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ABSTRACT

A Time Encoding Machine is a real-time asynchronous mech-
anism for encoding amplitude information into a time se-
quence. We investigate the operating characteristics of a
machine consisting of a feedback loop containing an adder,
a linear filter and a Schmmitt trigger. We show how to
recover the amplitude information of a bandlimited signal
from the time sequence loss-free.

1. INTRODUCTION

A fundamental question arising in information processing
is how to represent a signal as a discrete sequence. The
classical sampling theorem ([6], [10]) calls for representing
a bandlimited signal based on its samples taken at or above
the Nyquist rate.
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Fig. 1. Time Encoding and Decoding.

A time encoding of a bandlimited functionx(t), t ∈ R,
is a representation ofx(t) as a sequence of increasing times
(tk), k ∈ Z (see Figure 1). Equivalently, the output of the
encoder is a digital signalz(t) that switches between two
values±b at timestk, k ∈ Z. Time encoding is an alterna-
tive to classical sampling and applications abound. In the
field of neuroscience the representation of sensory informa-
tion as a sequence of action potentials can be modeled as
temporal encoding. The existence of a such a code was al-
ready postulated in [1]. Time encoding is also of great in-
terest for the design and implementation of future analog to
digital converters. Due to the ever decreasing size of inte-
grated circuits and the attendant low voltage, high precision
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quantizers are more and more difficult to implement. These
circuits provide increasing timing resolution, however, that
a temporal code can take advantage of [9].

There are two natural requirements that a time encod-
ing mechanism has to satisfy. The first is that the encod-
ing should be implemented as areal-time asynchronouscir-
cuit. Secondly, the encoding mechanism should beinvert-
ible, that is the amplitude information can be recovered from
the time sequence with arbitrary accuracy.

The encoding mechanism investigated in this paper sat-
isfies both of these conditions. We show that a Time En-
coding Machine (TEM) consisting of a feedback loop that
contains an adder, a linear filter and a noninverting Schmitt
trigger has the required properties. We also show how to
build a non-linear inverse Time Decoding Machine (TDM)
(see Figure 1) that perfectly recovers the amplitude infor-
mation from the time sequence.

2. TIME ENCODING

The TEM investigated in this paper is depicted in Figure 2.
The filter is assumed here to be an integrator. Clearly the
amplitude information at the input of the TEM is repre-
sented as a time sequence at its output.
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Fig. 2. An Example of a Time Encoding Machine

The basic principle of operation of the Time Encoding
Machine is very simple. The bounded input signalx(t),
|x(t)| ≤ c < b, is biased by a constant amount+(−)b be-
fore being applied to the integrator. This bias guarantees
that the integrator’s outputy(t) is a positive (negative) in-
creasing (decreasing) function of time. In steady state, there
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are two possible operating modes. In the first mode, the out-
put of the TEM is in statez(t) = −b and the input to the
Schmitt trigger grows from−δ to δ. When the output of the
integrator reaches the maximum valueδ, a transition of the
outputz(t) from−b to +b is triggered and the feedback be-
comes negative. In the second mode of operation, the TEM
is in statez(t) = b and the integrator output steadily de-
creases fromδ to −δ. When the maximum negative value
−δ is reachedz(t) will reverse to−b. Thus, while the tran-
sition times of the outputz(t) are non-uniformly spaced, the
amplitude of the output signal remains constant. Therefore,
a transition of the output from−b to b or vice-versa takes
place every time the integrator output reaches the triggering
markδ or−δ (called quanta). The time when this quanta is
achieved depends on the signal as well as on the design pa-
rameterb. Hence, the Time Encoding Machine is mapping
amplitude information into timing information. It achieves
this by a signal-dependent sampling mechanism.

2.1. Stability and the Compensation Principle

In Figure 2,κ, δ, b are strictly positive real numbers and
x = x(t) is a Lebesgues measurable function that models
the input signal to the TEM for allt, t ∈ R. The output of
the integrator is given by:

y(t) = y(t0) +
1
κ

∫ t

t0

[x(u)− z(u)]du, (1)

for all t, t ≥ t0. Note thaty = y(t) is a continous increas-
ing (decreasing) function whenever the value of the feed-
back is positive (negative). Here,z : R → {−b, b} for all
t, t ∈ R, is the function corresponding to the output of the
TEM in Figure 2. z switches between two values+b and
−b at a set of trigger times(tk), for all k, k ∈ Z, whereZ
denotes the set of integers andz(t0) = −b by convention.

Remark 1 Informally, the information of the inputx(t) is
carried by the signal amplitude whereas the information of
the output signalz(t) is carried by the trigger times. A fun-
damental question, therefore, is whether the Time Encoding
Machine encodes information loss-free. Loss-free encoding
means thatx(t) can be perfectly recovered fromz(t).

Lemma 1 (Stability) For all input signalsx = x(t), t ∈
R, with |x(t)| ≤ c < b the TEM is stable,i.e., |y(t)| ≤ δ ,
for all t, t ∈ R. The outputz is given byz(t) = b (−1)k+1

for all tk ≤ t < tk+1, t ∈ R, where the set of trigger times
(tk), k ∈ Z, is obtained from the recursive equation

∫ tk+1

tk

x(u)du = (−1)k[−b(tk+1 − tk) + 2κδ]. (2)

for all k, k ∈ Z.

Proof: Due to the operating characteristic of the Schmitt
trigger, y reaches the valueδ if the feedback isb or the
value−δ if the feedback is−b for any arbitrary initial value
of the integrator. Therefore, without loss of generality we
can assume that for some initial conditiont = t0 we have
(y, z) = (−δ,−b) and the Time Encoding Machine is de-
scribed in a small neighborhood oft0 by:

−δ +
1
κ

∫ t

t0

[x(u) + b]du = δ. (3)

Since the left hand side is a continuously increasig func-
tion, there exists a timet = t1 such that the equation above
holds. Similarly starting with(y, z) = (δ, b) at timet1 the
equation:

δ +
1
κ

∫ t

t1

[x(u)− b]du = −δ. (4)

is satisfied for somet = t2. Thus, the sequence(tk), k ∈ Z,
defined by the equations (2) uniquely describe the (output)
functionz = z(t), for all t, t ∈ R, and|y| ≤ δ by construc-
tion.

Corollary 1 (Upper and Lower Bounds for Trigger Times)
For all input signalsx = x(t), t ∈ R, with |x(t)| ≤ c < b,
the distance between consecutive trigger timestk andtk+1

is given by:

2κδ

b + c
≤ tk+1 − tk ≤ 2κδ

b− c
, (5)

for all k, k ∈ Z.

Proof: By applying the mean value theorem to the term on
the left hand side of equation (2) we have

(−1)kx(ξk)(tk+1 − tk) = −b(tk+1 − tk) + 2κδ, (6)

whereξk ∈ [tk, tk+1]. Solving for tk+1 − tk and noting
that |x(t)| ≤ c we obtain the desired result. The bound is
achieved for a constant inputx(t) = c.

Lemma 2 (The Compensation Principle)
∫ tl+2

tl

x(u)du =
∫ tl+2

tl

z(u)du, (7)

for all l ∈ Z.

Proof: The desired result is obtained by adding equations
(2) for k = l andk = l + 1 .

Remark 2 If x(t) is a continuous function, there exists a
ξk ∈ [tk, tk+2], k ∈ Z, such that:

x(ξk)(tk+2−tk) = (−1)k[−b(tk+1−tk)+b(tk+2−tk+1)],
(8)
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i.e., the samplex(ξk) can be explicitly recovered from in-
formation contained in the processz(t), tk ≤ t ≤ tk+2,
k ∈ Z. Intuitively, therefore, any class of input signals
that can be recovered from its samples can also be recov-
ered fromz(t). Note also that the Compensation Principle
provides for an estimate of the amplitude of the input sig-
nal x(t) on a very small time scale that does not explicitly
depend onκδ.

Remark 3 The Compensation Principle can be easily ex-
tended to subsets of or to the entire real line. Thus the DC
component of the input can be recovered fromz(t) even for
non-bandlimited input signalsx(t), t ∈ R.

3. PERFECT RECOVERY

A Time Decoding Machine has the task of recovering the
signalx = x(t), t ∈ R, from z = z(t), t ∈ R, or a noisy
version of the same. Here we will focus on the recovery of
the original signalx based onz only. We shall show that a
perfect recovery is possible, that is, the input signalx can
be recovered fromz without any loss of information.

Informally, the length of the interval between two con-
secutive trigger times ofz(t) provides an estimate of the
integral ofx(t) on the same interval. This estimate can be
used in conjunction with the bandlimited assumption onx
to obtain a perfect reconstruction of the signal even though
the trigger times are irregular. As expected, the interval be-
tween two consecutive trigger times has to be smaller then
the distance between the uniformly spaced samples in the
classical sampling theorem [6], [10].

The mathematical methodology used here is based on
the theory of frames [3]. We shall construct a linear operator
on L2, the space of square integrable functions defined on
R, and by starting from a good initial guess followed by
successive interations, obtain sucessive approximations that
converge in the appropriate norm to the original signalx.

Let us assume thatx = x(t), t ∈ R, is a signal bandlim-
ited to[−Ω, Ω] and let the operatorA be given by:

Ax =
∑

k∈Z

∫ tk+1

tk

x(u)du g(t− sk), (9)

whereg(t) = sin(Ωt)/πt andsk = (tk+1 + tk)/2.
The realization of the operatorA above is highly intu-

itive. Dirac-delta pulses are generated at times(tk+1+tk)/2
with weight

∫ tk+1

tk
x(u)du and then passed through an ideal

low pass filter with unity gain forω ∈ [−Ω, Ω] and zero
otherwise. The values of

∫ tk+1

tk
x(u)du are available at the

TDM through equation (2).
Let xl = xl(t), t ∈ R, be a sequence of bandlimited

functions defined by the recursion:

xl+1 = xl +A(x− xl), (10)

for all l, l ∈ Z, with the initial conditionx0 = Ax.
Note that since the distance between two consecutive

trigger times is bounded by2κδ/(b− c) (see equation (5)),

‖ I −A ‖≤ r, (11)

wherer = 2κδ
b−c

Ω
π [4].

Theorem 1 (Operator Formulation) Letx = x(t), t ∈ R,
be a bounded signal|x(t)| ≤ c < b bandlimited to[−Ω,Ω].
Let z = z(t), t ∈ R, be the ouput of a Time Encoding
Machine with integrator constantκ and Schmitt trigger pa-
rameters(δ, b). If κδ ≤ b−c

2
π
Ω , the signalx can be perfectly

recovered fromz as

x(t) = lim
l→∞

xl(t), (12)

and
‖ x− xl ‖≤ rl+1 ‖ x ‖ . (13)

Proof: By induction we can show that

xl =
l∑

k=0

(I −A)kAx. (14)

Since‖ I −A ‖≤ r < 1,

lim
l→∞

xl =
∑

k∈N
(I −A)kAx = A−1Ax = x. (15)

Also,

x− xl =
∑

k≥l+1

(I −A)kAx = (I −A)l+1
∑

k∈N
(I −A)kAx

= (I −A)l+1A−1Ax = (I −A)l+1x,

(16)

and, therefore,‖ x− xl ‖≤ rl+1 ‖ x ‖.
Let us defineg = [g(t − sk)]T , q = [

∫ tk+1

tk
x(u) du]

andG = [
∫ tl+1

tl
g(u− sk) du]. We have the following

Theorem 2 (Matrix Formulation) Under the assumptions
of Theorem 1 the bandlimited signalx can be perfectly re-
covered fromz as

x(t) = lim
l→∞

xl(t) = gG−1q. (17)

whereG−1 denotes the pseudo-inverse ofG. Furthermore,

xl(t) = gPlq, (18)

wherePl is given by

Pl =
l∑

k=0

(I−G)k. (19)
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Proof: By induction. Sincex0(t) = gq with P0 = I, we
assume thatxl(t) = gPlq with Pl =

∑l
k=0(I −G)k. We

have

xl+1(t) = g(Pl + I−GPl)q = gPl+1q. (20)

The convergence of the sum forPl is guaranteed by
Theorem 1 andGP∞ = I.

Let h(t) = sin(Ωt)/Ωt, t ∈ R, andH = [
∫ tl+1

tl
h(t −

kT )] with T = π/Ω.

Theorem 3 (Change of Frame)Under the assumptions of
Theorem 1, iftl < kT < tl+1 for all k ∈ Z and somel ∈ Z

p = H−1q, (21)

wherep = [x(kT )], k ∈ Z, andH−1 is the inverse ofH.

Proof: Integrating both sides of the classical sampling rep-
resentation of bandlimited signals

x(t) =
∑

k∈Z
x(kT ) h(t− kT ), (22)

we obtain the desired result from
∫ tl+1

tl

x(t) dt =
∑

k∈Z
x(kT )

∫ tl+1

tl

h(t− kT ). (23)

4. EXAMPLE

The mathematical formulation of the previous section as-
sumes that the dimensionality of the matrices and vectors
used is infinite. In simulations, however, only a finite time
window can be used. We briefly investigate three different
implementations of the TDM in the finite dimensional case
that are based on the (i) recursive equation (18), (ii) closed
form formula (17), and (iii) change of frame formula (21).

In all our simulations, the input signal is given by (22)
where the samplesx(T ) throughx(12T ), respectively, are
given by -0.394103, 0.375745, 0.416555, 0.198506, -0.55382,
0.0405288, 0.583311, 0.278091, -0.135832, -0.292735, -
0.223741, -0.585826,x(kT ) = 0, for k ≤ 0 andk > 12 and
T = π/Ω = 1.25 ms. Fig. 3(a) showsx(t) together with
the time window used for simulations. Fig. 3(b) shows the
simulation results fory(t) andz(t) with δ = 0.55, b = 1,
andκ = 318.31 µs. The 40 trigger times ofz(t) shown
were determined with high accuracy using (2).

(i) The error signals shown by Fig. 4(a) are defined as
el = el(t) = xl(t)−x(t), wherexl(t) was calculated based
on (18). Instead of applying (19) directly we used the recur-
sionPl+1 = I+Pl(I−G) and calculatedxl(t) iteratively.
As shown,el(t) decreases in agreement with Theorem 1,
since with the parameters introducedr = 0.7115 < 1. We
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Fig. 3. Overall bandlimited input signalx(t) (a), integrator output
signaly(t) and the TEM output signalz(t) (b).

note (not shown in the figure) thatmaxt(e200) = 1.52 ×
10−4.

(ii) Although the matrixG in (17) is singular, perfect
recovery can be achieved sinceG−1, the pseudo-inverse
of G, exists. The corresponding error signal defined as
gG−1q − x(t) is shown by the solid line of Fig. 4(b). The
small error is due to the finite precision used.

(iii) The dashed line of Fig.4(b) shows the error when
the bandlimited signalx(t) is recovered using the sampling
representation (22) and the samplesx(kT ) are obtained from
(21). Thetl’s selected represent the set of closest pair of
trigger times aroundkT − T/2, k ∈ Z. All other trigger
times are dropped. Again, the small error is due to numeri-
cal inaccuracies. We note that matrixH turned out to be not
only invertible but well-conditioned as well.
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Fig. 4. Approximating signals using iteration (a), overall error
signals using closed formulas (b).

5. RELATIONSHIP TO OTHER MODULATION
SCHEMES

The Time Decoding Machine and the demodulator for Fre-
quency Modulation (FM) [2] operate on a signal that has the
same information structure.

4



Recall that FM demodulation is achieved by finding the
timest such that:

sin(ωt + η

∫ t

t0

x(u)du + φ) = 0 (24)

whereω is the modulation frequency andη is the modula-
tion index. Therefore,

∫ tk+1

tk

x(u)du = −ω

η
(tk+1 − tk) +

π

η
. (25)

The above equation and equation (2) have the same basic
structure. Hence an FM modulated signalx can be per-
fectly recovered from the sequence of times(tk), k ∈ Z us-
ing the Time Decoding Machine. These observations estab-
lish a bridge to non-uniform sampling methods previously
applied to improve the performance of FM and other non-
linear modulators [8].

The Time Encoding Machine also models an Asynchronous
Sigma-Delta modulator [5] and, therefore, the latter is in-
vertible. Past attempts at building Sigma-Delta demodula-
tors have led to low accuracy in signal recovery [9]. This is
because of the linear structure of these demodulators.

6. CONCLUSIONS

We showed that a simple Time Encoding Machine can be
used for generating time codes for arbitrary bandlimited sig-
nals. The TEM consists of a feedback loop that contains an
adder, a filter and a noninverting Schmitt trigger. We de-
rived a simple condition that guarantees that the amplitude
of the bandlimited signal can be recovered from the time se-
quence loss-free. We also presented algorithms for perfect
recovery and briefly investigated their performance.

TEMs can easily be incorporated into current digital sys-
tems by measuring the trigger-times(tk), k ∈ Z. The anal-
ysis of such a system will be presented elsewhere [7].

Finally, it has not escaped the authors that the Time En-
coding Machine can be used as a neuro-modulator with per-
fect information recovery. Therefore, such a modulator can
be applied to image and auditory neural coding.
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