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1 Modeling the Architecture of the Drosophila Ol-

factory System

The object of this paper is to present a model of the architecture of the olfactory system
of the Drosophila.

1.1 Modeling the Architecture

Our initial model of the fly olfactory system (see Figure 1) consists of four cascaded
building blocks (networks). Each block models a transduction, information representa-
tion or processing stage of odor information.

The first block represents the network of receptors and the dendritic arbor (cilia)
of the OSNs. The input to this network is provided by odor molecules binding to the
receptors. Each output of the receptor network is an analog waveform that models the
dendritic current feeding the soma of exactly one of the olfactory sensory neurons.

The second block is the network of OSNs. The input to this network is identical to
the output of the receptor network. Its output models the multidimensional spike train
generated by the OSN assemblies.

The third block models the glomerular network. The glomerular network accepts
as input the spike train generated by the OSNs and has as output the dendritic tree
current feeding each of the somas of the PNs. Hence, the output of the glomerular
network is modeled as an analog waveform. In addition to the direct axon/dendritic
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arbor connectivity, the circuit diagram of the glomerular network is characterized by the
interconnectivity between glomeruli due to local interneurons and (possibly by) feedback.
Feedback between the glomerular network and the network of PNs is shown by the red
arrow in Figure 1.

The fourth building block models the network of projection neurons. The input to
this network coincides with the output of the glomerular network whereas its output is
modeled as a multidimensional spike train.
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Figure 1: The Architecture of the Olfactory System

Information processing in the
olfactory system begins with the
mapping of an odor by the subset
of odorant receptors that it acti-
vates. This odor receptor map (im-
plemented as a network) creates a
time dependent receptor image (or
trajectory). Similarly, the three
other networks in Figure 1 imple-
ment input/output maps. These
maps create the OSN image, the
glomerular image and the PN im-
age, respectively. Whereas the
OSN and the PN images (i.e., spike
trains) can be readily recorded us-
ing whole-cell recording, the recep-
tor image and the glomerular im-
age are difficult to measure exper-

imentally. Elucidating the nature of odor representation in the initial stages of the
olfactory system, however, calls for understanding the main structural characteristics of
all four images. We shall demonstrate in the next section how to recover the receptor
and the glomerular image from the OSN and the PN image, respectively. This enables
us to identify the wiring diagram of the glomerular network from neuron spiking data.

An olfactory system must solve the problem of odor detection, recognition and seg-
mentation [12]. Segmentation is necessary because the odor environment often contains
two or more odors. The system must be able to identify these objects separately and
signal their presence to higher brain areas. Odor recognition must be concentration
invariant over a broad range of odor concentrations [3].

In the language of communication theory odor recognition calls for finding good par-
titions of the multidimensional odor space, mapping odors into such partitions through
a sequence of processing steps and identifying the partitions with the appropriate odors.
Accordingly, we shall model the overall operation of the olfactory system of the Drosophila
as a real-time odor detection system (in the sense of [15]). From a theoretical point of
view, the detector is viewed as an instantiation of a hypothesis testing system. In its
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simplest form, the null hypothesis or H0 is “lack of odor” (only spontaneous activity is
present). The alternative or H1 is “odor plus spontaneous activity is present” (sponta-
neous activity is usually interpreted as noise). This basic model can be easily generalized
to both the case of an arbitrary number of odors as well as the case of segmenting (or
extracting) an odor from a mixture of odors.

What is a possible realization of the overall odor detection system beyond the four
distinct networks depicted in Figure 1? Since the data available about the higher brain
centers is scant, the following comments have only a suggestive value. Genetic experi-
ments have determined that the precise spatial map in the antennal fly lobe is represented
in the protocerebrum [18]. Therefore, the dimensionality of the higher order olfactory
networks can be expected to be preserved, that is, it is the same as that of the net-
works in Figure 1. The functionality of the glomerular network is interpreted here as
a spatial (non-linear) filter whose dimensionality (or cardinality) is given by the maxi-
mum number of taps (outputs corresponding to distinct glomeruli). For a single odor of
given concentration, a number of taps “light up”. These active taps give rise to a single
“symbol” (odor representation in the antennal lobe). For a segmentation problem with
two odors, a more complex pattern of activity will be discernible at these taps. This
activity pattern typically exhibits “intersymbol interference”. (The two patterns each
corresponding to a single odor overlap, or interfere.) Up to the same number of taps
characterize one or more olfactory networks residing in the higher brain centers. The
role of these networks is to simply remove, to the extent possible, the intersymbol inter-
ference. Finally, the last decision step in the detection system is executed by a network
of cardinal neurons (also labeled as taps) in a “voting network” that maps symbols into
unique odor outcomes.

Neural decision models are also employed in other areas of (systems) neuroscience
[13] where they are often associated with behavioral experiments. Our model, however,
is markedly different from other computational models proposed for the olfactory system
of a number of insects or mammals [5], [1], [2], [3]. The latter models use timing based
computation of synchrony of oscillatory waves observed in the olfactory system of these
organisms. To the best of our knowledge there is no clear indication in the published
literature of oscillations in the olfactory system of the fly.

1.2 Relationship to Experimental Observations

The task of the olfactory system is to separate different odor representations through
processing. Evolutionary tinkering [7], we believe, created an olfactory system in the
fly that exploits through a small sequence of processing steps the distance between
odors in the coding space and, thereby, makes accurate detection and segmentation
decisions. In what follows we shall discuss methods for (i) evaluating the odor coding
space and, (ii) extracting an input/output characterization of the antennal lobe of the
fly. Referring to Figure 1, our model of the architecture of the olfactory system calls for
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a complete characterization of the space of receptor images and the transfer function of
the glomerular network. A combination of experimental and theoretical tools is used for
this purpose.

By defining the odor coding space as the space spanned by receptor images, the most
faithful representation of odors in the olfactory system is obtained. By further assuming
that the set of dendritic currents is bandlimited (i.e., these currents have a bounded
rate of change), the construction of the coding space and its investigation with tools of
information theory becomes tractable.

In the experiemental literature, the input/output description of the olfactory lobe is
typically given in terms of the activity patterns of OSNs and of PNs [18], [19], [17]. By
assuming that the OSN and PN spike trains are essentially equivalent representations
of their respective input image (i.e., dendritic tree currents), the input/output trans-
fer function of the olfactory lobe is reduced to the transfer function of an equivalent
glomerular network accepting the receptor image as input and the glomerular image as
output.

The input to each glomerulus, however, is the sum of all activity patterns of the
axons of the neurons expressing the same receptor. We postulate that this convergence
can be modeled as a beamforming operation. In beamforming, a widely used strategy
in array processing [8], the summation of multiple observations of the same phenomena
leads to an increase in the signal-to-noise ratio. Operationally, the input to the equiva-
lent glomerular network can be aggregated using an appropriate sum of receptor images.
By reducing the dimensionality, input aggregation greatly simplifies the evaluation of
the transfer function of the equivalent glomerular network. Working with the (receptor,
glomerular) image pair instead of the (OSN, PN) image pair also adds an additional
degree of “hardware independence”. This is because spike trains generated by anatom-
ically identical neurons might physiologically be substantially different. The receptor
and glomerular images are largely insensitive to these differences.

In the next section we shall present our approach to modeling and characterization of
the odor coding space and the input/output characterization of the glomerular network.

2 Functional Characterization of the Architecture

What are the limits of the olfactory system in the Drosophila? Is there a number of odors
beyond which the system is not capable of recognizing odors with high probability? A
back of the envelope calculation suggests that, for a given concentration, the number
of recognizable odors could be anywhere between n and 2n, where n is the number
of glomeruli. For computing this rather rough estimate, we assumed that the time
average of the neural activity is averaged on some small time interval. To investigate
such questions, there is a need to go beyond empirical results and set up a formal
mathematical model. The first step in the process calls for defining the odor coding
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space. Once established, the coding space can be investigated with tools of information
theory [4].

One simple way to define the odor coding space is to consider the space spanned by
the set of OSN images. This approach has the advantage that, for given odor stimuli,
the OSN spike trains can be readily measured in different flies. The disadvantage of
this methodology, however, is that spiking neurons both within the same organism and
among different sample organisms might vary. As a result the typical raster diagrams
depicting the spike trains of the OSNs while qualitatively similar, display visible vari-
ations. What is the information the OSNs carry? Are variations in the timing and
number of spikes among anatomically identical neurons in different sample organisms
due to the underlying “hardware”? A satisfactory answer to these questions is needed
in order to tackle the nature of the processing taking place in the antennal lobe.

2.1 The Odor Coding Space

We shall model the receptor image as a continuous bandlimited function

us = us(o, r, c, t), (1)

where s denotes the olfactory sensory neuron, o denotes the odor, r the receptor, c the
concentration and t the time variable. Thus, for a given odor receptor pair (o, r) and
odor concentration c, a time function models the dendritic tree current feeding the soma
of an OSN expressing the receptor r.

Each coordinate of the receptor image in Figure 1 is mapped by an OSN into a spike
train. (tsk) denotes the sequence of spike times at the output of network of the olfactory
sensory neurons. The set of these neurons is denoted by S. The coding space is defined
by U = {us, s ∈ S|us = us(o, r, c, t), o ∈ O, r ∈ R, c ∈ C}, where O is the family of
odors, R is the set of receptors and C is the concentration range. For example, o = CO2

is an odor in the family O and r =OR22a is a member of the receptor set R. For the
fruit fly the number of detectable odors in not known. The set of receptors currently
stands at 60. Thus, the coding space at the input to the OSN network is parametrized
along three dimensions. One of the dimensions is given by the set of odors, one by
the set of receptors and one by the concentration. Hence, the family U of continuous
time bandlimited functions u introduced above represents the set of the odor space/time
codes.

The above formalism can be used for reasoning about the nature of the odor code.
A purely combinatorial space code would aggregate (abstract) information of the time
component in u thus effectively providing information about the odor only through
the activated receptors. Since receptors with the same identity uniquely map into the
same glomerulus, the activation of the glomeruli could be used for odor recognition
and segmentation. A purely time code on the other hand, would aggregate receptor
information and map it into the time domain. Explicit knowledge about the activated
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receptor would not be made available to higher processing centers. Without capacity
constraints, a combined four dimensional (odor, receptor, concentration, time) code
provides for the largest possible coding space. Information theory [4] teaches us that
this space can not be enlarged by processing.

While taking measurements of the receptor image u appears to be at least for now
a daunting task, algorithms for estimating the dendritic current based on information
provided by the OSN spike trains have been developed. The OSN spike train can be
readily recorded for various values of the triplet (o, r, c).

2.2 Estimating the Receptor Image

The characteristics of the spike train including, the odor response spectrum, the spon-
taneous firing rate, the signaling mode (excitatory or inhibitory) and the time constant
of the response to stimuli (response termination) [6] must be reflected in the dendritic
current as well.

An algorithm for perfect recovery of the stimulus of an integrate-and-fire neuron from
reading the spiking times at its output was derived in [10] and [11]. This algorithm can
readily be tailored for recovering the receptor image u = u(o, r, c, t), t ∈ R, based on the
knowledge of the trigger (spike) times (tk), k ∈ Z. In order to simplify the notation in
this section we dropped the superscript s specifying the olfactory sensory neuron and, R
and Z denote the real numbers and the integers, respectively. The structure of a decoder
implementing the perfect recovery algorithm is highly intuitive. Spikes are generated at
times sk, sk = (tk+1 + tk)/2, with weight ck, k ∈ Z, and then passed through an ideal low
pass filter with unity gain for ω ∈ [−Ω, Ω] and zero otherwise, where Ω is the bandwidth
of x. Thus, the output of the decoder is given by

u(o, r, c, t) =
∑
k∈Z

ck(o, r, c) · g(t− sk), (2)

where g(t) = sin(Ωt)/πt for all t, t ∈ R. The ck’s, are the solution to a linear equation
that will be discussed below. For describing the adaptation of our main theoretical result,
the following notation will be used: g = [g(t − sk)], q = [

∫ tl+1

tl
x(u) exp(− tl+1−u

RC
) du],

G = [Glk] = [
∫ tl+1

tl
g(u−sk) exp(− tl+1−u

RC
) du] and finally, r = RC·ln[1− δ−y(t0)

δ−(b−a)R
]·Ω

π
, where

y(t0) is the resting potential, δ is the threshold voltage, R and C are the parameters of
the (leaky) integrate-and-fire model and, a and b are constants (see below).

Theorem 1 (Perfect Recovery Algorithm) Let u = u(o, r, c, t), t ∈ R, be a bounded
stimulus |u(o, r, c, t)| ≤ a < b bandlimited to [−Ω, Ω]. If r < 1, the stimulus u can be
perfectly recovered from (tk)k∈Z as

u(o, r, c, t) = gTG+q, (3)

where G+ denotes the pseudo-inverse of G.
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We have shown [9] that this algorithm can be re-written in such a way as to become
threshold insensitive. Therefore, the receptor image u does not depend on the value of
the threshold voltage of the olfactory sensory neuron. This is rather obvious from an
experimental standpoint. However, since direct measurements of the receptor image are
not yet available, an estimate of the receptor image needs to be provided that does not
dependent on the particular details of the cellular mechanism that generates spikes.

2.3 Beamforming: Characterizing the Aggregated Input to the
Glomerular Network

Our working assumption in this subsection is that OSNs expressing the same receptor
converge on the same glomerulus in order to increase the signal-to-noise ratio at the
input to the olfactory lobe. This is akin to beamforming in array processing where
observations in vector form correspond to multiple sensing devices [8]. The dimension of
the observation vector is given by the number of neurons expressing the same receptor.
Intuitively, beamforming of spiking neuron data would suggest that the activity pattern
of neurons converging on the same glomerulus can be generated by an “ideal” equivalent
neuron with improved signal-to-noise ratio.

2.4 Input/Output Characterization of the Glomerular Network

The interconnectivity between the glomeruli in the antennal lobe is determined by a
set of local interneurons [14]. In order to understand how these interneurons affect the
transfer of odor information between the input and output, the transfer function of the
antennal lobe can be identified following an established methodology in system theory
and spectral analysis [16]. The transfer function is simply the ratio between the Fourier
spectrum of the glomerular and the receptor images. The transfer function provides
key information regarding the functionality of the circuit diagram of the glomerular
network. Note that the PN image and the OSN image can not be used for evaluating
the transfer function because the neuron-induced non-linearities lead to unmanageable
spectral components.
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