [tk, tk+1], k ∈ Z, such that:

x(ξk)(tk+1 − tk) = −b(tk+1 − tk) + κδ(tk+1), (12)

i.e., the sample x(ξk) can be explicitly recovered from information contained in the time
difference tk − tk+1, and δ(tk+1), k ∈ Z. Intuitively, therefore, any class of input signals
that can be recovered from its samples can also be recovered from (tk, δ(tk))k∈Z.

Remark 3 The output of each neuron operates at an average rate that is proportional
to the effective bandwidth of each of the filtered signals, respectively. Thus, by choosing
the bandwidth of each filter appropriately, the processing capacity on each branch of the
transmitter and receiver can be controlled.
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3.2 Synthesis

A simple algorithm for the recovery of a bandlimited signal f from the sequence of
trigger times (tmk , δm(tmk )), k ∈ Z and m = 1, 2, ..., M can be implemented in two phases:

• Resolving Time - recovering the continuous filtered waveform (xm(t))t∈R from the
(tmk , δm(tmk ))k∈Z’s.

• Resolving Scale - recovering the original bandlimited signal f(t) by combining the
continuous filtered waveforms xm(t), m = 1, 2, ..., M .

Time Decoding

Machine
Time Decoding

Machine
Time Decoding

Machine

(f ∗ Cˇ)(t)

Ds1h

DsMh

Ds2h

s1

sM

s2

+
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x2(t)

x1(t)

(tMk , δM(tMk ))k∈Z

(t2k, δ
2(t2k))k∈Z

(t1k, δ
1(t1k))k∈Z

Figure 4: Wavelet Time Decoding.

3.2.1 Time Decoding and Recovery

Again, to simplify the notation in this section we will drop the upper index m of xm(t).
We shall assume that x = x(t), t ∈ R, with |x(t)| ≤ c < b, is a finite energy signal
on R bandlimited to [−Ω, Ω]. Note that the bandwidth of each filter depends on the
bandwidth of the mother wavelet and the dilation factor.

Lemma 2 Let the operator A be given by:

Ax =
∑

k∈Z

∫ tk+1

tk

x(u)du g(t− sk), (13)
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where g(t) = sin(Ωt)/πt and sk = (tk+1 + tk)/2. We have:

‖ I −A ‖≤ r (14)

where I is the identity operator and r = κδ
b−c

Ω
π
.

Proof: See Theorem 7 of [7].
The construct of the operator A above is highly intuitive and utilizes an integrated

version of x(t) on the interval [tk, tk+1]. Dirac-delta pulses are generated at times sk with
weight

∫ tk+1

tk
x(u)du and then passed through an ideal low pass filter with unity gain for

ω ∈ [−Ω, Ω] and zero otherwise. The values of
∫ tk+1

tk
x(u)du are available at the TDM

through equation (8).
Let xl = xl(t), t ∈ R, be a sequence of bandlimited functions defined by the recursion:

xl+1 = xl +A(x− xl), (15)

for all l, l ∈ Z, with the initial condition x0 = Ax.

Proposition 1 (Operator Formulation) Let x = x(t), t ∈ R, be a bounded signal
|x(t)| ≤ c < b bandlimited to [−Ω, Ω]. Under the conditions mentioned above, the
operator A is invertible and the signal x can be perfectly recovered as

lim
l→∞

xl(t) = x(t), (16)

and
‖ x− xl ‖≤ rl+1 ‖ x ‖ . (17)

Proof: Closely follows Theorem 1 in [13].
Let us define g = [g(t− sk)]

T , q = [
∫ tk+1

tk
x(u) du] and G = [

∫ tl+1

tl
g(u− sk) du]. We

have the following

Corollary 2 (Matrix Formulation) Under the assumptions of Proposition 1 the ban-
dlimited signal x can be perfectly recovered from (tk, δ(tk))k∈Z as

x(t) = lim
l→∞

xl(t) = gG+q. (18)

where G+ denotes the pseudo-inverse of G. Furthermore,

xl(t) = gPlq, (19)

where Pl is given by

Pl =
l∑

k=0

(I−G)k. (20)

Proof: Formally identical to the proof of Theorem 2 in [13].
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3.2.2 Recovery Using Wavelet Frames

With “hat” denoting the Fourier transform we note that

(xm)ˆ(ω) = (f̂ ·Ds−1
m

¯̂
h)(ω) (21)

By multiplying both sides with sm ·Ds−1
m

ĥ we obtain:

M∑
m=1

sm · (xm)ˆ(ω)(Ds−1
m

ĥ)(ω) =
M∑

m=1

sm · (f̂ ·Ds−1
m

¯̂
h)(ω)(Ds−1

m
ĥ)(ω)

= f̂(ω)
M∑

m=1

sm · |Ds−1
m

ĥ(ω)|2
(22)

Let us assume that

C =
M∑

m=1

|ĥ(s−1
m ω)|2 > 0. (23)

for all ω ∈ [−Ω, Ω]. We shall denote by c(t), t ∈ R, the inverse Fourier transform of
C−1(ω), i.e., c(t) = (C−1)ˇ(t) for all t, t ∈ R. We have the following

Proposition 2 The stimulus f(t) can be perfectly recovered from (xm(t))t∈R, m =
1, 2, ..., M and

f(t) = (
M∑

m=1

sm · (xm ∗Dsmh) ∗ c)(t) (24)

provided that

C =
M∑

m=1

|ĥ(s−1
m ω)|2 > 0. (25)

for all ω ∈ [−Ω, Ω].

4 Conclusions

In this paper we presented a Canonical Model for time encoding and stimulus recov-
ery. The model consists of a filter bank followed by a cascade of integrate-and-fire
neurons. The advantage of the model is that it allows to control the average rate of
spike generation. Most importantly, the Canonical Model is invertible even though the
constituent filters have overlapping frequency bands and the integrate-and-fire neurons
operate with different (possibly time dependent) thresholds. In addition to the trigger
times, the values of the threshold evaluated at the trigger times are required for recovery.
The invertibility property is remarkable particularly because the individual TEMs are
non-linear devices.
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The Canonical Model helps elucidate some of the key open questions of temporal
coding. First, stimuli encoded by a single integrate and fire neuron can be recovered
loss-free from the neural spike train. The recovery of the stimulus requires information
about the trigger times (spikes) and the (time dependent) thresholds. There is no need
to repeat an experiment to obtain additional spike train data about the stimulus. Clearly
using spikes for recovering the stimulus from a single running experiment is a defining
biological requirement. Second, the Canonical Model shows that the same stimulus
can be recovered using different filter transfer functions and integrate-and-fire neuron
parameters. The latter result seems to be particularly noteworthy because the choice of
bounded thresholding functions leads to different representations of the stimulus without
information loss.
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