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Abstract

Time encoding is a real-time asynchronous mechanism for encoding the amplitude

information of an analog bandlimited signal into a time sequence, or time codes, based

on which the signal can be reconstructed. Using a Toeplitz formulation we propose an

efficient real-time reconstruction procedure. As an illustration, time encoding is carried

out by an asynchronous sigma-delta modulator. The proposed method is confirmed by

numerical simulations.

1 Introduction

Time-encoding is a real-time asynchronous mechanism of mapping the amplitude information
of a bandlimited signal x(t), t ∈ R, into a set of time codes (TCs) {tk}, k ∈ Z, where R and
Z denote the sets of real numbers and integers, respectively. The TCs are generated by Time
Encoding Machines (TEMs) driven by x(t). The TEMs are simple nonlinear asynchronous
analog circuits with typically low power consumption. Usually the TEM output, z(t), is an
asynchronous binary signal or pulse-train based on which the TCs can be identified.

Known nonlinear asynchronous analog circuits can be used as TEMs. The first example
of a TEM (see [9] and the references therein), also shown in Fig. 1, was an asynchronous
sigma-delta modulator. Other TEMs include integrate-and- fire neurons [10] and frequency
modulators [11]. Based on the TCs, x(t) can be reconstructed by algorithms commonly
referred to as Time Decoding Machines (TDMs) if certain Nyquist-type rate conditions on
the TCs are met. Although methods used in frame theory [2, 8] and irregular sampling
[4, 15] are needed to establish these conditions [11, 10], the algorithms are often easy to find
and are reduced to solving consistent but (typically) ill-conditioned set of linear equations.
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Figure 1: Asynchronous sigma-delta modulator as a TEM.

The first example of a TEM [9, 11] was an asynchronous sigma-delta modulator [7, 14]
shown in Figure 1. The TEM consists of integrator and a symmetrically-centered nonin-
verting Schmitt trigger in a negative-feedback arrangement where κ, δ and b are circuit
parameters. As shown, the zero-crossings of the asynchronous binary output z(t) define the
TCs. Furthermore, the input signal is bounded both in amplitude and (angular) frequency
as

|x(t)| ≤ c < b and X(ω) = 0 if |ω| < Ω, (1)

where X(ω) denotes the Fourier transform of x(t).
The operation of this TEM is simple. Since z(t) takes either b or −b values, the input to

the integrator is either x(t) + b or x(t) − b. Since |x(t)| ≤ c < b, the integrator output y(t)
is a strictly increasing or decreasing function for t ∈ (tk, tk+1) and thus either y(tk) = δ or
y(tk) = −δ. A simple analysis [11] gives

∫ tk+1

tk

x(t)dt = (−1)k(2κδ − b(tk+1 − tk)) (2)

for all k ∈ Z. The original TDM of [9] can be found by assuming that x(t) is expressed as

x(t) =
∑

ℓ∈Z

cℓg(t − sℓ), sℓ =
tℓ + tℓ+1

2
, and g(t) =

sin(Ωt

πt (3)

is the impulse response of an ideal lowpass filter (LPF) with cutoff frequency Ω. The goal is
to find the coefficients cℓ. Substituting (3) into (2) gives:

∑

ℓ∈Z

cℓ
︸︷︷︸

[c]ℓ

∫ tk+1

tk

g(t− sℓ)dt

︸ ︷︷ ︸

[G]k,ℓ

= (−1)k(2κδ − b(tk+1 − tk))
︸ ︷︷ ︸

[q]k

. (4)

With the definitions of the matrix G and, vectors q and c introduced in (4), the unknown c

verify the linear equations Gc = q. It can be shown [11] that this formulation gives perfect
reconstruction if the condition 2κδ/(b − c) < π/Ω is satisfied. Note that G, q and c have
infinite dimensions.
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1.1 Toeplitz Formulation

In the case of irregular sampling, an efficient approximation was proposed by transforming
the linear equations Gc = q into a system represented by a Hermitian Toeplitz matrix [5].
This approach was generalized to time encoding in [12] in two steps.

In the first step a reformulation of the reconstruction technique of Section 1 is introduced.
If x(t) is Ω- bandlimited, then so is its indefinite integral and therefore similarly to (3) as:

∫ t

−∞

x(u)du =
∑

ℓ∈Z

cℓg(t − tℓ), (5)

where the cℓ’s are to be determined. Subtracting (5) evaluated at t = tk from the same
evaluated at t = tk+1 gives:

∫ tk+1

tk

x(u)du =
∑

ℓ∈Z

cℓ (g(tk+1 − tℓ) − g(tk − tℓ)) .

Using (2) and rewriting the left-hand-side (LHS) using Kronecker’s notation gives:

(−1)k(2κδ − b(tk+1 − tk))
︸ ︷︷ ︸

[q]k

=
∑

ℓ∈Z

cℓ
︸︷︷︸

[c]ℓ

∑

m∈Z

g(tm − tℓ)
︸ ︷︷ ︸

[G]m,ℓ

(δk+1,m − δk,m)
︸ ︷︷ ︸

[P]k,m

Using the matrices and vectors introduced above gives

q = PGc,

or, equivalently
P−1q = Gc, (6)

where

[P−1]ℓ,k =

{
−1 if ℓ ≤ k

0 if ℓ > k.
(7)

In the second step an approximation for g(t) introduced in (3) is given by:

g(t) ≃ α

N∑

n=−N

ejn Ω

N
t = α

sin
(

(2N+1)
2N

Ωt
)

sin
(

Ωt
2N

) with α =
Ω

(2N + 1)π
. (8)

When N tends to infinity this function converges to g(t). At the same time, the approxi-
mating function is both Ω-bandlimited and periodic with a period 2Nπ/Ω.

Substituting (8) into (5) gives the approximation

∫ t

−∞

x(u)du ≃
∑

ℓ∈Z

cℓα
N∑

n=−N

ejn Ω

N
(t−tℓ)

=

N∑

n=−N

ejn Ω

N
t α

∑

ℓ∈Z

cℓe
−jn Ω

N
tℓ

︸ ︷︷ ︸

[d]n

. (9)
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Defining the elements of the matrix S by

[S]n,ℓ = e−jn Ω

N
tℓ , (10)

the vector d introduced in (9) can be expressed as

d = αSc. (11)

Taking the derivative of both sides of (9) gives the approximation

x(t) ≃ j
Ω

N

N∑

n=−N

nejn Ω

N
t[d]n (12)

for x(t). Note that the periodic approximation is a Fourier-series expansion with a finite
number of coefficients. This suggests the use of the Fast Fourier Transform (FFT) as dis-
cussed in Section 2.6.

Based on equations (6) and (8), and given the definition of the vector d introduced in
(9) we have

[P−1q]k =
∑

ℓ∈Z

[G]k,ℓ[c]ℓ =
∑

ℓ∈Z

g(tk − tℓ)cℓ

≃
∑

ℓ∈Z

cℓα

N∑

n=−N

ejn Ω

N
(tk−tℓ)

=
N∑

n=−N

ejn Ω

N
tkα

∑

ℓ∈Z

cℓe
−jn Ω

N
tℓ =

N∑

n=−N

ejn Ω

N
tk [d]n

In matrix form
P−1q ≃ SHd, (13)

where S was defined in (10) and superscript H denotes conjugate transposition. Introducing
the diagonal matrix (see [12])

D = diag(tk+1 − tk), (14)

and multiplying both sides of (13) by αSD gives αSDP−1q = αSDSHd. As a result, with

T = αSDSH = α
∑

k∈Z

(tk+1 − tk)e
j(m−n) Ω

N
tk (15)

the set of linear equations
αSDP−1q = Td (16)

needs to be solved for d. Note that P−1 and α are given (see (7) and (8)), and S, D, T and
q are determined by the TCs. Note also that T is a Hermitian Toeplitz matrix.

Therefore, instead of the exact reconstruction in (3) with corresponding linear equations
Gc = q represented by a not well structured matrix G (see (4)), we now have an approximate
reconstruction in (12) together with the linear equations in (16) represented by a structured
matrix T. The “exact reconstruction” using infinite-dimensional vectors and matrices is
most often intractable, and finite-dimensional matrices and vectors are used in practice.
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2 The Proposed Real-Time TDM

Using the original reconstruction method of [11], also outlined in Section 1, a multiresolu-
tion algorithm is presented in [13] to stitch finite-dimensional approximations together by
using appropriate window functions. We present below an alternative solution based on the
Toeplitz formalism discussed in Section 1.1.

2.1 Finite Dimensional Covering

Our simulation experience shows that using the finite range [tk, tℓ] with k < ℓ, i.e. using the
finite set of TCs {tk, tk+1, . . . , tℓ}, an accurate approximation can be achieved in a reduced
range [tk+M , tℓ−M ] both for the original [11] and the Toeplitz-based reconstruction [12]. Here
M ∈ Z typically ranges between 2 and 5. In particular, we define the finite-dimensional
versions of the vectors and matrices introduced in Section 1.1 as:

[qk,ℓ]i−k+1 = (−1)i(2κδ − b(ti+1 − ti))
Dk,ℓ = diag(ti+1 − ti)

[Sk,ℓ,N ]
n+N+1,i−k+1 = e−jn Ω

N
ti

[
P−1

k,ℓ

]

r−k+1,i−k+1
=

{
−1 if r ≤ i

0 if r > i

[Tk,ℓ,N ]
m+N+1,n+N+1 = α

ℓ∑

i=k

(ti+1 − ti)e
j(m−n) Ω

N
ti

(17)

for all integers i, r = k, . . . , ℓ and m, n = −N, . . . , N . Then, the correspondence of the linear
equations in (16) becomes

αSk,ℓ,NDk,ℓP
−1
k,ℓqk,ℓ = Tk,ℓ,Ndk,ℓ,N

for the unknown (finite-dimensional) vector dk,ℓ,N . Since matrix Tk,ℓ,N of size (2N + 1) ×
(2N + 1) can easily be ill-conditioned, a familiar (minimum-norm) solution is given by

dk,ℓ,N = αT+
k,ℓ,NSk,ℓ,NDk,ℓP

−1
k,ℓqk,ℓ (18)

where T+
k,ℓ,N denotes the pseudo inverse of Tk,ℓ,N [1]. Using the solution dk,ℓ,N in (12) gives

xk,ℓ,N(t) = j
Ω

N

N∑

n=−N

nejn Ω

N
t[dk,ℓ,N ]n (19)

as a Fourier-series approximation for x(t) for t ∈ [tk+M , tℓ−M ] using finite number of coeffi-
cients.
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2.2 A Multiresolution Algorithm for Signal Recovery

Consider the set of window functions, w(t), forming a partition of unity

∑

n∈Z

w(t − nT0) = 1 (20)

with some known period T0. Several window functions of this type are available in the
literature. For example, partition of unity is a requirement for so called admissible scaling

functions in Wavelet Theory (see, e.g., [16, 3]). To simplify the analysis we assume that
w(t) is even and has a compact support, i.e., w(t) = w(−t) and for some known Tw we have
w(t) = 0 if t 6∈ [−Tw, Tw]. Here Tw is determined by T0 depending on the (known) shape of
w(t) as illustrated Figure 2.

w(t− T0)

t

1

Tw−Tw

w(t)

t

−T0 T0

1
w(t + T0) + w(t) + w(t− T0) w(t)

w(t + T0)

Figure 2: Illustration for the window function and the partition of unity.

Now, from the obvious relationship (see also (20))

x(t) = x(t)
∑

n∈Z

w(t − nT0) =
∑

n∈Z

w(t − nT0)x(t) (21)

we can see (see also Figure 2) that

w(t − nT0)x(t) = 0 for t 6∈ [nT0 − Tw, nT0 + Tw]

holds.
Therefore, if a good approximation of x(t) can be achieved for t ∈ [nT0 − Tw, nT0 + Tw],

then no problem will arise if the approximation is not good for t 6∈ [nT0 − Tw, nT0 + Tw].
The approximation discussed in Section 2.1 can be matched to the window functions as
illustrated in Figure 3. As shown, since the times nT0 − Tw are known, kn ∈ Z and ℓn ∈ Z

are defined as:

kn := {tkn
≤ nT0 − Tw and tkn+1 > nT0 − Tw}

ℓn := {tℓn−1 ≤ nT0 + Tw and tℓn
> nT0 + Tw}.

(22)
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nT0 − Tw

w(t− nT0)

nT0

tkn
tkn−M

t

t

tkn+1

nT0 + Tw

tℓn+Mtℓn
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Figure 3: Illustration for matching the TCs to w(t− nT0).

Comparing this results with the formulation of Section 2.1 we have that k = kn −M and
ℓ = ℓn + M . Therefore, with the notation of (19) the approximating signal corresponding to
w(t − nT0) is given by:

xkn−M,ℓn+M,N(t) = j
Ω

N

N∑

m=−N

mejm Ω

N
t[dkn−M,ℓn+M,N ]m. (23)

Substituting this relationship into (21) gives:

∑

n∈Z

w(t − nT0)j
Ω

N

N∑

m=−N

mejm Ω

N
t[dkn−M,ℓn+M,N ]m.

Introducing
d(M, N)m,n = m[dkn−M,ℓn+M,N ]m (24)

gives the overall approximation for x(t):

xM,N(t) =
∑

n∈Z

N∑

m=−N

d(M, N)m,nw(t − nT0)e
jm Ω

N
t (25)

2.3 Example

With c = 0.3 and Ω = 2π×40 krad/s, the input signal was created as a sum 20 sinusoids with
amplitudes, frequencies, and phases randomly selected within [−c, c], [0, Ω/2π], and [0, 2π],
respectively. In numerical simulations for the TEM in Figure 1, 123 TCs together with the
signals shown were determined with high accuracy. The input signal x(t), the integrator
output y(t), and the overall TEM output z(t) are shown in Figure 4 ranging t from zero to
875.5 µs.
Using the settings

T0 = Tw =
2π

Ω
,

the window functions were selected as:

w(t) =

{

cos2
(

πt
2Tw

)

if t ∈ [−Tw, Tw]

0 if t 6∈ [−Tw, Tw]
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Figure 5: Normalized w(t) and its Fourier transform W (ω).

Therefore the Fourier transform of w(t) is given by

W (ω) =
π2 sin(ωTw)

π2ω − T 2
wω3

Figure 5 shows w(t) and W (ω) in scaled form. Two time-shifted window functions, w(t −
10T0) and w(t − 22T0), are also shown in Figure 6 in dashed gray line.

With (see Figure 3) M = 5 the proposed reconstruction procedure was implemented.
Using the periodic functions in (23) simulation results are shown in Figure 6 for N = 8. It
can be seen that x26,44,8(t) and x68,86,8(t) give good approximations for t ∈ [nT0−Tw, nT0+Tw],
but outside this range the periodic approximations are poor. However, this is not a problem
since w(t − nT0) = 0 hence w(t − nT0)xkn−M,ℓn+M,N(t) = 0 for t 6∈ [nT0 − Tw, nT0 + Tw].
In the figure, En denotes the root-mean-square (RMS) value of the error functions defined
as en(t) = xkn−M,ℓn+M,N(t) − x(t) and evaluated over the support of w(t − nT0) = 0, t ∈
[nT0 − Tw, nT0 + Tw].

The quality of the overall reconstruction in (25) is quantified by the error function

eM,N(t) = xM,N (t) − x(t)

for t ∈ [Tmin, Tmax]. Here Tmax and Tmin are appropriate simulation-dependent bounds. The
RMS value of eM,N(t) in [dB] is defined by:

EM,N = 10 lg
(

∫ Tmax

Tmin
e2

M,N(t)dt

Tmax − Tmin

)
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Figure 6: Approximating periodic functions given by (23) with N = 8.
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Tmax = 800 µs.
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and Tmax = 800 µs.

Figure 7 shows e5,8(t) and E5,8 corresponding to the case N = 8, i.e., the case when the
approximations in Figure 6 were obtained. The RMS error shows good agreement with
those shown in Figure 6. Figure 8 shows e5,10(t) and E5,10 corresponding to the case N = 10.
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Thus, increasing N , i.e., generating a better approximation for g(t) in (8) increases the
accuracy. However, the conditioning of the system matrices gets worse by increasing N
[12]. The designer has a number of parameters to tune including the window width Tw, the
window type, N , and M . Generally, increasing Tw requires larger value for N .

2.4 Postfiltering

The bandwidth of xM,N(t) certainly exceeds Ω. In particular, let Ωw be such that W (ω) ≃ 0
for |ω| > Ωw. For example, with parameters of Section 2.3 using Figure 5, Ωw = 3Ω appears
to be a safe choice. Since the bandwidth of xkn−M,ℓn+M,N(t) is Ω (see (23)), the bandwidth
of the product xkn−M,ℓn+M,N(t)w(t − nT0), and thus that of xM,N(t) is Ω + Ωw. Using
broader w(t) in the time domain narrows W (ω) in the frequency domain, hence decreases
Ωu. However, with broader w(t) more TCs are covered by (nT0 − Tw, nT0 + Tw) which
generally needs larger N . The enlarged size of the Toeplitz matrices Tkn−M,ℓ+M,N increases
the computational load for calculating the pseudo inverses T+

kn−M,ℓ+M,N in (18).
By appropriately choosing w(t), Ωw can be decreased for fixed Tw hence T0. For example,

if w(t) is chosen as that in Figure 5, then both w(t) and its derivative are continuous for all
t ∈ R. Then, as shown in Figure 5, a good enough frequency localization for W (ω) can be
achieved.

Passing xM,N(t) through a lowpass filter with cutoff-frequency Ω restores the original
bandwidth of the input signal. If digital signal processing is required on the reconstructed
signal, the samples xM,N(nTs), Ts ≥ π/(Ω + Ωw), can be processed by a discrete-time LPF
with (digital) cutoff frequency π/(1 + Ωw/Ω). Since the reconstruction error spreads over
the range ω ∈ (−Ωw −Ω, Ωw +Ω), lowpass filtering in either analog or discrete-time domain
further improves the overall accuracy [13].

2.5 Pseudo-Inverse Recursion

For a real-time TDM, the pseudo inversions T+
k,ℓ,N is a critical factor in terms of both

computational complexity and accuracy. As in [13], instead of calculating T+
kn−M,ℓn+M,N

individually for each n, recursive solutions can be developed taking advantage of the fact
that Tkn−M,ℓn+M,N and Tkn+1−M,ℓn+1+M,N have a number of common elements. One possible
solution is based on the general result in [1] (page 50, Collorary 3.3.1):

(
A + uvH

)+
= A+ −

1

β
A+uvHA+

where β = 1 + vHA+u 6= 0
(26)

Thus, if an arbitrary matrix A is modified by a rank-one matrix, uvH , then the pseudo
inverse is also modified by a rank-one matrix, (A+u)(vHA+)/β.

Any matrix can be decomposed as a sum of rank-one matrices in several ways. For our
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Toeplitz matrices

[Tkn−M,ℓn+M,N ]
m+N+1,n+N+1 = α

ℓn+M∑

i=kn−M

(ti+1 − ti)e
j(m−r) Ω

N
ti

with m, r = −N. . . . , N a decomposition as a sum of rank-one Hermitian matrices is possible
after defining

[ui]r+N+1 =
√

α(ti+1 − ti)e
−jr Ω

N
ti

with r = −N, . . . , N and i = kn − M, . . . , ℓn + M as:

Tkn−M,ℓn+M,N =

ℓn+M∑

i=kn−M

uiu
H
i . (27)

Therefore for the “next” n (replacing n by n + 1):

Tkn+1−M,ℓn+1+M,N =

ℓn+1+M
∑

i=kn+1−M

uiu
H
i . (28)

Since kn+1 > kn and ℓn+1 > ℓn, combining (27) and (28) gives:

Tkn+1−M,ℓn+1+M,N = Tkn−M,ℓn+M,N +

ℓn+1+M
∑

i=ℓn+M+1

uiu
H
i −

kn+1−M−1
∑

i=kn−M

uiu
H
i .

Whenever a rank-one matrix uiu
H
i is added to or subtracted from Tkn−M,ℓn+M,N , the re-

sult in (26) can be used recursively for calculating T+
kn+1−M,ℓn+1+M,N in terms of T+

kn−M,ℓn+M,N .

If for n = 0 some initial pseudo inverse T+
k0−M,ℓ0+M,N is given, then no further pseudo inver-

sion is needed in the recursion for n > 0. Note however that, not even this initial pseudo
inversion is needed if a short initial “transient” type of error can be tolerated in the over-
all reconstruction. Since in each recursion step new rank-one matrices are added and old
rank-one matrices are subtracted, the “effect” of any initial value, say

Tk0−M,ℓ0+M,N = T+
k0−M,ℓ0+M,N = I

disappears after a finite number of steps, denoted by n̂, where I stands for an identity matrix
of dimensions (2N +1)× (2N +1). Then, for n ≥ n̂ the recursion for Tkn+1−M,ℓn+1+M,N , and
thereby its pseudo inverse T+

kn+1−M,ℓn+1+M,N becomes accurate. This method was confirmed
by simulations. After the disappearance of the initial errors the same error function was
obtained as that shown in Figure 7 for N = 8 We note that for large N the method exhibits
sensitivity to the order of the consecutive subtractions and additions of uiu

H
i .
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2.6 Reconstruction by Using FFT

If further evaluation using digital signal processing is needed on the reconstructed signal,
it has to be sampled uniformly. We show that under mild conditions the uniformly-taken
samples can be calculated efficiently via FFT. Denoting the sampling period by Ts, the
reconstruction in (25) becomes:

xM,N(kTs) =
∑

n∈Z

w(kTs − nT0)D(M, N)k,n

where:

D(M, N)k,n =
N∑

m=−N

d(M, N)m,ne
jm Ω

N
kTs. (29)

Denoting the Nyquist period of x(t) by T (Ω = π/T ) and with appropriate positive integers
Nw, N0, and Ns assuming

Tw = NwTs, T0 = N0Ts and T = NsTs (30)

we have:
xM,N(kTs) =

∑

n∈Z

w(kTs − nN0Ts)D(M, N)k,n (31)

Since w(t) 6= 0 holds only for −Tw ≤ t ≤ Tw, w(kTs − nN0Ts) 6= 0 only when −Tw ≤
kTs − nN0Ts ≤ Tw or equivalently (see (30)) when Nw + k ≤ nN0 ≤ −Nw + k holds.
Therefore, (31) becomes:

xM,N(kTs) =

⌊k+Nw
N0

⌋
∑

n=⌈k−Nw
N0

⌉

w(kTs − nN0Ts)D(M, N)k,n (32)

Rewriting D(M, N)k,n in (29) gives:

D(M, N)k,n = e−jΩkTs

2N∑

ℓ=0

d(M, N)ℓ−N,ne
jℓ Ω

N
kTs.

Using (30) and the familiar notation

WK = ej 2π
K

gives:

D(M, N)k,n = W−k
2Ns

2N∑

ℓ=0

d(M, N)ℓ−N,nW ℓk
2NNs
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Since the bandwidth of the reconstructed signal is greater than Ω (see Section 2.4) Ts < T
certainly holds. Then, however, Ns > 1, and thereby 2NNs > 2N + 1 also holds. Therefore,
with the zero-padded sequence

h(M, N)ℓ,n =

{
d(M, N)ℓ−N,n if ℓ ∈ [0, 2N ]

0 if ℓ ∈ (2N, 2NNs − 1]
(33)

we have

D(M, N)k,n = W−k
2Ns

2NNs−1∑

ℓ=0

h(M, N)ℓ,nW ℓk
2NNs

. (34)

The summation in (34) can directly be calculated by using FFT.

3 Conclusions and Future Work

We summarize some of the potentials of the proposed method.

• Since apart from the partition-of-unity requirement no constrains are imposed on the
window functions w(t), several scaling functions used in the theory of Wavelets, e.g. [3],
can be tested and compared in terms of accuracy, computational complexity, and in-
sensitivity to finite-precision arithmetic. Our immediate goal is to consider orthogonal
scaling functions.

• Note that the reconstruction in (25) is essentially a Gabor-system representation of
x(t), see e.g. [6, 3]. Our goal is to investigate Gaussian windows when Gabor systems
become Gabor frames. Although Gaussian windows are not compactly supported, they
might have other advantages.

• The key formula in (26) for pseudo-inverse recursion does not take advantage of the fact
that we are dealing Hermitian Toeplitz matrices. Our goal is to simplify the recursion
in Section 2.5 by taking this property into account.
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