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Abstract

In system identification both the input and the output of a system are available to
an observer and an algorithm is sought to identify parameters of a hypothesized
model of that system. Here we present a novel formal methodology for identifying
dendritic processing in a neural circuit consisting of a linear dendritic processing
filter in cascade with a spiking neuron model. The input to the circuit is an analog
signal that belongs to the space of bandlimited functions. The output is a time
sequence associated with the spike train. We derive an algorithm for identification
of the dendritic processing filter and reconstruct its kernel with arbitrary precision.

1 Introduction

The nature of encoding and processing of sensory information in the visual, auditory and olfactory
systems has been extensively investigated in the systems neuroscience literature. Many phenomeno-
logical [1, 2, 3] as well as mechanistic [4, 5, 6] models have been proposed to characterize and
clarify the representation of sensory information on the level of single neurons.

Here we investigate a class of phenomenological neural circuit models in which the time-domain
linear processing takes place in the dendritic tree and the resulting aggregate dendritic current is en-
coded in the spike domain by a spiking neuron. In block diagram form, these neural circuit models
are of the [Filter]-[Spiking Neuron] type and as such represent a fundamental departure from the
standard Linear-Nonlinear-Poisson (LNP) model that has been used to characterize neurons in many
sensory systems, including vision [3, 7, 8], audition [2, 9] and olfaction [1, 10]. While the LNP
model also includes a linear processing stage, it describes spike generation using an inhomogeneous
Poisson process. In contrast, the [Filter]-[Spiking Neuron] model incorporates the temporal dynam-
ics of spike generation and allows one to consider more biologically-plausible spike generators.

We perform identification of dendritic processing in the [Filter]-[Spiking Neuron] model assuming
that input signals belong to the space of bandlimited functions, a class of functions that closely
model natural stimuli in sensory systems. Under this assumption, we show that the identification of
dendritic processing in the above neural circuit becomes mathematically tractable. Using simulated
data, we demonstrate that under certain conditions it is possible to identify the impulse response of
the dendritic processing filter with arbitrary precision. Furthermore, we show that the identification
results fundamentally depend on the bandwidth of test stimuli.

The paper is organized as follows. The phenomenological neural circuit model and the identification
problem are formally stated in section 2. The Neural Identification Machine and its realization as an
algorithm for identifying dendritic processing is extensively discussed in section 3. Performance of
the identification algorithm is exemplified in section 4. Finally, section 5 concludes our work.

∗The names of the authors are alphabetically ordered. Advances in Neural Information Processing Systems
23, J. Lafferty and C. K. I. Williams and J. Shawe-Taylor and R.S. Zemel and A. Culotta, pp. 1261–1269, 2010.
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2 Problem Statement

In what follows we assume that the dendritic processing is linear [11] and any nonlinear effects arise
as a result of the spike generation mechanism [12]. We use linear BIBO-stable filters (not necessarily
causal) to describe the computation performed by the dendritic tree. Furthermore, a spiking neuron
model (as opposed to a rate model) is used to model the generation of action potentials or spikes.

We investigate a general neural circuit comprised of a filter in cascade with a spiking neuron model
(Fig. 1(a)). This circuit is an instance of a Time Encoding Machine (TEM), a nonlinear asyn-
chronous circuit that encodes analog signals in the time domain [13, 14]. Examples of spiking
neuron models considered in this paper include the ideal IAF neuron, the leaky IAF neuron and
the threshold-and-feedback (TAF) neuron [15]. However, the methodology developed below can be
extended to many other spiking neuron models as well.

We break down the full identification of this circuit into two problems: (i) identification of linear op-
erations in the dendritic tree and (ii) identification of spike generator parameters. First, we consider
problem (i) and assume that parameters of the spike generator can be obtained through biophysical
experiments. Then we show how to address (ii) by exploring the space of input signals. We consider
a specific example of a neural circuit in Fig. 1(a) and carry out a full identification of that circuit.

u(t)

Dendritic Processing Spike Generation

Filter
SpikingLinear v(t)
Neuron (tk)k∈Z

(a)

+
u(t)

b

δ
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voltage reset to 0

(tk)k∈Z

Spike Generation: Ideal IAF Neuron

1
C

∫
v(t)

(b)

Figure 1: Problem setup. (a) The dendritic processing is described by a linear filter and spikes are produced
by a (nonlinear) spiking neuron model. (b) An example of a neural circuit in (a) is a linear filter in cascade with
the ideal IAF neuron. An input signal u is first passed through a filter with an impulse response h. The output
of the filter v(t) = (u ∗ h)(t), t ∈ R, is then encoded into a time sequence (tk)k∈Z by the ideal IAF neuron.

3 Neuron Identification Machines

A Neuron Identification Machine (NIM) is the realization of an algorithm for the identification of
the dendritic processing filter in cascade with a spiking neuron model. First, we introduce several
definitions needed to formally address the problem of identifying dendritic processing. We then con-
sider the [Filter]-[Ideal IAF] neural circuit. We derive an algorithm for a perfect identification of the
impulse response of the filter and provide conditions for the identification with arbitrary precision.
Finally, we extend our results to the [Filter]-[Leaky IAF] and [Filter]-[TAF] neural circuits.

3.1 Preliminaries

We model signals u = u(t), t ∈ R, at the input to a neural circuit as elements of the Paley-Wiener
space Ξ =

{
u ∈ L2(R)

∣∣ supp (Fu) ⊆ [−Ω,Ω]
}

, i.e., as functions of finite energy having a finite
spectral support (F denotes the Fourier transform). Furthermore, we assume that the dendritic
processing filters h = h(t), t ∈ R, are linear, BIBO-stable and have a finite temporal support, i.e.,
they belong to the space H =

{
h ∈ L1(R)

∣∣ supp(h) ⊆ [T1, T2]
}

.
Definition 1. A signal u ∈ Ξ at the input to a neural circuit together with the resulting output
T = (tk)k∈Z of that circuit is called an input/output (I/O) pair and is denoted by (u,T).
Definition 2. Two neural circuits are said to be Ξ-I/O-equivalent if their respective I/O pairs are
identical for all u ∈ Ξ.
Definition 3. Let P : H → Ξ with (Ph)(t) = (h ∗ g)(t), where (h ∗ g) denotes the convolution of
h with the sinc kernel g , sin(Ωt)/(πt), t ∈ R. We say that Ph is the projection of h onto Ξ.
Definition 4. Signals {ui}Ni=1 are said to be linearly independent if there do not exist real numbers
{αi}Ni=1, not all zero, and real numbers {βi}Ni=1 such that

∑N
i=1 αiu

i(t+ βi) = 0.
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3.2 NIM for the [Filter]-[Ideal IAF] Neural Circuit

An example of a model circuit in Fig. 1(a) is the [Filter]-[Ideal IAF] circuit shown in Fig. 1(b).
In this circuit, an input signal u ∈ Ξ is passed through a filter with an impulse response (kernel)
h ∈ H and then encoded by an ideal IAF neuron with a bias b ∈ R+, a capacitance C ∈ R+ and a
threshold δ ∈ R+. The output of the circuit is a sequence of spike times (tk)k∈Z that is available to
an observer. This neural circuit is an instance of a TEM and its operation can be described by a set
of equations (formally known as the t-transform [13]):∫ tk+1

tk

(u ∗ h)(s)ds = qk, k ∈ Z, (1)

where qk , Cδ−b(tk+1−tk). Intuitively, at every spike time tk+1 the ideal IAF neuron is providing
a measurement qk of the signal v(t) = (u ∗ h)(t) on the interval t ∈ [tk, tk+1].
Proposition 1. The left-hand side of the t-transform in (1) can be written as a bounded linear
functional Lk : Ξ → R with Lk(Ph) =

〈
φk,Ph

〉
, where φk(t) =

(
1[tk, tk+1] ∗ ũ

)
(t) and ũ =

u(−t), t ∈ R, denotes the involution of u.

Proof: Since (u∗h) ∈ Ξ, we have (u∗h)(t) = (u∗h∗g)(t), t ∈ R, and therefore
∫ tk+1

tk
(u∗h)(s)ds =∫ tk+1

tk
(u∗Ph)(s)ds. Now since Ph is bounded, the expression on the right-hand side of the equality

is a bounded linear functional Lk : Ξ→ R with

Lk(Ph) =
∫ tk+1

tk

(u ∗ Ph)(s)ds =
〈
φk,Ph

〉
, (2)

where φk ∈ Ξ and the last equality follows from the Riesz representation theorem [16]. To find φk,
we use the fact that Ξ is a Reproducing Kernel Hilbert Space (RKHS) [17] with a kernel K(s, t) =
g(t − s). By the reproducing property of the kernel [17], we have φk(t) =

〈
φk, Kt

〉
= Lk(Kt).

Letting ũ = u(−t) denote the involution of u and using (2), we obtain

φk(t) =
〈
1[tk, tk+1] ∗ ũ, Kt

〉
=
(
1[tk, tk+1] ∗ ũ

)
(t).

�

Proposition 1 effectively states that the measurements (qk)k∈Z of v(t) = (u ∗ h)(t) can be
also interpreted as the measurements of (Ph)(t). A natural question then is how to identify Ph
from (qk)k∈Z. To that end, we note that an observer can typically record both the input u = u(t),
t ∈ R and the output T = (tk)k∈Z of a neural circuit. Since (qk)k∈Z can be evaluated from (tk)k∈Z
using the definition of qk in (1), the problem is reduced to identifying Ph from an I/O pair (u,T).
Theorem 1. Let u be bounded with supp(Fu) = [−Ω,Ω], h ∈ H and b/(Cδ) > Ω/π. Then given
an I/O pair (u,T) of the [Filter]-[Ideal IAF] neural circuit, Ph can be perfectly identified as

(Ph)(t) =
∑
k∈Z

ckψk(t),

where ψk(t) = g(t − tk), t ∈ R. Furthermore, c = G+q with G+ denoting the Moore-Penrose
pseudoinverse of G, [G]lk =

∫ tl+1

tl
u(s− tk)ds for all k, l ∈ Z, and [q]l = Cδ − b(tl+1 − tl).

Proof: By appropriately bounding the input signal u, the spike density (the average number of spikes
over arbitrarily long time intervals) of an ideal IAF neuron is given by D = b/(Cδ) [14]. Therefore,
for D > Ω/π the set of the representation functions (ψk)k∈Z, ψk(t) = g(t − tk), is a frame in Ξ
[18] and (Ph)(t) =

∑
k∈Z ckψk(t). To find the coefficients ck we note from (2) that

ql =
〈
φl,Ph

〉
=
∑
k∈Z

ck
〈
φl, ψk

〉
=
∑
k∈Z

[G]lkck, (3)

where [G]lk =
〈
φl, ψk

〉
=
〈
1[tl, tl+1] ∗ ũ, g( · − tk)

〉
=
∫ tl+1

tl
u(s− tk)ds. Writing (3) in matrix

form, we obtain q = Gc with [q]l = ql and [c]k = ck. Finally, the coefficients ck, k ∈ Z, can be
computed as c = G+q. �
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Remark 1. The condition b/(Cδ) > Ω/π in Theorem 1 is a Nyquist-type rate condition. Thus,
perfect identification of the projection of h onto Ξ can be achieved for a finite average spike rate.
Remark 2. Ideally, we would like to identify the kernel h ∈ H of the filter in cascade with the ideal
IAF neuron. Note that unlike h, the projection Ph belongs to the space L2(R), i.e., in general Ph
is not BIBO-stable and does not have a finite temporal support. Nevertheless, it is easy to show that
(Ph)(t) approximates h(t) arbitrarily closely on t ∈ [T1, T2], provided that the bandwidth Ω of u
is sufficiently large.
Remark 3. If the impulse response h(t) = δ(t), i.e., if there is no processing on the (arbitrary)
input signal u(t), then ql =

∫ tl+1

tl
(u ∗ h)(s)ds =

∫ tl+1

tl
u(s)ds, l ∈ Z. Furthermore,∫ tl+1

tl

(u ∗ Ph)(s)ds =
∫ tl+1

tl

(u ∗ h)(s)ds =
∫ tl+1

tl

u(s)ds =
∫ tl+1

tl

(u ∗ g)(s)ds, l ∈ Z.

The above holds if and only if (Ph)(t) = g(t), t ∈ R. In other words, if h(t) = δ(t), then we
identify Pδ(t) = sin(Ωt)/(πt), the projection of δ(t) onto Ξ.

Corollary 1. Let u be bounded with supp(Fu) = [−Ω,Ω], h ∈ H and b
Cδ >

Ω
π . Furthermore, let

W = (τ1, τ2) so that (τ2 − τ1) > (T2 − T1) and let τ = (τ1 + τ2)/2, T = (T1 + T2)/2. Then
given an I/O pair (u,T) of the [Filter]-[Ideal IAF] neural circuit, (Ph)(t) can be approximated
arbitrarily closely on t ∈ [T1, T2] by

ĥ(t) =
∑

k: tk∈W
ckψk(t),

where ψk(t) = g(t − (tk − τ + T )), c = G+q, [G]lk =
∫ tl+1

tl
u(s − (tk − τ + T ))ds and

[q]l = Cδ − b(tl+1 − tl) for all k, l ∈ Z, provided that |τ1| and |τ2| are sufficiently large.

Proof: Through a change of coordinates t → t′ = (t − τ + T ) illustrated in Fig. 2, we obtain
W ′ = [τ1 − τ + T, τ2 − τ + T ] ⊃ [T1, T2] and the set of spike times (tk − τ + T )k: tk∈W . Note
that W ′ → R as (τ2 − τ1) → ∞. The rest of the proof follows from Theorem 1 and the fact that
limt→±∞ g(t) = 0. �

From Corollary 1 we see that if the [Filter]-[Ideal IAF] neural circuit is producing spikes
with a spike density above the Nyquist rate, then we can use a set of spike times (tk)k: tk∈W from a
single temporal window W to identify (Ph)(t) to an arbitrary precision on [T1, T2].

This result is not surprising. Since the spike density is above the Nyquist rate, we could have also
used a canonical time decoding machine (TDM) [13] to first perfectly recover the filter output v(t)
and then employ one of the widely available LTI system techniques to estimate (Ph)(t).

However, the problem becomes much more difficult if the spike density is below the Nyquist rate.

0

t

t

tT2

0 T2

0 T2

(Ph)(t)

h(t)

h(t)
(Ph)(t)

(a)

u(t)

0

ĥ(t′)

τ0

0

(tk)k∈Z

t

t

T2

t′τ1 − τ + T τ2 − τ + T

τ1 τ2

T2

T2

W ′

W

(b)

Figure 2: Change of coordinates in Corollary 1. (a) Top: example of a causal impulse response h(t) with
supp(h) = [T1, T2], T1 = 0. Middle: projection Ph of h onto some Ξ. Note that Ph is not causal and
supp(Ph) = R. Bottom: h(t) and (Ph)(t) are plotted on the same set of axes. (b) Top: an input signal
u(t) with supp(Fu) = [−Ω,Ω]. Middle: only red spikes from a temporal window W = (τ1, τ2) are used to
construct ĥ(t). Bottom: Ph is approximated by ĥ(t) on t ∈ [T1, T2] using spike times (tk − τ + T )k:tk∈W .
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Theorem 2. (The Neuron Identification Machine) Let {ui | supp(Fui) = [−Ω,Ω] }Ni=1 be a col-
lection of N linearly independent and bounded stimuli at the input to a [Filter]-[Ideal IAF] neural
circuit with a dendritic processing filter h ∈ H . Furthermore, let Ti = (tik)k∈Z denote the output of
the neural circuit in response to the bounded input signal ui. If

∑N
j=1

b
Cδ >

Ω
π , then (Ph)(t) can

be identified perfectly from the collection of I/O pairs {(ui,Ti)}Ni=1.

Proof: Consider the SIMO TEM [14] depicted in Fig. 3(a). h(t) is the input to a population of N
[Filter]-[Ideal IAF] neural circuits. The spikes (tik)k∈Z at the output of each neural circuit represent
distinct measurements qik =

〈
φik, Ph

〉
of (Ph)(t). Thus we can think of the qik’s as projections

of Ph onto (φ1
1, φ

1
2, . . . , φ

1
k, . . . , φ

N
1 , φ

N
2 , . . . , φ

N
k , . . . ). Since the filters are linearly independent

[14], it follows that, if {ui}Ni=1 are appropriately bounded and
∑N
j=1

b
Cδ >

Ω
π or equivalently if the

number of neurons N > ΩCδ
πb = Ω

πD , the set of functions { (ψjk)k∈Z }Nj=1 with ψjk(t) = g(t− tjk), is
a frame for Ξ [14], [18]. Hence

(Ph)(t) =
N∑
j=1

∑
k∈Z

cjkψ
j
k(t). (4)

To find the coefficients ck, we take the inner product of (4) with φ1
l (t), φ

2
l (t), ..., φ

N
l (t):〈

φil, Ph
〉

=
∑
k∈Z

c1k
〈
φil, ψ

1
k

〉
+
∑
k∈Z

c2k
〈
φil, ψ

2
k

〉
+ · · · +

∑
k∈Z

cNk
〈
φil, ψ

N
k

〉 ≡ qil ,

for i = 1, . . . , N, l ∈ Z. Letting [Gij ]lk =
〈
φil, ψ

j
k

〉
, we obtain

qil =
∑
k∈Z

[
Gi1

]
lk
c1k +

∑
k∈Z

[
Gi2

]
lk
c2k + · · · +

∑
k∈Z

[
GiN

]
lk
cNk , (5)

for i = 1, . . . , N, l ∈ Z. Writing (5) in matrix form, we have q = Gc, where q = [q1,q2, . . . ,qN ]T

with [qi]l = Cδ − b(til+1 − til), [Gij ]lk =
∫ til+1

ti
l

ui(s − tjk)ds and c = [c1, c2, . . . , cN ]T . Finally,

to find the coefficients ck, k ∈ Z, we compute c = G+q. �

Corollary 2. Let {ui}Ni=1 as before, h ∈ H and
∑N
j=1

b
Cδ >

Ω
π . Furthermore, let W = (τ1, τ2) so

that (τ2 − τ1) > (T2 − T1) and let τ = (τ1 + τ2)/2, T = (T1 + T2)/2. Then given the I/O pairs
{(ui,Ti)}Ni=1 of the [Filter]-[Ideal IAF] neural circuit, (Ph)(t) can be approximated arbitrarily
closely on t ∈ [T1, T2] by ĥ(t) =

∑N
j=1

∑
k: tj

k
∈W cjkψ

j
k(t), where ψjk(t) = g(t−(tjk−τ+T )), c =

G+q, with [Gij]lk =
∫ til+1

ti
l

ui(s−(tjk−τ+T ))ds, q = [q1,q2, . . . ,qN ]T , [qi]l = Cδ−b(til+1−til)
for all k, l ∈ Z provided that |τ1| and |τ2| are sufficiently large.

Proof: Similar to Corollary 1. �

Corollary 3. Let supp(Fu) = [−Ω,Ω], h ∈ H and let
{
W i ,

(
τ i1, τ

i
2

) }N
i=1

be a collection of
windows of fixed length (τ i2 − τ i1) > (T2 − T1), i = 1, 2, ..., N . Furthermore, let τ i = (τ i1 + τ i2)/2,
T = (T1 +T2)/2 and let (tik)k∈Z denote those spikes of the I/O pair (u,T) that belong to W i. Then
Ph can be approximated arbitrarily closely on [T1, T2] by

ĥ(t) =
N∑
j=1

∑
k: tk∈W j

cjkψ
j
k(t),

where ψjk(t) = g(t − (tjk − τ j + T )), c = G+q with [Gij]lk =
∫ til+1

ti
l

u(s − (tjk − τ j + T ))ds,

q = [q1,q2, . . . ,qN ]T , [qi]l = Cδ − b(til+1 − til) for all k, l ∈ Z, provided that the number of
non-overlapping windows N is sufficiently large.

Proof: The input signal u restricted, respectively, to the collection of intervals
{
W i ,

(
τ i1, τ

i
2

) }N
i=1

plays the same role here as the test stimuli {ui}Ni=1 in Corollary 2. See also Remark 9 in [14]. �
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Figure 3: The Neuron Identification Machine. (a) SIMO TEM interpretation of the identification problem.
(b) Block diagram of the algorithm in Theorem 2.

Remark 4. The methodology presented in Theorem 2 can easily be applied to other spiking neuron
models. For example, for the leaky IAF neuron, we have

[qi]l = Cδ − bRC
[

1− exp

(
til − til+1

RC

)]
, [Gij ]lk =

∫ til+1

ti
l

ui
(
s− tjk

)
exp

(
s− til+1

RC

)
ds.

Similarly, for a threshold-and-feedback (TAF) neuron [15] with a bias b ∈ R+, a threshold δ ∈ R+,
and a causal feedback filter with an impulse response f(t), t ∈ R, we obtain

[qi]l = δ − b+
∑
k<l

f(til − tik), [Gij ]lk = ui
(
til − tjk

)
.

3.3 Identifying Parameters of the Spiking Neuron Model

If parameters of the spiking neuron model cannot be obtained through biophysical experiments, we
can use additional input stimuli to derive a neural circuit that is Ξ-I/O-equivalent to the original
circuit. For example, consider the circuit in Fig. 1(a). Rewriting the t-transform in (1), we obtain

1
b

∫ tk+1

tk

(u ∗ h)(s)ds =
Cδ

b
− (tk+1 − tk) ⇐⇒

∫ tk+1

tk

(u ∗ h′)(s)ds = q′k,

where h′(t) = h(t)/b, t ∈ R and q′k = Cδ/b− (tk+1 − tk).

Setting u = 0, we can now compute Cδ/b = (tk+1 − tk). Next we can use the NIM described in
Section 3.2 to identify with arbitrary precision the projection Ph′ of h′ onto Ξ. Thus we identify a
[Filter]-[Ideal IAF] circuit with a filter impulse response Ph′, a bias b′ = 1, a capacitance C ′ = 1
and a threshold δ′ = Cδ/b. This neural circuit is Ξ-I/O-equivalent to the circuit in Fig. 1(b).

4 Examples

We now demonstrate the performance of the identification algorithm in Corollary 3. We model the
dendritic processing filter using a causal linear kernel h(t) = ce−αt

[
(αt)3/3!− (αt)5/5!

]
with

t ∈ [0, 0.1 s], c = 3 and α = 200. The general form of this kernel was suggested in [19] as a
plausible approximation to the temporal structure of a visual receptive field.

We use two different bandlimited signals and show that the identification results fundamentally
depend on the signal bandwidth Ω. In Fig. 4 the signal is bandlimited to Ω = 2π ·25 rad/s, whereas
in Fig. 5 it is bandlimited to Ω = 2π ·100 rad/s. Although in principle the kernel h has an infinite
bandwidth (having a finite temporal support), its effective bandwidth Ω ≈ 2π ·100 rad/s (Fig. 6(b)).
Thus in Fig. 4 we reconstruct the projection Ph of the kernel h onto Ξ with Ω = 2π ·25 rad/s,
whereas in Fig. 5 we reconstruct nearly h itself.
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RMSE between ĥ (red) and Ph (blue) is 2.04 × 10−4. The RMSE between ĥ (red) and h (dashed black) is
1.53 × 10−1. (d)-(f) Spectral estimates of u, h and v = u ∗ h. Note that supp(Fu) = [−Ω,Ω] = supp(Fv)
but supp(Fh) ⊃ [−Ω,Ω]. In other words, both u, v ∈ Ξ but h /∈ Ξ.
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Figure 5: Identifying dendritic processing of the [Filter]-[Ideal IAF] neural circuit. Ω = 2π ·100 rad/s.
(a) Signal u(t) at the input to the circuit. (b) The output of the circuit is a set of spikes at times (tk)k∈Z. The
spike density D = 40 Hz. Note that only 43 spikes from 10 temporal windows are used to construct ĥ. (c) The
RMSE between ĥ (red) and Ph (blue) is 1.13 × 10−3. The RMSE between ĥ (red) and h (dashed black) is
4.58 × 10−3. (d)-(f) Spectral estimates of u, h and v = u ∗ h. Note that supp(Fu) = [−Ω,Ω] = supp(Fv)
but supp(Fh) ⊃ [−Ω,Ω]. In other words, both u, v ∈ Ξ but h /∈ Ξ.
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Next, we evaluate the filter identification error as a function of the number of temporal windows N
and the stimulus bandwidth Ω. By increasing N , we can approximate the projection Ph of h with
arbitrary precision (Fig. 6(a)). Note that the estimate ĥ converges to Ph faster for higher average
spike rate (spike density D) of the neuron. At the same time, by increasing the stimulus bandwidth
Ω, we can approximate h itself with arbitrary precision (Fig. 6(b)).
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(b) MSE(ĥ, h) vs. the input signal bandwidth

Input signal bandwidth Ω/(2π), [Hz]

M
S
E

(ĥ
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Figure 6: The Filter Identification Error. (a) MSE(ĥ,Ph) as a function of the number of temporal windows
N . The larger the neuron spike density D, the faster the algorithm converges. The impulse response h is the
same as in Fig. 4, 5 and the input signal bandwidth is Ω = 2π ·100 rad/s. (b) MSE(ĥ, h) as a function of
the input signal bandwidth Ω. The larger the bandwidth, the better the estimate ĥ approximates h. Note that
significant improvement is seen even for Ω > 2π ·100 rad/s, which is roughly the effective bandwidth of h.

5 Conclusion

Previous work in system identification of neural circuits (see [20] and references therein) calls for
parameter identification using white noise input stimuli. The identification process for, e.g., the LNP
model entails identification of the linear filter, followed by a ‘best-of-fit’ procedure to find the non-
linearity. The performance of such an identification method has not been analytically characterized.

In our work, we presented the methodology for identifying dendritic processing in simple [Filter]-
[Spiking Neuron] models from a single input stimulus. The discussed spiking neurons include the
ideal IAF neuron, the leaky IAF neuron and the threshold-and-fire neuron. However, the methods
presented in this paper are applicable to many other spiking neuron models as well.

The algorithm of the Neuron Identification Machine is based on the natural assumption that the den-
dritic processing filter has a finite temporal support. Therefore, its action on the input stimulus can
be observed in non-overlapping temporal windows. The filter is recovered with arbitrary precision
from an input/output pair of a neural circuit, where the input is a single signal assumed to be ban-
dlimited. Remarkably, the algorithm converges for a very small number of spikes. This should be
contrasted with the reverse correlation and spike-triggered average methods [20].

Finally, the work presented here will be extended to spiking neurons with random parameters.
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