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ABSTRACT

A Time Encoding Machine consisting of a feedback loop
containing an adder, an integrator and a Schmitt trigger en-
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of outmost importance. In this paper we investigate the sen-
sitivity of signal recovery with respect to the Schmitt gey
parameteb as well as with respect to the numh¥€rof bits
used to quantize the values of the trigger times.

codes amplitude information into a time sequence. We demon-

strate how to construct a Time Decoding Machine that per-
fectly recovers the amplitude information from the time se-
guence and is trigger parameiesensitive

We derive bounds on the error in signal recovery intro-
duced by the quantization of the time sequence. We com-
pare these with the recovery error introduced by the quan-

Through simple simulations we demonstrate that the TDM
that implements the perfect recovery algorithm is highly
sensitive to a broad range of valuessoBased on the sim-
ple compensation principle of [3] we provide a perfect re-
covery algorithm that ig-insensitive.

We evaluate the error introduced by the quantization of

tization of the amplitude of the bandlimited signal when the time sequence and derive bounds on the recovery error.
irregular sampling is employed. Under Nyquist-type rate We compare these with the recovery error introduced by
conditions, quantization of a bandlimited signal in thegim the quantization of the amplitude of an arbitrary bandlim-
and amplitude domains are shown to be largely equivalentited signal when irregular sampling is employed. Under
methods of information representation. Nyquist-type rate conditions, quantization of a bandladit
signal in the time and amplitude domains are shown to be

largely equivalent methods of information representation

1. INTRODUCTION

This paper is organized as follows. Time encoding and
perfect recovery algorithms are reviewed in section 2. Sec-
tion 3 investigates the sensitivity of the recovery aldorit
with respect to the Schmitt trigger parameierThe Com-
pensation Principle is used to builddnsensitive recovery
algorithm. The effect of quantization of the trigger times

tween two values-1 at timest, k € Z. A Time Encoding on signal recovery is discgssgd in sectiqn 4. Finally, ir? sec
Machine (TEM) is a real-time asynchronous mechanism for tion 5_the effects of quantization |n.th¢ t|m¢ and amplitude
encoding amplitude information into a time sequence. A domains on the recovery of bandlimited signals are com-
Time Decoding Machine (TDM) recovers the amplitude in- Pared-
formation from the time sequence.

In [3] a TEM amenable to nano-scale integration was
investigated. The machine consists of a feedback loop that > TIME ENCODING AND PERFECT RECOVERY
contains an adder, a linear filter and a non-inverting Sahmit

trigger (see Figure 1). It was shown there, that the ampditud ) o ) _ _
information of the encoded signalt), ¢ € R, can be per- ~ The TEM considered in this paper is an (essentially) equiv-

fectly recovered from the sequengg), k € Z, provided alent version of the one investigated in [3] (see Figure 1).
that the difference between any two consecutive values of The input signal to the TEM is modelled as a Lebesgues
the time sequence is bounded by the inverse of the Nyquistneasurable function = x(t), t,t € R, in L. Further-
rate. This has established time encoding as an informationMore, z is bounded)z(t)| < ¢ < 1, and bandlimited to
representation modality for bandlimited signals. —id

In practice, the question asknsitivityof the recovery al- The output of the TEM is a functiontaking two values
gorithm with respect to parameter variation of the TEM is z: R — {—1,1} forall ¢, ¢ € R, with transition timegty,),

A time encoding of a bandlimited function(t),t € R, is

a representation af(t) as a sequence of strictly increasing
times(ty), k € Z, whereR andZ denote the set of real num-
bers and integers, respectively. Alternately, the barit8itn
function is encoded as a digital signdt) that switches be-
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Fig. 1. The Time Encoding Machine

k € Z, generated by the recursive equations

tit1
/ !
tr

forall k, k € Z. Intuitively, these equations map the ampli-
tude information of the signal(¢), ¢ € R, into the time se-
quencety), k € Z, and implicitly define signal-dependent
sampling mechanism.

Letx; = z(¢), t € R, be a sequence of bandlimited
functions defined by the recursion:

(u)du

(—1)"[6 = (trg1 — ta)], 1)

()

forall [, I € N, with the initial conditionzg = Ax, where
the operatord is given by:

Ax = Z /tk“
ty

keZ

=3 (=DF[0 = (thpr — ta)] gt — sn),

kEZ

141 = v + Az — ay),

x(u)du g(t — si)
3)

with ¢g(t) = sin(Qt)/nt andsy, = (tk41 + tx)/2. In what
follows I andI will denote the identity operator and the
identity matrix, respectively. In [3] the following TDM per
fect recovery algorithm was derived (The most general re-
covery result only requires that the average number of trig-
ger times is bounded by the inverse of the Nyquist rate [2].
However, this result lacks operational significance in our
setting.):

Theorem 1 (Operator Formulation) If » = &;—’ < 1,
the bandlimited signak can be perfectly recovered from
the trigger timegt,), t € Z, as

lim @) =a(t) = (I - Afde, (@)
keN
and
fz—a < 2. (5)

With g = [g(t — sx)] andq = [(=1)*( + tx — ty41)]
denoting vectors ant = | 'ttll“ g(u — si) du] denoting a
matrix, we have the following

Theorem 2 (Matrix Formulation) If r = lfc% < 1, the
bandlimited signalz can be perfectly recovered from the

trigger times(¢y), t € Z, as

x(t) = llim z(t) =g"'Gtq. (6)
whereG™ denotes the pseudo-inverse®@f Furthermore,
21(t) = g"Pq, whereP, = Y4 (I — G)F.

Remark 1 If ¢ = [cg] is the vector defined by = GTq
then the recovery formula (6) becomes

x(t) Z crg(t — sk).
keZ

Therefore, the recovery algorithm given by equation (6) has
avery simple interpretation. Dirac—delta pulses gendraite
timess;, with weightc;, are passed through a low pass filter
with unity gain forw € [—, 2] and zero otherwise. For a
precise definition and motivation of the pseudo-inverse the
reader is referred to [5].

()

3. RECOVERY SENSITIVITY WITH RESPECT TO
)

In this section we will first demonstrate the high sensitiv-
ity of the perfect recovery algorithm with respect to imple-
mentation errors of the parametgin the TDM. We will

then demonstrate how this can be overcome and advance a
d-insensitive recovery algorithm.

3.1. 6 with a fixed error ¢ at the TDM

The model considered in this section is based on the premise
thatthe TEM is employing and the TDM implement§+«

and has exact knowledge of the trigger times. The recon-
struction algorithm consistently generates an error signa
given by:

e(t) = a(t) —&(t) = S (I~ A)*e > gt —s1), (8)
keEN 1€z
wherez is the output of a TDM that uses+ e for recovery.
In what follows we define a mean-square error measure
&% as

% = lim
n—oo 2’]’L min

] H27 (9)

H 61[_nTnLi7l7nT7nin
wherel denotes the indicator function,
H 61[_nTnLi7l7nT7nin] H2: / eQ(U)]‘[_nTnLMunTwnin](u)du’
R

(10)
andT,in, = mingez Ty With Ty, = tg41 — tg.



Note that, the inverse @ is given by[B—!];; = (—1)k~!
for k£ > [ and zero otherwise. Note also that

Bq = [(—1)"(thy2 — 2tps1 + ti)]
does not explicitly depend an

Theorem 3 (-insensitive recovery algorithm - matrix form)
Ifr = $2--£ < 1, the bandlimited signat can be perfectly
recovered from its associated trigger timés), k£ € Z,
without explicit knowledge of the parameteas

1 _ T -1 —1\+
Fig. 2. The dependence &f on § parameterized by = a(t) = Jim z(t) =g BT (BGB™)"-Bq. (13)

10726 (stars) and = 10735 (squares).

Furthermore,
Example 1 A sample of the dependance of the mean square z(t)=g" -B7'Q; Bq, (14)
recovery error ord parameterized by is shown in Figure o
2. In all our simulations, the input signal is given bft) = whereQ is given by
> rez v(KT)g(t — kT') where the samples(T) through .
x(12T), are respectively, -0.1961, 0.186965, 0.207271, 0.098773 Q = Z[I ~ BGB ", (15)

-0.275572, 0.0201665, 0.290247, 0.138374, -0.067588, - .

0.145661, -0.11133, -0.291498kT") = 0, for k < 0 and
k>12;¢=0.3,Q =27-40kHz andT’ = 7/ = 12.5 pus.

=0

Proof: Using the notation of Theorem 2; can be re-

The evaluation of the trigger times was carried out in the in- Written as

terval —27 < ¢t < 15T.

3.2. é-Insensitive Recovery Algorithm

As shown in Figure 2, the implementation of the TDM re-

z(t)=g'Piq=g’ - B }(BP;B™') - Bq.

Since

l

l
covery algorithm given in Theorem 2, is highly sensitiveto BP,B~! = B Z(I -G)fB ! = Z(I —~BGB 1)k

the exact knowledge of the parameter Remedy is pro-
vided by the following [3]

Lemma 1 (The Compensation Principle)

/t h z(u)du = (=)' [(tiy2 — tiv1) — (b1 — 1)), (11)

forall I € Z.

k=0 k=0

we have (see [5] for the introduction of the pseudo-inverse)

l
z(t) = lim g" -B™' ) (I- BGB™")*-Bq
l—o00 =0 (16)

=g’ -B"'(BGB )" .Baq.

Proof: The desired result is obtained by adding equations EXample 2 The é-insensitive recovery algorithm achieves

() fork =landk =1+ 1.

perfect recovery provided that < 1. Simulation results

The Compensation Principle suggests the constructionfor thed-sensitive and-insensitive recovery algorithms are

of an operator of the form

Bz = Z/ - w(u)du fria(t)

kez Ytk

— Z/ o x(u)du [fr(t) + frt1(t)]-

kez Ytk

(12)

The operatorst andB are identical provided that = B”f,
wheref = [f;] and the elements of the mat® are given

by B]x; = 1fork =1 ork = [+ 1 and zero otherwise.

shown in Figure 3 and are denoted by stars and squares, re-

spectively. The dotted vertical line corresponds to theeal
of ¢ for whichr = 1.

4. RECOVERY SENSITIVITY WITH RESPECT TO
TIME QUANTIZATION

In this section we shall assume that the sequence of trigger

times(t), k € Z, is measured with finite precision and the
actual values available for recovery afek € Z. We shall
denote byl = tp41 —tr andTy = tp+1 —t forall k € Z.
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Fig. 3. Mean square error for thesensitive (stars) and
insensitive algorithms (squares).

4.1. An Upper Bound on a Measure of Error Recovery

The key point of our analysis is the observation that, if the
conditionmaxy (7} < T') is satisfied, then

T = Z(I — A Az,

keN

whereA is defined by

Az = Z /AAH] x(u)du g(t — 8k) (a7)

kez Ytk

andé, = (f, + tx41)/2. Since the reconstructed signal is
given by

(=)' (=T0 + 0)]g(t - 3),

=D (=4I

keN IEZ

the error signal amounts to

ST =AY aglt— ),

keN leZ

e(t) = (18)

where

e = (_1)k(_fk+5)_/k+l s(wdu.  (19)

tr

Proposition 1 Assuming that the quantization errdy, =

Ty — Ty, k € Z, can be modelled as a sequence of i.i.d.
random variables of—A/2, A/2], the expected MSE is
bounded by:

AQ
2 - —_—
) 12 °

1+c (1—|—c
oT 1—r

E{£%} < (20)

Proof: See [4].

5. ACOMPARISON OF TIME AND AMPLITUDE
QUANTIZATION

In this section we highlight the relationship between time
encoding and irregular sampling, i.e., between two infor-
mation representations of a bandlimited signal as a discret
time and a discrete amplitude sequence, respectively.

5.1. Relationship to Irregular Sampling

In what follows we shall assume that the irregular sam-
ples(x(sk)), k € Z, are available for signal reconstruction.
x; = x(t), t € R, will denote a sequence of bandlimited
functions defined by the recursion:

Ti41 = a1 + 8(1‘ — 1), (22)

forall I, | € N, with the initial conditionzg = Sz, where
the operatof is given by

Sx

ZTkI Sk t — Sk) (22)

1+r2.7r

The relevance aof in our context is provided by the follow-
ing theorem [1]:

Theorem 4 (Reconstruction from Irregular Samples) If r =

-2 . £ < 1 the bandlimited signat can be perfectly re-

covered from its samplds(s)), k € Z, as
= x(t),
2r

)t el

Proof: See [1], Theorem 6.

Jim (1) (23)

and|| z —a; ||< (

Remark 2 A key difference between irregular sampling and
time encoding derives from the functional relationship be-
tween the trigger time§;,), k € Z, and the associated time
sequencésy), k € Z, on the one hand and the bandlimited
signal on the other. In the case of time encoding,t}ie

are signal dependent. This is clearly underscored by equa-
tion (1). For irregular sampling, however, thg's are, in
generalsignal independent

5.2. Upper Bound for the Amplitude Quantization Er-
ror

Assume that the instanceg are exactly known and the am-
plitudesz(s;) are corrupted by a sequence of random vari-
ablescey, to z(sy) + €.

Proposition 2 If the random variablege,), & € Z, are
independent uniformly distributed withjre/2, £ /2] then

r 1+ ce?

Bl < g etn

(24)



Proof: See [4]. We derived an upper bound on the expected mean square
error of signal recovery when a quantized version of the trig

Example 3 A reasonable comparison between the effects ger times is available. We have also shown that quantization

of amplitude and time quantization can be established if wein the time and amplitude domains leads to largely equiva-

assume that the quantized amplitudes and quantized triggefent methods of information representation.

times are transmitted at the same bitrate. Singg) and
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Fig. 4. The dependence & on the number of quantiza-
tion bits for time encoding (stars) and irregular sampling
(squares).

Figure 4 shows the mean square egas a function of the
number of quantization bitsy. The details of the simula-

tion are as before. Squares and stars depict the mean square
error for time encoding and irregular sampling, respebtive
Figure 4 also depicts the (same) upper bouné, arising

in inequality (20) and (24).

6. CONCLUSIONS

In this paper we have further established time encoding as
an alternative information representation modality fon-ba
dlimited signals. We have shown how to construct a TDM
that only depends on the time sequence generated by the
TEM. No additional knowledge about the parameters of the
TEM is required.



