A REAL-TIME ALGORITHM FOR TIME DECODING MACHINES
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ABSTRACT A simple analysis of the TEM in Figure 1 gives [7]
Time-encoding is a real-time asynchronous mechanism of g K
mapping the information contained in the amplitude of a ban- '/tk x(t)dt = (—1)"(2k 5 — b(tk+1 —t&)), 1)

dlimited signal into a time sequence. Time decoding algo-
rithms recover the signal from the time sequence. Under afor all k € Z. The TDM algorithm of [7] can be found by
appropriate Nyquist-type rate condition the signal candre p assuming that(t) is expressed as

fectly recovered. The algorithm for perfect recovery calls t 4t

however, for the computation of a pseudo-inverse of an infi- X(t) = ; colt—s) with s= w, @)
nite dimensional matrix. We present a simple algorithm for 7z 2

local signal recovery and construct a stitching algorittom f
real-time signal recovery. We also provide a recursive-alg
rithm for computing the pseudo-inverse of a family of finite-
dimensional matrices.

owhereg(t) = sinQt/(mt) is the impulse response of an ideal
lowpass filter (LPF) with cutoff frequend®, and the coeffi-
cientscy are to be found. Substituting (2) into (1) gives:

1
1. INTRODUCTION Cr / g(t —so)dt = (—1)*(2k & — b(tip1 — )
’ AR
Time-encoding is a real-time asynchronous mechanism of fele Glis [k

mapping the amplitude information of a bandlimited signal
X(t), t € R, into a time sequencly), k € Z, whereR and ~ With the definitions of the matriG and, vectorsy andc

Z denote the sets of real numbers and integers, respectiveigiroduced above, the unknowerverify the linear equations

A Time Encoding Machine (TEM) is a realization of such Gc = q. It can be shown [7] that the representation in equa-
an asynchronous algorithm. The first example of a TEMion 2 leads to perfect reconstruction if the Nyquist-typac
(see [7] and the references therein), also shown in Figure djtion 24/(b—c) < m/Q is satisfied. Note tha®, q andc
was an asynchronous sigma-delta modulator. Other TEMRgave infinite dimensions.

include integrate-and-fire neurons [8] and frequency madul

. . . . Noninverting Schmitt trigger
tors (combined with a zero crossings detector) [7]. The majoX(w) =0if |w| > Q 9 99

z

advantage of time encoding as opposed to traditional analogx(t)| <c<b b 0

to-digital conversion is that TEMs can be implemented by, 1 y(t) y| a0 b=

simple and robust nonlinear analog VLSI circuits with low — E/dt —{ 9 0 _| t
power consumption [10], [5]. Under Nyquist-type rate con- ter [t [t

ditions,x(t) can be reconstructed from thés by algorithms { Integrator *b‘ ) o

commonly referred to as Time Decoding Machines (TDMs).
Although methods used in frame theory [2], [6], and irregu-
lar sampling [3], are needed to establish these condititins [ Figure 1:TEM based on the Asynchronous Sigma/Delta Modula-
[8], recovery algorithms are often easy to formulate and usutor.

ally call for solving consistent but (typically) ill-coniibned

infinite-dimensional linear equations. Our goal is to derive a simple real-time algorithm that re-
covers the signaf(t),t € R, from the time sequend#),k €
2 PROBLEM FORMULATION Z. The algorithm presented here is based on finding good ap-

proximations of the signal on short (in part) overlappimgei
The TEM and the associated TDM discussed in [7] is usedntervals and then “stiching” these approximations togeth
to illustrate our work. Figure 1 shows a TEM consisting of We provide a stiching procedure based on the choice of a
an integrator and a Schmitt trigger in a negative-feedbackjariabletime window and three parameters that give the de-
wherek, 0 andb are circuit parameters,andQ are the am-  signer of the algorithm substantial flexibility for addriegs
plitude and (angular) frequency bound, respectively, ef th problems arising in practice. We also investigate receralv
input signalx(t) with Fourier transformX(w). As shown, gorithms for computing the pseudo-inverse@fgiven data
the zero-crossings of the asynchronous binary oufpputie-  on finite time intervals.
termine thet’s subsequently referred to as the trigger times.  The rest of this paper is organized as follows. In section
2.1 we introduce a local covering 6fand investigate the lo-
PROCEEDINGS OF EUSIPCO06, SEPTEMBER 2006, TO APPEAR.cal recovery ofx(t) using a finite number of trigger times.




The stitching real-time recovery algorithm is presented in y(t) z(t)

section 3. A recursive algorithm for computing the pseudo-
inverse of the covering is described in section 4. I 7Z T sinlE ; sinininEnlE
2.1 Reduction to a Finite Dimensional Covering 0.5
In what follows we assume that only a finite set of trigger \(
times is available for signal reconstruction. GiverandL, 0
this set is denoted b{tm,tm;1,-..,tm+L}. Based on this set / \
we define the vectogm with L elements and the by L _0.5
matrix GmL as L
S S N Iy [ B S oy | L L B ) B
_ = (—1)K(2kd — bty —t
[ame -2 ( tk+)1( K (teta = 1) 0 0.05 0.1 0.15 0.2 Jtms)
(Gl miremin = /t g(t —s)dt,
k

() Figure 2:Simulated TEM signalg(t) andz(t) of Figure 1.
forallk,/=mm+1,....m+L—-1. Gym,me Z, defines a
local covering of lengtit. of G.

An approximation fox(t) (see also equation (2)) is given 0.3
by

m+L—1 0.2
XmL(t) = Z [emL]—m19(t — ), 4) 0.1
{=m

wherecm is anL dimensional vector that is obtained by
solving the equatiolGm cmi = gmi. SinceGmy is typi- -0.1
cally ill-conditioned, the minimum-norm solution is ohtaid
by

w

Xe324(t), S53243 = —1496 dB
0 0.2 0.4 0.6 0.8

CmL = GELQm,La (5) -0

Jtqs)

where Gjn‘L denotes the pseudo-inverse Giy [1]. As

the example in Sec. 2.2 illustrates, (t) created by using Figure 3: Input signalx(t) and two approximations in different
the trigger times withirftm, tm:| can accurately approximate intervals and over different lengths.

X(t) in a reduced rangéim:m,tm+L—m] for some givenM
(typically ranging between 2 and 5 in our simulations). €Thi
locality property has also been investigated in [4].) Qidsi
this range the approximation is poor. The approximation can
be quantified by the error functiam (t) and its RMS value
émLm in dB defined as

3. ASTITCHING ALGORITHM FOR SIGNAL
RECOVERY

As the example above shows, accurate approximations can
) = x{t) —xnL(t) be achieved within finite time intervals. Thus, a reasonable
EmL - Tr;thM Hdt approach for the overall signal reconstruction is to (iygar
and Sy = 10|g(ftm+M eﬁk'—( ) ) 6)  out approximations in different intervals using (3)-(6)) (
me tmit-m —tmm 7 cut out the accurate parts by appropriate windows forming
a partition of unity, and finally (iii) sum up the windowed
respectively, witht € [tmim,tmiL—m]. An extensive analy- approximations.

sis of the dual problem of reconstructing bandlimited-aign The windoww = wi(t,L,M,K) is a key design parame-
from irregular samples appears in [9]. ter. In addition to time and time shift, and the paramteasd

M, the window depends on a new paraméterK specifies
2.2 Example the number of trigger times over which consecutive windows

overlap. When overlaping, the windows sum up to one. This
condition amounts to a partition of unity that arises in mul-
tflesolution analysis. Note however, that wHles fixed, the

gth of the time window is variable. Formally, defining

With ¢ = 0.3 andQ = 27T x 40 krad/s, the input signal is
shown by the dashed trace of Figure 3. It was created as
sum 20 sinusoids with amplitudes, frequencies, and phas
randomly selected within—1,1], [0,Q/(2m)], and [0, 2],
respectively. The resulting signal was finally scaled such

that |x(t)| < c. In numerical simulations 123 trigger times J=L-2M—K, T1h=twim, On="thimiK 7
were determined with high accuracy together wjitt) and

z(t) as shown in Figure 2. For different valuesmafandL . T

the approximations and the corresponding RMS errors wer&€ overall signal approximation is given by

evaluated with the equations (3)-(6). As seen in Figuree, th

ﬁ]cgctracy of the approximation can be improved by increas- XMk (D) =S Wa(t, L, M, K)XnyL (1) 8)

nez



with windows

Tn, 0n+11]

6n(t) if t gg ]

o n t | t S Tnao—n I

Wa(t,L,M,K) = ¢ ¢ if te(on, Tl
1— 6n+1(t) |f t S (Tn+17 Un+1]7

(9)

where theb,(t)’s are appropriately chosen (otherwise arbi-

trary) functions. Withto =0,L =8,M =2, andK =1 an

Passingx_ vk (t) through a lowpass filter with cutoff-

frequencyQ restores the original bandwidth of the input sig-

nal. If digital signal processing is required on the recon-
structed signal, the samplgsm k (nTs), Ts < 11/(Q + Quw),

can be processed by a discrete-time LPF with (digital) cut-
off frequencym/(1+ Qy/Q). Since the reconstruction er-
ror spreads over the rangec (—Quw— Q,Quw+ Q), lowpass
filtering in either analog or discrete-time domain furthar i
proves the overall accuracy. lifk] and* denote the filter’s

illustration is shown in Figure 4. The lowest trace demonimpulse response and convolution in discrete-time, respec
strates that the W|nd0WS SO deﬁned |ndeed fOI‘m a partltlon qtve|y, the error Sequence and its RMS value in [dB] given

unity.
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Figure 4: lllustration of the proposed reconstruction wigh= 0,
L=8,M=2,andK=1J=3).

The bandwidth ofx. mk (t) certainly exceed€2. In
particular, denoting the Fourier transformwi(t,L,M,K)
by Wh(w,L,M,K), let Qy be such that(w,L,M,K) ~ 0
for all n € Z whenever|w| > Q. Since the bandwidth

of xpyL(t) is Q, (see (4)) the bandwidth of the product

XnaL (t)Wn(t,L,M,K) in (8), and thus that ok mk(t) is
Q+ Q. Increasind- not only improves the accuracy of the
reconstruction (see Figure 3), but broaden&) in the time
domain, and hence decreaskg Note that the enlarged size
and decreased conditioning Gfy3 increases the computa-
tional load for calculating the pseudo-inver€gs, .

By appropriately choosin@h(t) in (9) Qw can be de-
creased for fixed andM. For example, boti#,(t) and its
derivative becomes continuous and a good frequency loc
ization forWs(w, L, M, K) can be achieved by using:

On(t) _sin2< >

The overall reconstruction error can be quantified by thererr
functione_ vk (t) and its RMS value in dB defined as

m t—Tn

2 On—Tn

(10)

amk(t) = X(t)—XLT,M,K(t)
Jireef i (Hdt (11)
and & = 10lg( —=r—r—— ),
LMK g( Tmax—Tmin )

respectively, wheré € [Tmin, Tmax]. Here Tmax and Ty are
appropriate simulation-dependent bounds.

by
€1_ M,K [k] = X(kTs) * h[k] — XL MK (kTs) * h[k]
= Q_,M,K (kE) * h[k]
= szgxéE M,K [k]
d & = 10lg(=rmn =
an LMK g(Kmax— Kmin+1)’

(12)
respectively, can be used to quantify the resulting accu-
racy. HereKpnin and Kmax are chosen such that the range
[Kmin, Kmax] €xcludes the filter transient.

Remark. In (3) and (10)tx and 1, monotonically increase
with time. Because of potential overflow, the reconstructio
algorithm cannot use these values. However, this problem
can be easily dealt with. Note thgk,. in equation (3) de-

pends ol =ty 1 —tx only andT is bounded a%i—i <Tk<

%%Z [7]. By choosing the new integration variahle=t — ty,

the elements oGm 1 in (3) becomefoTk g(u+tx—sy)du. Fur-
thermoret, — sy is bounded from above ds— s < tmeL —tm,
and from below at — s, >t —tmsL. Thereforelty — /| <
260
b—c ~: . .
Finally, the numeratot — 17, =t — tyym in (10) is
bounded because the window size is zero unlgss <t <
thasmik. Thus,

2kd

O<t—t < ——K.
nJ+M b— c
The same holds for the denominator since
2KO
On— Tn=Tthytm+k —thaem < EK'

3.1 Example

Figure 5 shows that the windowWsh (w, L, M, K)| exhibit lit-

tle variation as a function ofi. The windows were evalu-
ited forM = 3, scaled in amplitude, and normalized @y
or different values ofL andK. x(t) and the parameters
of Sec. 2.2 were used for obtaining the data in Figure 6.
This figure shows 3 (scaled) error signals whefgs s(t),
@@12,3’3, 824,3,9(11), and 524,3,9 were calculated by (11) with
Tmin = 84.6 us andTmax = 7913 Us; ep 122(t) was calculated
using (6) with one single pseudo-inverse using all the avail
able trigger times, wherea$ 12> was computed using (11)
after replacinge, m k (t) by X(t) — Xo.122(t). As in Sec. 2.2,
the reconstruction error can be decreased by incredsing
It is also noticeable that 3 3(t) contains higher frequency
components as opposedd 2o(t).

Consider now a discrete-time filtering of the recon-
structed signals. Based on Figure 5 settihg= 5Q seems
to be a safe choice for both sets of windows yieldig=
11/(6Q) = 2.0833us and discrete-time cutoff frequen@y=



T|Wn(w,L,M,K)|><105 1f

N
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Figure 5:Two sets of frequency-domain windows with= 3. 0 if ke [-N,N]

Figure 7: Discrete-time LPF impulse response and transfer func-

tion.
1t/6 = 0.5236 for the filter. Figure 7 shows the impulse re-
sponse and the transfer function of a simple FIR LPF with ‘ é24:;9[k] % 10° (9524‘39 — _1865dB
appropriate parameter settings. Using this filter and (12) o il = = o .
the error signals of Figure 6 witkyin, = 201 andKjax = 339 r/ 5 L .

(so that the rangiKmin, Kmax] contains no transient due to the
LPF) gives the error sequences and the corresponding RMS0. 5¢
values shown in Figure 8. Comparing these results with

0

2L | ewss(t) x 10°, S1p55 — —1063 dB

150 L eguaalt) x 1072, 10 = —1792 dB 20.5/ % =1 ; |
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-0.5 . h ' ’ m’? t :-.:5 \ Figure 8:Scaled error sequences and discrete-time RMS errors.
-1 ;

-1.5] |[@aas(t) X 10%, Sruz0=—1717 dB tricesGm andGmy1 have a number of common elements.
0103 03 04 0% 06 07 oslM particular due to (3) we have the partitions

. . . am ar Hpn lA)m
Figure 6: Error functions and RMS computed by (6) with= 3 Gm= A Hm ;v Gmp1= BT b , (13)
m m m m

andL andK of Figure 5.

. - L where the matrid,, represents the common part@f, and
those of Figure 6 it is seen that lowpass post-filtering indee " ~ ST
andb,, are row

A T
improves the accuracy. As a verification for the case of us-G'm*l’ am andbm.are column vectorsam_
ing no LPF, computing the RMS values in (12) by replac-veCtorS’ superscript denotes transposition, amh aﬂdbm
ing &_ .« [K| by X(KTs) — x123.3(KTs) andx(kTe) — Xp43.0(KTe) are scalars. We shall denote théy L identity matrix and
gives—1064 dB and—1718 dB, respectively. These values 'S k-th column byl andey, respectively, and by the per-
are ir_1deed very close to those sho_wn in_ Figure 6. _ mutation matrix

Finally, note that the discrete-time signals obtainedrafte P =[eses,...,eL,e1l. (14)

discrete-time filtering can be decimated (downsampled). Fo
example, in Figure 8 a decimation by 6 can be applied (datgrom (13) we have

not shown).
Gmi1 =P GnP +ume! +eLv], (15)
4. PSEUDO-INVERSE RECURSION OF THE
COVERING where
For a real-time TDM, evaluating the pseudo-invers&af [ bm—am d [ bm—am 16
is a critical factor in terms of both computational comptgxi Um = bm — am and vm= 0 - (16)

and accuracy. Since will be kept fixed in this section, we

In

shall adopt the simplifying notatioGy,. The proposed re- Using the result of [1] (page 50, Corollary 3.1.1) in (15),

cursion takes advantage of the fact that the consecutive mﬁa‘rn*qul can be calculated based (RT GmPJrume[)+ thatin



turn is determined byPT G P)*. SinceP is an orthogonal The recovery of a time encoded bandlimited signal from

matrix (PTGmP)* = PTG/P [1]. As a result, with input  its time sequence calls for computing the pseudo-inverse of

parameter§3, um, vm, P, ande, we have the recursion an infinite-dimensional matrix. The solution presentedeher
is based on finding a finite local covering of the original ma-

Bn = P'G{P, trix, and computing the pseudo-inverse of the covering di-

Bm = 1+9IBmum, rectly as well as by a recursive method. We have imple-

Am = Bm—Bnume! Bn/fBn, (17) mented the two approaches for computing the pseudo-inverse

On = 14+vIAmeL both in Mathematica and in C#. The Mathematica implemen-
ot _ A —mAmeL\;T An/lm tation allowed us to experiment with arbitrary precisioay(s

m1 m )

40-digits accuracy). The results reported here were aéidbas

for m> 0 provided tha3ys # 0 andam # 0. Thus, apart from 0N our Mathematica implementation. The C# implementa-
the initial pseudo-invers&, no further pseudo-inverse is tion did not use special libraries and was limited to 164digi
needed to calculat€:/, ;. Note however that, not even this ForL = 10 both implementations lead to an RMS reconstruc-

initial pseudo-inverse is needed if a short initial “traarg’ tionler_ro_:_olf almost '10? dB't detailed in thi

can be tolerated in the overall reconstruction. In paréicul . n inftial experiments not detaiied in this paper, humer-
(13)-(16) is a formulation of the simple fact th@t,, 1 is cre- ically more stable methods such as QR-decomposition and
ated by dropping the first row and column@f, and adding Schur-decomposition yielded an RMS reconstruction erfror o

a new column and a new row. Therefore, the “effect” of any2IMOSt -130dB. We are currently investigating low-rank up-
initial value, say, dating strategies for these methods in search of numericall

Go=G{ =1, (1g) more reliable recursions.

disappears aftdr — 1 steps. Fom > L, the recursion in (15)
gives exact values fd&n,; 1, and thereby fo(}}]+1 in (17) as REFERENCES
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