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ABSTRACT

Time-encoding is a real-time asynchronous mechanism of
mapping the information contained in the amplitude of a ban-
dlimited signal into a time sequence. Time decoding algo-
rithms recover the signal from the time sequence. Under an
appropriate Nyquist-type rate condition the signal can be per-
fectly recovered. The algorithm for perfect recovery calls,
however, for the computation of a pseudo-inverse of an infi-
nite dimensional matrix. We present a simple algorithm for
local signal recovery and construct a stitching algorithm for
real-time signal recovery. We also provide a recursive algo-
rithm for computing the pseudo-inverse of a family of finite-
dimensional matrices.

1. INTRODUCTION

Time-encoding is a real-time asynchronous mechanism of
mapping the amplitude information of a bandlimited signal
x(t), t ∈ R, into a time sequence(tk), k ∈ Z, whereR and
Z denote the sets of real numbers and integers, respectively.
A Time Encoding Machine (TEM) is a realization of such
an asynchronous algorithm. The first example of a TEM
(see [7] and the references therein), also shown in Figure 1,
was an asynchronous sigma-delta modulator. Other TEMs
include integrate-and-fire neurons [8] and frequency modula-
tors (combined with a zero crossings detector) [7]. The major
advantage of time encoding as opposed to traditional analog-
to-digital conversion is that TEMs can be implemented by
simple and robust nonlinear analog VLSI circuits with low
power consumption [10], [5]. Under Nyquist-type rate con-
ditions,x(t) can be reconstructed from thetk’s by algorithms
commonly referred to as Time Decoding Machines (TDMs).
Although methods used in frame theory [2], [6], and irregu-
lar sampling [3], are needed to establish these conditions [7],
[8], recovery algorithms are often easy to formulate and usu-
ally call for solving consistent but (typically) ill-conditioned
infinite-dimensional linear equations.

2. PROBLEM FORMULATION

The TEM and the associated TDM discussed in [7] is used
to illustrate our work. Figure 1 shows a TEM consisting of
an integrator and a Schmitt trigger in a negative-feedback,
whereκ , δ andb are circuit parameters,c andΩ are the am-
plitude and (angular) frequency bound, respectively, of the
input signalx(t) with Fourier transformX(ω). As shown,
the zero-crossings of the asynchronous binary outputz(t) de-
termine thetk’s subsequently referred to as the trigger times.
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A simple analysis of the TEM in Figure 1 gives [7]
∫ tk+1

tk
x(t)dt = (−1)k(2κδ −b(tk+1− tk)), (1)

for all k ∈ Z. The TDM algorithm of [7] can be found by
assuming thatx(t) is expressed as

x(t) = ∑
ℓ∈Z

cℓg(t −sℓ) with sℓ =
tℓ + tℓ+1

2
, (2)

whereg(t) = sinΩt/(πt) is the impulse response of an ideal
lowpass filter (LPF) with cutoff frequencyΩ, and the coeffi-
cientscℓ are to be found. Substituting (2) into (1) gives:

∑
ℓ∈Z

cℓ
︸︷︷︸

[c]ℓ

∫ tk+1

tk
g(t −sℓ)dt

︸ ︷︷ ︸

[G]k,ℓ

= (−1)k(2κδ −b(tk+1− tk))
︸ ︷︷ ︸

[q]k

With the definitions of the matrixG and, vectorsq andc
introduced above, the unknownc verify the linear equations
Gc = q. It can be shown [7] that the representation in equa-
tion 2 leads to perfect reconstruction if the Nyquist-type con-
dition 2κδ/(b−c) < π/Ω is satisfied. Note thatG, q andc
have infinite dimensions.
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Figure 1:TEM based on the Asynchronous Sigma/Delta Modula-
tor.

Our goal is to derive a simple real-time algorithm that re-
covers the signalx(t),t ∈ R, from the time sequence(tk),k∈
Z. The algorithm presented here is based on finding good ap-
proximations of the signal on short (in part) overlapping time
intervals and then “stiching” these approximations together.
We provide a stiching procedure based on the choice of a
variable time window and three parameters that give the de-
signer of the algorithm substantial flexibility for addressing
problems arising in practice. We also investigate recursive al-
gorithms for computing the pseudo-inverse ofG given data
on finite time intervals.

The rest of this paper is organized as follows. In section
2.1 we introduce a local covering ofG and investigate the lo-
cal recovery ofx(t) using a finite number of trigger times.



The stitching real-time recovery algorithm is presented in
section 3. A recursive algorithm for computing the pseudo-
inverse of the covering is described in section 4.

2.1 Reduction to a Finite Dimensional Covering

In what follows we assume that only a finite set of trigger
times is available for signal reconstruction. Givenm andL,
this set is denoted by{tm,tm+1, . . . ,tm+L}. Based on this set
we define the vectorqm,L with L elements and theL by L
matrixGm,L as

[qm,L]k−m+1 = (−1)k(2κδ −b(tk+1− tk))

[Gm,L]k−m+1,ℓ−m+1 =
∫ tk+1

tk
g(t −sℓ)dt,

(3)
for all k, ℓ = m,m+1, . . . ,m+L−1. Gm,L,m∈ Z, defines a
local covering of lengthL of G.

An approximation forx(t) (see also equation (2)) is given
by

xm,L(t) =
m+L−1

∑
ℓ=m

[cm,L]ℓ−m+1g(t −sℓ), (4)

wherecm,L is an L dimensional vector that is obtained by
solving the equationGm,Lcm,L = qm,L. SinceGm,L is typi-
cally ill-conditioned, the minimum-norm solution is obtained
by

cm,L = G+
m,Lqm,L, (5)

whereG+
m,L denotes the pseudo-inverse ofGm,L [1]. As

the example in Sec. 2.2 illustrates,xm,L(t) created by using
the trigger times within[tm,tm+L] can accurately approximate
x(t) in a reduced range[tm+M,tm+L−M] for some givenM
(typically ranging between 2 and 5 in our simulations). (This
locality property has also been investigated in [4].) Outside
this range the approximation is poor. The approximation can
be quantified by the error functionem,L(t) and its RMS value
Em,L,M in dB defined as

em,L(t) = x(t)−xm,L(t)

and Em,L,M = 10lg
(

∫ tm+L−M
tm+M

e2
m,L(t)dt

tm+L−M − tm+M

)

,
(6)

respectively, witht ∈ [tm+M,tm+L−M]. An extensive analy-
sis of the dual problem of reconstructing bandlimited-signals
from irregular samples appears in [9].

2.2 Example

With c = 0.3 andΩ = 2π × 40 krad/s, the input signal is
shown by the dashed trace of Figure 3. It was created as a
sum 20 sinusoids with amplitudes, frequencies, and phases
randomly selected within[−1,1], [0,Ω/(2π)], and [0,2π ],
respectively. The resulting signal was finally scaled such
that |x(t)| ≤ c. In numerical simulations 123 trigger times
were determined with high accuracy together withy(t) and
z(t) as shown in Figure 2. For different values ofm andL
the approximations and the corresponding RMS errors were
evaluated with the equations (3)-(6). As seen in Figure 3, the
accuracy of the approximation can be improved by increas-
ing L.
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Figure 2:Simulated TEM signalsy(t) andz(t) of Figure 1.
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Figure 3: Input signalx(t) and two approximations in different
intervals and over different lengths.

3. A STITCHING ALGORITHM FOR SIGNAL
RECOVERY

As the example above shows, accurate approximations can
be achieved within finite time intervals. Thus, a reasonable
approach for the overall signal reconstruction is to (i) carry
out approximations in different intervals using (3)-(6), (ii)
cut out the accurate parts by appropriate windows forming
a partition of unity, and finally (iii) sum up the windowed
approximations.

The windoww = wn(t,L,M,K) is a key design parame-
ter. In addition to time and time shift, and the paramtersL and
M, the window depends on a new parameterK. K specifies
the number of trigger times over which consecutive windows
overlap. When overlaping, the windows sum up to one. This
condition amounts to a partition of unity that arises in mul-
tiresolution analysis. Note however, that whileK is fixed, the
length of the time window is variable. Formally, defining

J = L−2M−K, τn = tnJ+M , σn = tnJ+M+K (7)

the overall signal approximation is given by

xL,M,K(t) = ∑
n∈Z

wn(t,L,M,K)xnJ,L(t) (8)



with windows

wn(t,L,M,K) =







0 if t 6∈ (τn,σn+1, ]
θn(t) if t ∈ (τn,σn],
1 if t ∈ (σn,τn+1],
1−θn+1(t) if t ∈ (τn+1,σn+1],

(9)
where theθn(t)’s are appropriately chosen (otherwise arbi-
trary) functions. Witht0 = 0, L = 8, M = 2, andK = 1 an
illustration is shown in Figure 4. The lowest trace demon-
strates that the windows so defined indeed form a partition of
unity.
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Figure 4: Illustration of the proposed reconstruction witht0 = 0,
L = 8, M = 2, andK = 1 (J = 3).

The bandwidth ofxL,M,K(t) certainly exceedsΩ. In
particular, denoting the Fourier transform ofwn(t,L,M,K)
by Wn(ω ,L,M,K), let Ωw be such thatWn(ω ,L,M,K) ≃ 0
for all n ∈ Z whenever|ω | > Ωw. Since the bandwidth
of xnJ,L(t) is Ω, (see (4)) the bandwidth of the product
xnJ,L(t)wn(t,L,M,K) in (8), and thus that ofxL,M,K(t) is
Ω + Ωw. IncreasingL not only improves the accuracy of the
reconstruction (see Figure 3), but broadenswn(t) in the time
domain, and hence decreasesΩw. Note that the enlarged size
and decreased conditioning ofGnJ,L increases the computa-
tional load for calculating the pseudo-inversesG+

nJ,L.
By appropriately choosingθn(t) in (9) Ωw can be de-

creased for fixedL andM. For example, bothθn(t) and its
derivative becomes continuous and a good frequency local-
ization forWn(ω ,L,M,K) can be achieved by using:

θn(t) = sin2
(

π
2
·

t − τn

σn− τn

)

. (10)

The overall reconstruction error can be quantified by the error
functioneL,M,K(t) and its RMS value in dB defined as

eL,M,K(t) = x(t)−xL,M,K(t)

and EL,M,K = 10lg
(

∫ Tmax
Tmin

e2
L,M,K(t)dt

Tmax−Tmin

)

,
(11)

respectively, wheret ∈ [Tmin,Tmax]. HereTmax andTmin are
appropriate simulation-dependent bounds.

PassingxL,M,K(t) through a lowpass filter with cutoff-
frequencyΩ restores the original bandwidth of the input sig-
nal. If digital signal processing is required on the recon-
structed signal, the samplesxL,M,K(nTs), Ts ≤ π/(Ω + Ωw),
can be processed by a discrete-time LPF with (digital) cut-
off frequencyπ/(1+ Ωw/Ω). Since the reconstruction er-
ror spreads over the rangeω ∈ (−Ωw−Ω,Ωw+Ω), lowpass
filtering in either analog or discrete-time domain further im-
proves the overall accuracy. Ifh[k] and∗ denote the filter’s
impulse response and convolution in discrete-time, respec-
tively, the error sequence and its RMS value in [dB] given
by

ẽL,M,K [k] = x(kTs)∗h[k]−xL,M,K(kTs)∗h[k]
= eL,M,K(kTs)∗h[k]

and ẼL,M,K = 10lg
( ∑Kmax

Kmin
ẽ2

L,M,K [k]

Kmax−Kmin +1

)

,

(12)
respectively, can be used to quantify the resulting accu-
racy. HereKmin and Kmax are chosen such that the range
[Kmin,Kmax] excludes the filter transient.
Remark. In (3) and (10)tk andτn monotonically increase
with time. Because of potential overflow, the reconstruction
algorithm cannot use these values. However, this problem
can be easily dealt with. Note thatqm,L in equation (3) de-
pends onTk = tk+1− tk only andTk is bounded as2κδ

b+c < Tk <
2κδ
b−c [7]. By choosing the new integration variableu = t − tk,

the elements ofGm,L in (3) become
∫ Tk

0 g(u+ tk−sℓ)du. Fur-
thermore,tk−sℓ is bounded from above astk−sℓ < tm+L−tm,
and from below astk−sℓ > tm− tm+L. Therefore,|tk−sℓ| <
2κδ
b−cL.

Finally, the numeratort − τn = t − tnJ+M in (10) is
bounded because the window size is zero unlesstnJ+M < t <
tnJ+M+K . Thus,

0 < t − tnJ+M <
2κδ
b−c

K.

The same holds for the denominator since

σn− τn = tnJ+M+K − tnJ+M <
2κδ
b−c

K.

3.1 Example

Figure 5 shows that the windows|Wn(ω ,L,M,K)| exhibit lit-
tle variation as a function ofn. The windows were evalu-
ated forM = 3, scaled in amplitude, and normalized byΩ
for different values ofL and K. x(t) and the parameters
of Sec. 2.2 were used for obtaining the data in Figure 6.
This figure shows 3 (scaled) error signals wheree12,3,3(t),
E12,3,3, e24,3,9(t), andE24,3,9 were calculated by (11) with
Tmin = 84.6 µs andTmax= 791.3 µs;e0,122(t) was calculated
using (6) with one single pseudo-inverse using all the avail-
able trigger times, whereasE0,122 was computed using (11)
after replacingeL,M,K(t) by x(t)− x0,122(t). As in Sec. 2.2,
the reconstruction error can be decreased by increasingL.
It is also noticeable thate12,3,3(t) contains higher frequency
components as opposed toe0,122(t).

Consider now a discrete-time filtering of the recon-
structed signals. Based on Figure 5 settingΩw = 5Ω seems
to be a safe choice for both sets of windows yieldingTs =
π/(6Ω)= 2.0833µs and discrete-time cutoff frequencyΘ =
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Figure 5:Two sets of frequency-domain windows withM = 3.

π/6 = 0.5236 for the filter. Figure 7 shows the impulse re-
sponse and the transfer function of a simple FIR LPF with
appropriate parameter settings. Using this filter and (12) on
the error signals of Figure 6 withKmin = 201 andKmax= 339
(so that the range[Kmin,Kmax] contains no transient due to the
LPF) gives the error sequences and the corresponding RMS
values shown in Figure 8. Comparing these results with
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Figure 6:Error functions and RMS computed by (6) withM = 3
andL andK of Figure 5.

those of Figure 6 it is seen that lowpass post-filtering indeed
improves the accuracy. As a verification for the case of us-
ing no LPF, computing the RMS values in (12) by replac-
ing ẽL,M,K [k] by x(kTs)−x12,3,3(kTs) andx(kTs)−x24,3,9(kTs)
gives−106.4 dB and−171.8 dB, respectively. These values
are indeed very close to those shown in Figure 6.

Finally, note that the discrete-time signals obtained after
discrete-time filtering can be decimated (downsampled). For
example, in Figure 8 a decimation by 6 can be applied (data
not shown).

4. PSEUDO-INVERSE RECURSION OF THE
COVERING

For a real-time TDM, evaluating the pseudo-inverse ofGm,L
is a critical factor in terms of both computational complexity
and accuracy. SinceL will be kept fixed in this section, we
shall adopt the simplifying notationGm. The proposed re-
cursion takes advantage of the fact that the consecutive ma-
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Figure 7: Discrete-time LPF impulse response and transfer func-
tion.
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Figure 8:Scaled error sequences and discrete-time RMS errors.

tricesGm andGm+1 have a number of common elements. In
particular due to (3) we have the partitions

Gm =

[

am ãT
m

âm Hm

]

, Gm+1 =

[

Hm b̂m

b̃T
m bm

]

, (13)

where the matrixHm represents the common part ofGm and
Gm+1, âm and b̂m are column vectors, ˜aT

m and b̃T
m are row

vectors, superscriptT denotes transposition, andam andbm
are scalars. We shall denote theL by L identity matrix and
its k-th column byI andek, respectively, and byP the per-
mutation matrix

P = [e2,e3, . . . ,eL,e1]. (14)

From (13) we have

Gm+1 = PTGmP+umeT
L +eLv

T
m, (15)

where

um =

[

b̂m− âm
bm−am

]

and vm =

[

b̃m− ãm
0

]

. (16)

Using the result of [1] (page 50, Corollary 3.1.1) in (15),
G+

m+1 can be calculated based on(PTGmP+umeT
L )+ that in



turn is determined by(PTGmP)+. SinceP is an orthogonal
matrix (PTGmP)+ = PTG+

mP [1]. As a result, with input
parametersG+

0 , um, vm, P, andeL we have the recursion

Bm = PTG+
mP,

βm = 1+eT
LBmum,

Am = Bm−BmumeT
LBm/βm,

αm = 1+vT
mAmeL,

G+
m+1 = Am−AmeLv

T
mAm/αm,

(17)

for m> 0 provided thatβm 6= 0 andαm 6= 0. Thus, apart from
the initial pseudo-inverseG+

0 , no further pseudo-inverse is
needed to calculateG+

m+1. Note however that, not even this
initial pseudo-inverse is needed if a short initial “transient”
can be tolerated in the overall reconstruction. In particular,
(13)-(16) is a formulation of the simple fact thatGm+1 is cre-
ated by dropping the first row and column ofGm and adding
a new column and a new row. Therefore, the “effect” of any
initial value, say,

G0 = G+
0 = I, (18)

disappears afterL−1 steps. Form≥ L, the recursion in (15)
gives exact values forGm+1, and thereby forG+

m+1 in (17) as
well. Simulation results (see Figure 9) confirm the accuracy
of our recursive approach. Combining this result with the
stitching algorithm discussed in Sec. 3 provides the overall
real-time reconstruction algorithm.
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Figure 9: Comparison of the exact pseudo-inverseG̃
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pseudo-inverse obtained via recursionG
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m.

5. CONCLUSIONS

We have presented a simple real-time recovery algorithm for
time-encoded bandlimited signals. The algorithm calls fora
local recovery of the signal using a finite number of trigger
times. It is based on the key observation that the signal is well
approximated on a core subset of the trigger times contained
within the local recovery interval. By stitching the core sub-
sets together, the signal is then recovered using a multireso-
lution algorithm in the time domain. The stitching algorithm
presents the designer with a number of parameters that can
be tuned depending on the application. The bandwidth of
the recovered signal is larger than that of the original sig-
nal. Further improvements in signal recovery are achieved
via postfiltering.

The recovery of a time encoded bandlimited signal from
its time sequence calls for computing the pseudo-inverse of
an infinite-dimensional matrix. The solution presented here
is based on finding a finite local covering of the original ma-
trix, and computing the pseudo-inverse of the covering di-
rectly as well as by a recursive method. We have imple-
mented the two approaches for computing the pseudo-inverse
both in Mathematica and in C#. The Mathematica implemen-
tation allowed us to experiment with arbitrary precision (say
40-digits accuracy). The results reported here were all based
on our Mathematica implementation. The C# implementa-
tion did not use special libraries and was limited to 16-digits.
ForL = 10 both implementations lead to an RMS reconstruc-
tion error of almost -100 dB.

In initial experiments not detailed in this paper, numer-
ically more stable methods such as QR-decomposition and
Schur-decomposition yielded an RMS reconstruction error of
almost -130dB. We are currently investigating low-rank up-
dating strategies for these methods in search of numerically
more reliable recursions.
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