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ABSTRACT

Time encoding is a real-time asynchronusmechanism of map-
ping analog amplitude information into multidimensional
time sequences. We investigate the exact representation of
analog video streams with a Time Encoding Machine real-
ized with a population of spiking neurons. We also provide
an algorithm that perfectly recovers streaming video from
the spike trains of the neural population. Finally, we ana-
lyze the quality of recovery of a space-time separable video
stream encoded with a population of integrate-and-fire neu-
rons and demonstrate that the quality of recovery increases as
a function of the population size.

Index Terms— time encoding, video coding, integrate-
and-fire neurons, frames, Gabor wavelets

1. INTRODUCTION

Time EncodingMachines (TEMs) encode analog informa-
tion in the time domain using only asynchronous circuits [1].
Representation in the time domain is an alternative to the clas-
sical sampling representation in the amplitude domain. Appli-
cations arise in low power nano-sensors for analog-to-discrete
(A/D) conversion as well as in modeling olfactory systems, vi-
sion and hearing in neuroscience.
Asynchronous Sigma/Delta modulators as well as FM

modulators have been shown to encode information in the
time domain [1]. Multichannel TEMs realized with invertible
filterbanks and invertible single integrate-and-fire neurons
have been investigated in [2]. These TEMs were generalized
to population models for single input (SIMO) [3] and for
multiple input (MIMO) [4] systems.
In this paper we investigate whether the information con-

tained in the components of an analog video stream can be
encoded in the spike trains at the output of an ensemble of
integrate-and-fire neurons. In order to do so, we provide a
signal recovery scheme based on the spike times of the neural
ensemble and derive conditions for perfect recovery. The key
condition for recovery calls for the spike density of the neural
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ensemble to be above the Nyquist rate. Our results are based
on the theory of frames [5].
Recovery theorems in signal processing with applications

to A/D conversion are usually couched in the language of
spike/sample density. In neuroscience, however, the natural
abstraction is the neuron. We shall formulate here recovery
results with conditions on the size of the neural population
as opposed to spike density. We demonstrate that, the infor-
mation contained in the video sensory input can be recovered
from the output of the population of integrate-and-fire neu-
rons provided that the number of neurons is beyond a thresh-
old value. Therefore, while information about the signals can
not be perfectly represented with a small number of neurons,
this limitation can be overcome provided that the number of
neurons is beyond a certain critical value. Increasing the num-
ber of neurons to achieve a faithful representation of the sen-
sory world is consistent with basic neurobiological thought.

2. TIME ENCODING AND THE T-TRANSFORM

Let H denote the space of (real) analog video streams
I(x, y, t) which are bandlimited in time, continuous in space
and have finite energy. We assume that the video streams are
defined on a bounded spatial set D which is a compact subset
of R2. By saying bandlimited in time, we mean that for every
(x0, y0) ∈ D, we have I(x0, y0, t) ∈ Ξ, where Ξ is the space
of bandlimited functions of finite energy.
It is clear that the space H, endowed with the inner prod-

uct 〈·, ·〉 : H×H �→ R defined by

〈I1, I2〉 =

∫∫∫
R⊗D

I1(x, y, t)I2(x, y, t) dxdydt

is a Hilbert space.
In full generality we assume that each neuron j, j =

1, 2, . . . , N , has a spatiotemporal receptive field described by
the function Dj(x, y, t). Filtering the video stream with the
receptive field of neuron j gives the dendritic output vj(t)

vj(t) =

∫
R

(∫∫
D

Dj(x, y, s)I(x, y, t− s) dxdy
)
ds. (1)

Subsequently, a constant bias bj is added to the dendritic
output and the sum vj(t) + bj is passed through the axon
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Fig. 1. Video Time Encoding Machine.

hillock. The later is modeled as an integrate-and-fire neuron
with threshold δj and integration constant κj .
Here we are interested in the case where the receptive

fields of the neurons have only spatial components, i.e.,
Dj(x, y, t) = Dj

s(x, y)δ(t), where δ(t) is the Dirac func-
tion. The neural population encoding model is depicted in
Figure 1.
With (tjk), k ∈ Z, the spike train of neuron j, j =

1, 2, . . . , N , the t-transform can be written as

∫ tj

k+1

tj

k

(vj(s) + bj) ds = κjδj . (2)

In inner product form the above equation can be written as

〈I, φj
k〉 = qj

k, (3)

with qj
k = κjδj − bj(tjk+1 − tjk). The sampling functions

above are given by

φj
k(x, y, t) = D̃j(x, y, t) ∗ g ∗ 1[tj

k
,tj

k+1
](t), (4)

where D̃j(x, y, t) = Dj(x, y,−t) and g(t) = sin(Ωt)/πt
is the impulse response of a low pass filter (LPF) with cut-
off frequency Ω. For the case of spatial receptive fields, the
sampling functions simply become φj

k(x, y, t) = Dj
s(x, y) ·(

g ∗ 1[tj

k
,tj

k+1
]

)
(t).

3. TIME DECODING AND THE T -TRANSFORM
INVERSE

For recovery we use the sequence of functions (ψj
k), j =

1, 2, . . . , N, k ∈ Z, with

ψj
k(x, y, t) = Dj(x, y, t) ∗ g(t− sj

k). (5)

Lemma 1. Assume that the filters modeling the receptive
fieldsDj(x, y, t), j = 1, 2, . . . , N , are BIBO stable and their

space-time frequency support is a superset of the space-time
frequency range of interest. Then if the spike density and the
number of neurons N are sufficiently large, the sequences
(φj

k) and (ψj
k), k ∈ Z, j = 1, 2, . . . , N , are frames.

Proof: For video streams discretized in space, the Nyquist
rate can be bounded from above by MΩ/π, whereM is the
number of pixels (spatial resolution) and Ω is the temporal
bandwidth of the video. If the total spike density exceeds
the Nyquist rate then, under mild conditions, the two se-
quences (φj

k) and (ψj
k), k ∈ Z, j = 1, 2, . . . , N , constitute

frames [4]. For continuous video streams bandlimited in
space, the Nyquist rate is again bounded and depends on the
spatial and temporal bandwidths. �

Theorem 1. Under the same assumptions as in Lemma 1, if∑N
j=1 b

j/κjδj diverges in N , then there exists a number N
such that if N ≥ N , the video stream I = I(x, y, t), can be
perfectly recovered as

I(x, y, t) =

N∑
j=1

∑
k∈Z

cjkψ
j
k(x, y, t), (6)

where the cjk, k ∈ Z, j = 1, 2, . . . , N , are suitable coeffi-
cients.

Proof: Clearly, the theorem holds if we can show that the
sequence of functions (ψj

k), k ∈ Z, j = 1, 2, . . . , N , forms a
frame for H. By following the same procedure as in [4] the
total spike density amounts to

∑N
j=1 b

j/κjδj . Since this sum
diverges, the result follows from Lemma 1. �

Corollary 1. Let [cj ]k = cjk and c = [c1, c2, . . . , cN ]T . The
coefficients c can be computed as

c = G+q, (7)

where T denotes the transpose, q = [q1,q2, . . . ,qN ]T ,
[qj ]k = qj

k and G+ denotes the pseudoinverse of G. The
entries of the matrixG are given by

G =

⎡
⎢⎢⎢⎣

G11 G12 . . . G1N

G21 G22 . . . G2N

...
...

. . .
...

GN1 GN2 . . . GNN

⎤
⎥⎥⎥⎦ ,

[Gij ]kl =

∫ ti
k+1

ti
k

Dij(s) ∗ g(s− sj
l ) ds,

(8)

where

Dij(s) =

∫∫
D

Di(x, y, s) ∗Dj(x, y, s)dxdy.
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Fig. 2. Video Time Decoding Machine.

Proof: Equation c = G+q can be obtained by substitut-
ing the representation of u in equation (6) into the equation
of the t-transform in (2). Since the sequences (φj

k) and
(ψj

k), k ∈ Z, j = 1, 2, . . . , N , are frames for H, the result
follows [6]. The decoding scheme is depicted in Figure 2. �

Remark 1. If the receptive field is only spatial

ψj
k(x, y, t) = Dj

s(x, y)g(t− sj
k)

[Gij ]kl =

∫∫
D

Di
s(x, y)D

j
s(x, y)dxdy

∫ ti
k+1

ti
k

g(s− sj
l ) ds.

4. EXAMPLE

In what follows we provide an example of encoding of
space-time separable video streams with a model of simple
cells arising in the primary visual cortex. These neurons show
a linear summation cross the spatial receptive field [7].

4.1. Constructing Receptive Fields for Simple Cells

Gabor functions have been extensively used to model the
spatial receptive fields of simple cells [7]. The general form
of a Gabor function is

S(x, y) ∝ exp

(
− (x− x0)

2

σ2
x

− (y − y0)2
σ2

y

)
ei(kx+νy+φ),

where (x0, y0) is the center of the receptive field in the spatial
domain and (k, ν) is the optimal frequency of the filter in the
frequency domain. σx, σy are the standard deviations along x
and y, and φ is the preferred spatial phase.
The Gabor wavelet filterbank that matches neural data can

be generated from the following mother Gabor wavelet [8]

ψ(x, y) =
1√
2π

exp

(
−1

8
(4x2 + y2)

)(
eikx − e−k2/2

)
.

(9)
For real signals the Gabor mother wavelet decomposes

into two mother wavelets consisting of its real and imaginary
parts. The admissible operations that can be performed on the
mother wavelet to obtain the other functions of the wavelet
family are

1. Dilation Dα, α ∈ R\{0}, with
Dαψ(x, y) = |α|−1ψ

(
x
α ,

y
α

)
.

2. Translation τ(x0,y0), (x0, y0) ∈ R
2, with

τ(x0,y0)ψ(x, y) = ψ(x− x0, y − y0).
3. RotationRθ, θ ∈ [0, 2π), with
Rθψ(x, y) = ψ(x cos θ + y sin θ,−x sin θ + y cos θ).

In order to model spatial receptive fields with Gabor fil-
ters, we need to ensure that the set of the Gabor filters spans
the space of interest, i.e., it forms a frame for the space of
interest (usually L2(D), where D ⊂ R

2 compact). A set of
discrete values for α, θ, x0, y0, can be obtained with the fol-
lowing scheme:

• α = αm
0 , α0 > 1,m ∈ Z,

• θ = lθ0, l ∈ [0, 1, . . . , L− 1], θ0 = 2π/L,

• (x0, y0) = (nb0α
m
0 , kb0α

m
0 ), (n, k) ∈ Z

2.

For the above set of discrete values Lee [8] found condi-
tions that guarantee that the set of Gabor functions represent
a frame for L2(R2). Moreover, he approximated the frame
bounds and showed that as the density of the filterbank in-
creases, i.e., the parameters α0, θ0, b0 become smaller, the
frame becomes tighter and eventually practically tight.

4.2. Video Time Encoding with a Gabor Filterbank

We consider a video stream I = I(x, y, t) defined over
the spatial domain D = [−3, 3]× [−3, 3] and bandlimited in
time toΩ = 2π·20Hz. The video stream has separable spatial
and temporal components, i.e., I(x, y, t) = S(x, y)u(t) with
a spatial resolution of 51 × 51 pixels. We used respectively
36 and 108 neurons to encode the video with spatial receptive
fields constructed as explained above. As an example, for
the case of 108 neurons the parameters of the filterbank were
chosen to be

• α = αm
0 , α0 =

√
2,m ∈ [0, 1],

• θ = lθ0, θ0 = 2π/3, l ∈ [0, 1, 2],

• (x0, y0) = (nb0α
m
0 , kb0α

m
0 ), b0 = 1,

(n, k) ∈ [−1, 0, 1]2.
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Fig. 3. Frequency support for the spatial Gabor filterbank.

Figure 3 shows the frequency support of the constructed fil-
terbank. Figure 4 depicts the recovery results for the spatial
component of the video stream. Increasing the number of neu-
rons in the architecture results in a recovery with an improved
spatial resolution. In general, the minimum number of neu-
rons that is required for perfect recovery depends in a linear
fashion on the spatial bandwidth of the video stream and on
the area of the spatial domainD, upon which the video stream
is defined.

5. CONCLUSIONS

We presented a model of encoding an analog video stream
into a multidimensional time sequence using an asynchronous
real-time circuit. In its quantized form, the time sequence
(tjk), k ∈ Z, j = 1, 2, . . . , N, can be used for transmission
and for further processing in any digital communications
and/or signal processing system. Thus, Video TEMs with
quantized output play the same role as A/D converters in
conventional signal processing systems but with the added
benefit of being asynchronous.
For SIMO TEMs [3] the quality of stimulus reconstruc-

tion gracefully degrades when additive white noise is present
at the input. The structurally closely related recovery algo-
rithm of the Video Time Decoding Machine is robust with
respect to additive noise as well (data not shown).
Video TEMs may also be used as a template architec-

ture for the design of purely nonlinear brain-machine inter-
faces with high performance characteristics. Current models
of brain-machine-interfaces are based on a linear architecture
and exhibit limited performance [9].
From a neuroscience standpoint our model provides theo-

retical support for modeling arbitrary linear operators associ-
ated with dendritic trees. The analysis described here demon-
strates that the visual sensory world can be faithfully repre-
sented by a population of neurons, provided that the number
of neurons is above a critical value.

Fig. 4. Recovery of the spatial component for a space-time
separable video stream. The quality of recovery increases
with the number of neurons.
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