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ABSTRACT guantizers are more and more difficult to implement. These

A Time Encoding Machine is a real-time asynchronous mechgircuits provide increasing timing resolution, however, that

anism for encoding amplitude information into a time se- ate_rrT;]poraI co?e can ';akel advaptage Otf [?r]] ta i d
guence. We investigate the operating characteristics of a ere are two natural requirements that a time encod-

machine consisting of a feedback loop containing an adder,!ng mechanism has to satisfy. The first is that the encod-

a linear filter and a Schmmitt trigger. We show how to ing should be implemented aseal-time asynchronousir-

recover the amplitude information of a bandlimited signal f:u't' Sec_ondly, the_enco_dlng mephamsm shouldriert-
from the time sequence loss-free. ible, that is the amplitude information can be recovered from

the time sequence with arbitrary accuracy.
The encoding mechanism investigated in this paper sat-
1. INTRODUCTION isfies both of these conditions. We show that a Time En-

. . ) . coding Machine (TEM) consisting of a feedback loop that
A fundamental question arising in information processing ¢ntains an adder, a linear filter and a noninverting Schmitt

is how to represent a signal as a discrete sequence. Th@jqqer has the required properties. We also show how to
classical sampling theorem ([6], [10]) calls for representing yy i 5 non-linear inverse Time Decoding Machine (TDM)

a bandlimited signal based on its samples taken at or abOVE(See Figure 1) that perfectly recovers the amplitude infor-
the Nyquist rate. mation from the time sequence.

(t) Time encoding 2(t) | Time decoding x(t)
machine (TEM machine (TDM) 2. TIME ENCODING
z(t) (1) The TEM investigated in this paper is depicted in Figure 2.
T /t b t The filter is assumed here to be an integrator. Clearly the
{ At [t | ta amplitude information at the input of the TEM is repre-
X(w) = 0forw > € sented as a time sequence at its output.
Fig. 1. Time Encoding and Decoding. Noninverting Schmitt trigger
A time encoding of a bandlimited functior(t), ¢ € R, Integrator b
is a representation of(t) as a sequence of increasing times  =z(t) 12 v iy =(t)
(tx), k € Z (see Figure 1). Equivalently, the output of the +C PR
encoder is a digital signal(¢) that switches between two -
valuestb at timest, k € Z. Time encoding is an alterna- -t

tive to classical sampling and applications abound. In the
field of neuroscience the representation of sensory informa-
tion as a sequence of action potentials can be modeled as
temporal encoding. The existence of a such a code was al-
ready postulated in [1]. Time encoding is also of great in-
terest for the design and implementation of future analog to
digital converters. Due to the ever decreasing size of inte-
grated circuits and the attendant low voltage, high precision

Fig. 2. An Example of a Time Encoding Machine

The basic principle of operation of the Time Encoding
Machine is very simple. The bounded input signéi),
|z(t)| < ¢ < b, is biased by a constant amount—)b be-

fore being applied to the integrator. This bias guarantees
that the integrator’s outpuj(t) is a positive (negative) in-
L.T. Toth is currently on leave from Columbia University. creasing (decreasing) function of time. In steady state, there
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are two possible operating modes. In the first mode, the out-Proof: Due to the operating characteristic of the Schmitt
put of the TEM is in state(t) = —b and the input to the  trigger, y reaches the valué if the feedback ish or the
Schmitt trigger grows from-9 to §. When the output of the  value—/ if the feedback is-b for any arbitrary initial value
integrator reaches the maximum valye transition of the  of the integrator. Therefore, without loss of generality we
outputz(t) from —b to +b is triggered and the feedback be- can assume that for some initial conditior= ¢, we have
comes negative. In the second mode of operation, the TEM(y, z) = (—J, —b) and the Time Encoding Machine is de-
is in statez(t) = b and the integrator output steadily de- scribed in a small neighborhood &f by:
creases frond to —4. When the maximum negative value .
—_§ is r_eacheo%(t) will reverse to—b. Thgs, while the tran- Y l/ [2(u) + bldu = 6. 3)
sition times of the output(t) are non-uniformly spaced, the K
amplitude of the output signal remains constant. Therefore,
a transition of the output from-b to b or vice-versa takes
place every time the integrator output reaches the triggering
markd or —¢ (called quanta). The time when this quanta is
achieved depends on the signal as well as on the design p .
rameterb. Hence, the Time Encoding Machine is mapping 5+ l/ [2(u) — bldu = —§. (4)
amplitude information into timing information. It achieves K Jy
this by a signal-dependent sampling mechanism. is satisfied for some = t,. Thus, the sequende,), k € Z,
defined by the equations (2) uniquely describe the (output)
2.1. Stability and the Compensation Principle functionz = z(t), forall ¢, t € R, and|y| < d by construc-
tion.

to

Since the left hand side is a continuously increasig func-
tion, there exists a time= ¢, such that the equation above
holds. Similarly starting with(y, z) = (0, b) at timet; the
sequation:

In Figure 2,k, 6, b are strictly positive real numbers and

T = x(t) is_ a Lebesgues measurable function that models cqrgllary 1 (Upper and Lower Bounds for Trigger Times)
the input signal to the TEM for all, ¢ € R. The output of k4 gl input signalse = z(t), t € R, with |z(t)| < ¢ < b,

the integrator is given by the distance between consecutive trigger timeand ;4
- is given by:
ww=ymn+;ﬂfﬂm—zwww7 @ 210 210
0 b re S B =
e ©)

forall ¢, t > to. Note thaty = y(t) is a continous increas-

ing (decreasing) function whenever the value of the feed-forall k, k € Z.
back is positive (negative). Here,: R — {—b,b} for all

t,t € R, is the function corresponding to the output of the
TEM in Figure 2. z switches between two valuesh and

—b at a set of trigger time§&y,), for all k, k € Z, whereZ (=D F2(&r) (thgr — tr) = —b(tpg1 — tx) + 266,  (6)
denotes the set of integers and,) = —b by convention.

Proof: By applying the mean value theorem to the term on
the left hand side of equation (2) we have

whereé, € [tg,tr+1]. Solving fortg, 1 — ¢, and noting
Remark 1 Informally, the information of the input(t) is '[hat|$(t)| < ¢ we obtain the desired result. The bound is
carried by the signal amplitude whereas the information of achieved for a constant inputt) = c.
the output signat(t) is carried by the trigger times. A fun-
damental question, therefore, is whether the Time Encodingb,emma 2 (The Compensation Principle)
Machine encodes information loss-free. Loss-free encoding . .
means that(¢) can be perfectly recovered froaft). / z(u)du = / 2(u)du, (7)

t ty

Lemma 1 (Stability) For all input signalsz = z(t), t €
R, with |z(t)| < ¢ < bthe TEM is stablej.e., |y(t)] < J,
for all ¢, t € R. The output: is given byz(t) = b (—1)F+1 Proof: The desired result is obtained by adding equations
forall t;, <t < try1,t € R, where the set of trigger times  (2)fork =landk =1+1.
(tx), k € Z, is obtained from the recursive equation

forall I € Z.

. Remark 2 If z(t) is a continuous function, there exists a
k+1 .

" (&) (bepa—t) = (—1)F[=b(tx 1 —t) +b(tkra—tes1)],
forall k, k € Z. (8)



i.e., the samplec(¢;,) can be explicitly recovered from in-  for all [, I € Z, with the initial conditionzy = Az.

formation contained in the proces$t), tx < ¢t < tgio, Note that since the distance between two consecutive
k € Z. Intuitively, therefore, any class of input signals trigger times is bounded B« /(b — ¢) (see equation (5)),
that can be recovered from its samples can also be recov-

ered fromz(t). Note also that the Compensation Principle [ 1-Al<, (11)
provides for an estimate of the amplitude of the input sig- 25 Q
. S o2 wherer = 2592 [4].
nal z(t) on a very small time scale that does not explicitly b—em
depend orkJd.

Theorem 1 (Operator Formulation) Letz = z(t),t € R,
be a bounded signédk(t)| < ¢ < b bandlimited tg—<2, Q.
Let = = z(t), t € R, be the ouput of a Time Encoding
Machine with integrator constant and Schmitt trigger pa-
rameters(d, b). If kd < bg” 4 the signake can be perfectly
recovered from as

Remark 3 The Compensation Principle can be easily ex-
tended to subsets of or to the entire real line. Thus the DC
component of the input can be recovered froft) even for
non-bandlimited input signals(t), ¢t € R.

3. PERFECT RECOVERY z(t) = llim xy(t), (12)

A Time Decoding Machine has the task of recovering the gnd
signalz = z(¢), t € R, from z = 2(¢), t € R, or a noisy |z —a |[<r* 2] (13)
version of the same. Here we will focus on the recovery of
the original signal: based or: only. We shall show thata  Proof: By induction we can show that
perfect recovery is possible, that is, the input signalan }
be recovered from without any loss of information. 2 = Z(I — Ak Az (14)

Informally, the length of the interval between two con-
secutive trigger times of(¢) provides an estimate of the
integral ofz(t) on the same interval. This estimate can be Since|| I — A ||[<r <1,
used in conjunction with the bandlimited assumptionzon
to obtain a perfect reconstruction of the signal even though Jim = > T-AfAr=A"Ax=z. (15
the trigger times are irregular. As expected, the interval be- keN
tween two consecutive trigger times has to be smaller then
the distance between the uniformly spaced samples in the
classical sampling theorem [6], [10]. - Z (I —AFAz = (I— A Z([ — A Az

The mathematical methodology used here is based on k>1t1 keN
the theory of frames [3]. We shall construct a linear operator . I+1 4—1 4. 141
on L?, the space of square integrable functions defined on == AT AT A= (I - AT s,
R, and by starting from a good initial guess followed by
successive interations, obtain sucessive approximations tha{and, therefore|| = — 2y ||< v+ || z |-
converge in the appropriate norm to the original signal ”

k=0

(16)

: _ o T _ tht1
Let us assume that= z(¢), t € R, is a signal bandlim- Let us defineg = [g(t — s¢)]". a [ftk 2(u) dul

ti41 .

ited to[—©2, Q2] and let the operatod be given by: andG = [, g(u — sx) du]. We have the following
trt Theorem 2 (Matrix Formulation) Under the assumptions
Az = / w(u)du g(t = sk), ©) of Theorem 1 the bandlimited signalcan be perfectly re-

kez Vtr
€ covered front as

whereg(t) = sin(Qt)/nt andsy, = (tg41 + ti)/2. ) .
The realization of the operatot above is highly intu- (t) = lim z,(t) =G~ q. 17)
itive. Dirac-delta pulses are generated at tiffigs +tx) /2

with Weightﬂt:+1 2(u)du and then passed through an ideal whereG~! denotes the pseudo-inverse@f Furthermore,

low pass filter with unity gain fow € [—, ] and zero

. ol . z(t) = gPiq, (18)
otherwise. The values qﬁ‘tk * xz(u)du are available at the
TDM through equation (2). whereP; is given by
Letz; = =z(¢t), t € R, be a sequence of bandlimited 1
functions defined by the recursion: p, = Z(I Q). (19)
T141 =2 + Az — 11), (10) k=0



Proof: By induction. Sincer,(t) = gq with Py = I, we
assume that;(t) = gP;qwith P, = Yk _ (I — G)*. We
have

z141(t) = g(P; +I— GP;)q = gPi11q. (20)

The convergence of the sum f&,; is guaranteed by
Theorem 1 andzP., = 1.

LetA(t) = sin(Qt)/Qt, ¢t € R, andH = [ [/ h(t —
ET)] with T = 7 /Q.
Theorem 3 (Change of Frame)Under the assumptions of
Theorem 1, it; < kT < t;41 forall k € Z and somé € Z

p=Hq, (21)

wherep = [z(kT)], k € Z, andH~! is the inverse oH.

Proof: Integrating both sides of the classical sampling rep-
resentation of bandlimited signals

2(t) =Y x(kT) h(t — kT), (22)
kEZ
we obtain the desired result from
tie1 ti+1
/ x(t) dt = x(kT) / h(t—kT).  (23)
ty Jt;

keZ

4. EXAMPLE

The mathematical formulation of the previous section as-
sumes that the dimensionality of the matrices and vectors
used is infinite. In simulations, however, only a finite time
window can be used. We briefly investigate three different
implementations of the TDM in the finite dimensional case
that are based on the (i) recursive equation (18), (ii) closed
form formula (17), and (iii) change of frame formula (21).

In all our simulations, the input signal is given by (22)
where the samples(T’) throughz(12T"), respectively, are

given by -0.394103, 0.375745, 0.416555, 0.198506, -0.55382% °°

0.0405288, 0.583311, 0.278091, -0.135832, -0.292735, -
0.223741, -0.585826;(kT") = 0, for k < 0 andk > 12 and
T = 7/Q = 1.25 ms. Fig. 3(a) shows(t) together with
the time window used for simulations. Fig. 3(b) shows the
simulation results fog(¢) andz(t) with 6 = 0.55, b = 1,
andx = 318.31 us. The 40 trigger times of(¢) shown
were determined with high accuracy using (2).

(i) The error signals shown by Fig. 4(a) are defined as
e; = e(t) = x;(t) — x(t), wherez; () was calculated based
on (18). Instead of applying (19) directly we used the recur-
sionP;;; = I+ P;(I— G) and calculated;(¢) iteratively.
As shown,e;(t) decreases in agreement with Theorem 1,
since with the parameters introduced= 0.7115 < 1. We

14
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(b) e

Fig. 3. Overall bandlimited input signal(t) (a), integrator output
signaly(¢) and the TEM output signal(t) (b).

note (not shown in the figure) thatax;(esgo) = 1.52 x
1074

(ii) Although the matrixG in (17) is singular, perfect
recovery can be achieved sin€!, the pseudo-inverse
of G, exists. The corresponding error signal defined as
gG~!q — z(t) is shown by the solid line of Fig. 4(b). The
small error is due to the finite precision used.

(iii) The dashed line of Fig.4(b) shows the error when
the bandlimited signat(t) is recovered using the sampling
representation (22) and the sampi€sT") are obtained from
(21). Thet;’s selected represent the set of closest pair of
trigger times aroundT — 7/2, k € Z. All other trigger
times are dropped. Again, the small error is due to numeri-
cal inaccuracies. We note that matkkturned out to be not
only invertible but well-conditioned as well.
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Fig. 4. Approximating signals using iteration (a), overall error
signals using closed formulas (b).

5. RELATIONSHIP TO OTHER MODULATION
SCHEMES

The Time Decoding Machine and the demodulator for Fre-
quency Modulation (FM) [2] operate on a signal that has the
same information structure.



Recall that FM demodulation is achieved by finding the
timest such that:

¢
sin(wt + n/ z(u)du+ ¢) =0

to

(24)

wherew is the modulation frequency anglis the modula-
tion index. Therefore,

The above equation and equation (2) have the same basic

bt w T
/ r(u)du = —7](%+1 —tg) + . (25)

ty

structure. Hence an FM modulated sigmatan be per-
fectly recovered from the sequence of tintgs), k € Z us-

ing the Time Decoding Machine. These observations estab-
lish a bridge to non-uniform sampling methods previously
applied to improve the performance of FM and other non-
linear modulators [8].

The Time Encoding Machine also models an Asynchronou[g]

Sigma-Delta modulator [5] and, therefore, the latter is in-

vertible. Past attempts at building Sigma-Delta demodula- 8]

tors have led to low accuracy in signal recovery [9]. This is
because of the linear structure of these demodulators.

We showed that a simple Time Encoding Machine can be [9]

6. CONCLUSIONS

used for generating time codes for arbitrary bandlimited sig-
nals. The TEM consists of a feedback loop that contains an
adder, a filter and a noninverting Schmitt trigger. We de-

rived a simple condition that guarantees that the amplitude
of the bandlimited signal can be recovered from the time se-

guence loss-free. We also presented algorithms for perfect
recovery and briefly investigated their performance.

TEMSs can easily be incorporated into current digital sys-
tems by measuring the trigger-tim@s ), k£ € Z. The anal-
ysis of such a system will be presented elsewhere [7].

Finally, it has not escaped the authors that the Time En-
coding Machine can be used as a neuro-modulator with per-
fect information recovery. Therefore, such a modulator can
be applied to image and auditory neural coding.
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