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ABSTRACT

A Time Encoding Machine consisting of a feedback loop
containing an adder, an integrator and a Schmitt trigger en-
codes amplitude information into a time sequence. We demon-
strate how to construct a Time Decoding Machine that per-
fectly recovers the amplitude information from the time se-
quence and is trigger parameterinsensitive.

We derive bounds on the error in signal recovery intro-
duced by the quantization of the time sequence. We com-
pare these with the recovery error introduced by the quan-
tization of the amplitude of the bandlimited signal when
irregular sampling is employed. Under Nyquist-type rate
conditions, quantization of a bandlimited signal in the time
and amplitude domains are shown to be largely equivalent
methods of information representation.

1. INTRODUCTION

A time encoding of a bandlimited functionx(t), t ∈ R, is
a representation ofx(t) as a sequence of strictly increasing
times(tk), k ∈ Z, whereR andZ denote the set of real num-
bers and integers, respectively. Alternately, the bandlimited
function is encoded as a digital signalz(t) that switches be-
tween two values±1 at timestk, k ∈ Z. A Time Encoding
Machine (TEM) is a real-time asynchronous mechanism for
encoding amplitude information into a time sequence. A
Time Decoding Machine (TDM) recovers the amplitude in-
formation from the time sequence.

In [3] a TEM amenable to nano-scale integration was
investigated. The machine consists of a feedback loop that
contains an adder, a linear filter and a non-inverting Schmitt
trigger (see Figure 1). It was shown there, that the amplitude
information of the encoded signalx(t), t ∈ R, can be per-
fectly recovered from the sequence(tk), k ∈ Z, provided
that the difference between any two consecutive values of
the time sequence is bounded by the inverse of the Nyquist
rate. This has established time encoding as an information
representation modality for bandlimited signals.

In practice, the question ofsensitivityof the recovery al-
gorithm with respect to parameter variation of the TEM is

of outmost importance. In this paper we investigate the sen-
sitivity of signal recovery with respect to the Schmitt trigger
parameterδ as well as with respect to the numberN of bits
used to quantize the values of the trigger times.

Through simple simulations we demonstrate that the TDM
that implements the perfect recovery algorithm is highly
sensitive to a broad range of values ofδ. Based on the sim-
ple compensation principle of [3] we provide a perfect re-
covery algorithm that isδ-insensitive.

We evaluate the error introduced by the quantization of
the time sequence and derive bounds on the recovery error.
We compare these with the recovery error introduced by
the quantization of the amplitude of an arbitrary bandlim-
ited signal when irregular sampling is employed. Under
Nyquist-type rate conditions, quantization of a bandlimited
signal in the time and amplitude domains are shown to be
largely equivalent methods of information representation.

This paper is organized as follows. Time encoding and
perfect recovery algorithms are reviewed in section 2. Sec-
tion 3 investigates the sensitivity of the recovery algorithm
with respect to the Schmitt trigger parameterδ. The Com-
pensation Principle is used to build aδ-insensitive recovery
algorithm. The effect of quantization of the trigger times
on signal recovery is discussed in section 4. Finally, in sec-
tion 5 the effects of quantization in the time and amplitude
domains on the recovery of bandlimited signals are com-
pared.

2. TIME ENCODING AND PERFECT RECOVERY

The TEM considered in this paper is an (essentially) equiv-
alent version of the one investigated in [3] (see Figure 1).
The input signal to the TEM is modelled as a Lebesgues
measurable functionx = x(t), t, t ∈ R, in L2. Further-
more,x is bounded,|x(t)| ≤ c < 1, and bandlimited to
[−Ω, Ω].

The output of the TEM is a functionz taking two values
z : R → {−1, 1} for all t, t ∈ R, with transition times(tk),

Proceedings of ICASSP’2004, Vol. II, pp. 901-904, May 17-21, 2004, Montreal. c© IEEE 2004



x(t)

−

+

y(t)
y

1
z

Integrator

Noninverting Schmitt trigger

−1

Z

dt
δ/2−δ/2

z(t)

Fig. 1. The Time Encoding Machine

k ∈ Z, generated by the recursive equations

∫ tk+1

tk

x(u)du = (−1)k[δ − (tk+1 − tk)], (1)

for all k, k ∈ Z. Intuitively, these equations map the ampli-
tude information of the signalx(t), t ∈ R, into the time se-
quence(tk), k ∈ Z, and implicitly define asignal-dependent
sampling mechanism.

Let xl = xl(t), t ∈ R, be a sequence of bandlimited
functions defined by the recursion:

xl+1 = xl + A(x − xl), (2)

for all l, l ∈ N, with the initial conditionx0 = Ax, where
the operatorA is given by:

Ax =
∑
k∈Z

∫ tk+1

tk

x(u)du g(t − sk)

=
∑
k∈Z

(−1)k[δ − (tk+1 − tk)] g(t − sk),
(3)

with g(t) = sin(Ωt)/πt andsk = (tk+1 + tk)/2. In what
follows I and I will denote the identity operator and the
identity matrix, respectively. In [3] the following TDM per-
fect recovery algorithm was derived (The most general re-
covery result only requires that the average number of trig-
ger times is bounded by the inverse of the Nyquist rate [2].
However, this result lacks operational significance in our
setting.):

Theorem 1 (Operator Formulation) If r = δ
1−c

Ω
π

< 1,
the bandlimited signalx can be perfectly recovered from
the trigger times(tk), t ∈ Z, as

lim
l→∞

xl(t) = x(t) =
∑
k∈N

(I −A)kAx, (4)

and
‖ x − xl ‖≤ rl+1 ‖ x ‖ . (5)

With g = [g(t − sk)] andq = [(−1)k(δ + tk − tk+1)]

denoting vectors andG = [
∫ tl+1

tl

g(u − sk) du] denoting a
matrix, we have the following

Theorem 2 (Matrix Formulation) If r = δ
1−c

Ω
π

< 1, the
bandlimited signalx can be perfectly recovered from the
trigger times(tk), t ∈ Z, as

x(t) = lim
l→∞

xl(t) = gT G+q. (6)

whereG+ denotes the pseudo-inverse ofG. Furthermore,
xl(t) = gTPlq, wherePl =

∑l
k=0(I − G)k.

Remark 1 If c = [ck] is the vector defined byc = G+q

then the recovery formula (6) becomes

x(t) =
∑
k∈Z

ckg(t − sk). (7)

Therefore, the recovery algorithm given by equation (6) has
a very simple interpretation. Dirac–delta pulses generated at
timessk with weightck are passed through a low pass filter
with unity gain forω ∈ [−Ω, Ω] and zero otherwise. For a
precise definition and motivation of the pseudo-inverse the
reader is referred to [5].

3. RECOVERY SENSITIVITY WITH RESPECT TO
δ

In this section we will first demonstrate the high sensitiv-
ity of the perfect recovery algorithm with respect to imple-
mentation errors of the parameterδ in the TDM. We will
then demonstrate how this can be overcome and advance a
δ-insensitive recovery algorithm.

3.1. δ with a fixed error ε at the TDM

The model considered in this section is based on the premise
that the TEM is employingδ and the TDM implementsδ+ε
and has exact knowledge of the trigger times. The recon-
struction algorithm consistently generates an error signal e
given by:

e(t) = x(t) − x̂(t) =
∑
k∈N

(I −A)kε
∑
l∈Z

g(t − sl), (8)

wherex̂ is the output of a TDM that usesδ + ǫ for recovery.
In what follows we define a mean-square error measure

E2 as

E2 = lim
n→∞

1

2nTmin

‖ e1[−nTmin,nTmin] ‖
2, (9)

where1 denotes the indicator function,

‖ e1[−nTmin,nTmin] ‖
2=

∫
R

e2(u)1[−nTmin,nTmin](u)du,

(10)
andTmin = mink∈Z Tk with Tk = tk+1 − tk.
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Fig. 2. The dependence ofE on δ parameterized byε =
10−2δ (stars) andε = 10−3δ (squares).

Example 1 A sample of the dependance of the mean square
recovery error onδ parameterized byε is shown in Figure
2. In all our simulations, the input signal is given byx(t) =∑

k∈Z
x(kT )g(t − kT ) where the samplesx(T ) through

x(12T ), are respectively, -0.1961, 0.186965, 0.207271, 0.0987736,
-0.275572, 0.0201665, 0.290247, 0.138374, -0.067588, -
0.145661, -0.11133, -0.291498,x(kT ) = 0, for k ≤ 0 and
k > 12; c = 0.3, Ω = 2π ·40 kHz andT = π/Ω = 12.5 µs.
The evaluation of the trigger times was carried out in the in-
terval−2T ≤ t ≤ 15T .

3.2. δ-Insensitive Recovery Algorithm

As shown in Figure 2, the implementation of the TDM re-
covery algorithm given in Theorem 2, is highly sensitive to
the exact knowledge of the parameterδ. Remedy is pro-
vided by the following [3]

Lemma 1 (The Compensation Principle)

∫ tl+2

tl

x(u)du = (−1)l[(tl+2 − tl+1) − (tl+1 − tl)], (11)

for all l ∈ Z.

Proof: The desired result is obtained by adding equations
(1) for k = l andk = l + 1.

The Compensation Principle suggests the construction
of an operator of the form

Bx =
∑
k∈Z

∫ tk+2

tk

x(u)du fk+1(t)

=
∑
k∈Z

∫ tk+1

tk

x(u)du [fk(t) + fk+1(t)].

(12)

The operatorsA andB are identical provided thatg = BT f ,
wheref = [fk] and the elements of the matrixB are given
by [B]k,l = 1 for k = l or k = l + 1 and zero otherwise.

Note that, the inverse ofB is given by[B−1]k,l = (−1)k−l

for k ≥ l and zero otherwise. Note also that

Bq = [(−1)k(tk+2 − 2tk+1 + tk)]

does not explicitly depend onδ.

Theorem 3 (δ-insensitive recovery algorithm - matrix form)
If r = δ

1−c
·Ω
π

< 1, the bandlimited signalx can be perfectly
recovered from its associated trigger times(tk), k ∈ Z,
without explicit knowledge of the parameterδ as

x(t) = lim
l→∞

xl(t) = gT ·B−1(BGB−1)+ ·Bq. (13)

Furthermore,

xl(t) = gT · B−1Ql · Bq, (14)

whereQl is given by

Ql =

l∑
k=0

[I − BGB−1]k. (15)

Proof: Using the notation of Theorem 2,xl can be re-
written as

xl(t) = gTPlq = gT ·B−1(BPlB
−1) ·Bq.

Since

BPlB
−1 = B

l∑
k=0

(I − G)kB−1 =

l∑
k=0

(I− BGB−1)k

we have (see [5] for the introduction of the pseudo-inverse)

x(t) = lim
l→∞

gT · B−1
l∑

k=0

(I − BGB−1)k ·Bq

= gT ·B−1(BGB−1)+ ·Bq.

(16)

Example 2 The δ-insensitive recovery algorithm achieves
perfect recovery provided thatr < 1. Simulation results
for theδ-sensitive andδ-insensitive recovery algorithms are
shown in Figure 3 and are denoted by stars and squares, re-
spectively. The dotted vertical line corresponds to the value
of δ for whichr = 1.

4. RECOVERY SENSITIVITY WITH RESPECT TO
TIME QUANTIZATION

In this section we shall assume that the sequence of trigger
times(tk), k ∈ Z, is measured with finite precision and the
actual values available for recovery aret̂k, k ∈ Z. We shall
denote byTk = tk+1− tk andT̂k = t̂k+1− t̂k for all k ∈ Z.
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Fig. 3. Mean square error for theδ-sensitive (stars) andδ-
insensitive algorithms (squares).

4.1. An Upper Bound on a Measure of Error Recovery

The key point of our analysis is the observation that, if the
conditionmaxk(T̂k < T ) is satisfied, then

x =
∑
k∈N

(I − Â)kÂx,

whereÂ is defined by

Âx =
∑
k∈Z

∫ t̂k+1

t̂k

x(u)du g(t − ŝk) (17)

andŝk = (t̂k + t̂k+1)/2. Since the reconstructed signal is
given by

x̂ =
∑
k∈N

(I − Â)k
∑
l∈Z

[(−1)l(−T̂l + δ)]g(t − ŝl),

the error signal amounts to

e(t) =
∑
k∈N

(I − Â)k
∑
l∈Z

ǫlg(t − ŝl), (18)

where

ǫk = (−1)k(−T̂k + δ) −

∫ t̂k+1

t̂k

x(u)du. (19)

Proposition 1 Assuming that the quantization errordk =
T̂k − Tk, k ∈ Z, can be modelled as a sequence of i.i.d.
random variables on[−∆/2, ∆/2], the expected MSE is
bounded by:

E{E2} ≤
1 + c

δT
· (

1 + c

1 − r
)2 ·

∆2

12
. (20)

Proof: See [4].

5. A COMPARISON OF TIME AND AMPLITUDE
QUANTIZATION

In this section we highlight the relationship between time
encoding and irregular sampling, i.e., between two infor-
mation representations of a bandlimited signal as a discrete
time and a discrete amplitude sequence, respectively.

5.1. Relationship to Irregular Sampling

In what follows we shall assume that the irregular sam-
ples(x(sk)), k ∈ Z, are available for signal reconstruction.
xl = xl(t), t ∈ R, will denote a sequence of bandlimited
functions defined by the recursion:

xl+1 = xl + S(x − xl), (21)

for all l, l ∈ N, with the initial conditionx0 = Sx, where
the operatorS is given by

Sx =
1

1 + r2
·
Ω

π

∑
k∈Z

Tkx(sk)g(t − sk). (22)

The relevance ofS in our context is provided by the follow-
ing theorem [1]:

Theorem 4 (Reconstruction from Irregular Samples) If r =
δ

1−c
· Ω

π
< 1 the bandlimited signalx can be perfectly re-

covered from its samples(x(sk)), k ∈ Z, as

lim
l→∞

xl(t) = x(t), (23)

and‖ x − xl ‖≤ ( 2r
1+r2 )l+1 ‖ x ‖ .

Proof: See [1], Theorem 6.

Remark 2 A key difference between irregular sampling and
time encoding derives from the functional relationship be-
tween the trigger times(tk), k ∈ Z, and the associated time
sequence(sk), k ∈ Z, on the one hand and the bandlimited
signal on the other. In the case of time encoding, thetk’s
are signal dependent. This is clearly underscored by equa-
tion (1). For irregular sampling, however, thesk ’s are, in
general,signal independent.

5.2. Upper Bound for the Amplitude Quantization Er-
ror

Assume that the instancessk are exactly known and the am-
plitudesx(sk) are corrupted by a sequence of random vari-
ablesǫk to x(sk) + ǫk.

Proposition 2 If the random variables(ǫk), k ∈ Z, are
independent uniformly distributed within[−ε/2, ε/2] then

E{E2} ≤
r

(1 − r)2
1 + c

1 − c

ε2

12
. (24)
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Proof: See [4].

Example 3 A reasonable comparison between the effects
of amplitude and time quantization can be established if we
assume that the quantized amplitudes and quantized trigger
times are transmitted at the same bitrate. Sincex(sk) and
Tk are associated with the trigger timestk and tk+1, the
same transmission bitrate is achieved if thex(sk)’s and the
Tk’s are represented by the same number of bitsN . With
−c ≤ x ≤ c, the amplitude quantization step amounts to
ε = 2c/2N .

For time encodingTmin = mink∈Z Tk ≤ Tk ≤ maxk∈Z Tk =
Tmax, or equivalently0 ≤ Tk−Tmin ≤ Tmax−Tmin. Therefore, if
Tmin is exactly known, then only measuringTk−Tmin, k ∈ Z,
in the range(0, Tmax − Tmin) is needed. Hence:

∆ =
Tmax − Tmin

2N
=

1

2N
(

δ

1 − c
−

δ

1 + c
) =

δε

1 − c2
.

Substituting the values ofε and∆ above into (20) and (24)
results exactly in the same upper bound for both the ex-
pected mean square error for time encoding and irregular
sampling, respectively.
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Fig. 4. The dependence ofE on the number of quantiza-
tion bits for time encoding (stars) and irregular sampling
(squares).

Figure 4 shows the mean square errorE as a function of the
number of quantization bits,N . The details of the simula-
tion are as before. Squares and stars depict the mean square
error for time encoding and irregular sampling, respectively.
Figure 4 also depicts the (same) upper bound,UB, arising
in inequality (20) and (24).

6. CONCLUSIONS

In this paper we have further established time encoding as
an alternative information representation modality for ban-
dlimited signals. We have shown how to construct a TDM
that only depends on the time sequence generated by the
TEM. No additional knowledge about the parameters of the
TEM is required.

We derived an upper bound on the expected mean square
error of signal recovery when a quantized version of the trig-
ger times is available. We have also shown that quantization
in the time and amplitude domains leads to largely equiva-
lent methods of information representation.
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