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1 ORGANIZATION OF THE SUPPLEMENTARY MATERIAL

The supplementary material presented here is organized according to the section in which they are
referenced in the main article.

2 SUPPLEMENTARY MATERIAL FOR SECTION 2

2.1 DIAGRAM OF PARALLEL ENCODING CIRCUIT

Supplementary Figure 1 shows a Single-Input Multiple-Output (SIMO) encoding diagram that consists
of M of the neural circuits in Figure 1. They simultaneously encode common stimulus u1(t).

2.2 EXAMPLE OF BSG: HODGKIN-HUXLEY NEURON

We consider a Hodgkin-Huxley neuron with standard parameters, described by the non-linear
differential equations:

C
dV

dt
= −gNam

3h(V − ENa)− gKn4(V − EK)− gL(V − EL) + I

dn

dt
= αn(V )(1− n)− βn(V )n

dm

dt
= αm(V )(1−m)− βm(V )m

dh

dt
= αh(V )(1− h)− βh(V )h

, (S1)
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Supplementary Figure 1: Single-Input Multi-Output (SIMO) encoding diagram with, in parallel, M of
the neural circuits in Figure 1 that simultaneously encode input u1(t).
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Supplementary Figure 2: Period of oscillation when Hodgkin-Huxley neuron is subject to a constant
current I.
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, (S2)

where V is the membrane potential, n,m, h are the gating variables, and I is the bias current. The latter is
assumed to be large enough to induce periodic spiking. Therefore, the Hodgkin-Huxley neuron considered
here is a periodically spiking neuron with period T (I), where T = T (I) maps the bias current I into the
period of spiking T . The function T is shown in Supplementary Figure 2. In other words, T (I) is closely
associated with the f − I curve typically seen in the literature. Without loss of generality, we will assume
for simplicity that C = 1µF/cm2. Since the Hodgkin-Huxley neuron is periodically spiking, it has a well-
defined PRC ψ(t, I) = [ψ1(t, I), ψ2(t, I), ψ3(t, I), ψ4(t, I)]

T , where ψ1(t, I), ψ2(t, I), ψ3(t, I), ψ4(t, I)
are the PRCs associated with the component states V, n,m, h, respectively. There are multiple ways of
evaluating the PRC of a periodically spiking neuron with weak coupling, among which Malkin’s method
is numerically efficient (see Lazar (2010); Izhikevich (2007)).

2.3 EXAMPLE OF SPIKES GENERATED BY THE NEURAL CIRCUIT WITH NOISE SOURCES

An example of raster plot of the output spikes generated by the two neurons subject to 50 trials of the
same stimulus is shown in Supplementary Figure 3. We used the feedforward kernels of Example 2.5 and
set the feedback kernels to be zero. Hodgkin-Huxley neurons in Supplementary Section 2.2 are used for
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BSGs with noise added as in (16). We set Bi = I and

dZi =


vidt+ σdW i

1
σdW i

2
σdW i

3
σdW i

4

 ,
where the scaling factor σ = 0.01. Since the initial conditions were the same for each trial, we see that
initially the spikes are closer to each other across trials. As time progresses, the variability in spike times
is increasing and is clearly visible.
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Supplementary Figure 3: Raster plot of spikes generated by the neural circuit of Figure 1. The same
stimulus is applied 50 times and the spike times are recorded for both neurons. The feedforward kernels
employed in Example 2.5 were used and the feedback kernels were set to zero. The Hodgkin-Huxley
neurons described in Supplementary Section 2.2 are used for the BSGs. Variability in spike timing is
clearly visible with repeated presentation of the same stimulus. Note that the repeated trials here are
only for the purpose of demonstrating variability in spike timing due to intrinsic noise sources in the
neural circuit. In the formulation of the stimulus encoding/decoding problem in Section 3, the decoding
algorithm only requires each stimulus to be presented to the neural circuit a single time.
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3 SUPPLEMENTARY MATERIAL FOR SECTION 3

3.1 CHOOSING SPIKE INTERVALS

We provide a simple example of encoding by a Hodgkin-Huxley neuron. The input to the Hodgkin-
Huxley neuron is shown in the Supplementary Figure 4 (blue curve), while the spikes generated by the
neuron in response to the input are indicated by stems. The spike intervals between red stems are deemed
valid. All other spike intervals are discarded in decoding and identification. We see that most of the
discarded spike intervals correspond to a low input current.
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Supplementary Figure 4: Example of input to a BSG and spikes generated. An Hodgkin-Huxley neuron,
described in Supplementary Section 2.2, was injected with a time-varying current (blue curve). 19 spikes
were generated in response to the injected current. We only consider the t-transform on time intervals
between spikes that are both labeled with red stems. The other inter-spike intervals are either too large
(e.g., between the 3rd and the 4th spike) and we deemed them as resting state, or they are in transition
from resting state to spiking state, i.e., they are in the ramp state (e.g., the spike interval between the 4th
and 5th spike).

3.2 EXAMPLE OF DECODING WITHOUT INTERNAL NOISE SOURCES

We show an example here under noiseless condition. This can be used as a baseline for example in
Section 3.3.2 where internal noise sources are present in the neural circuits.

We consider encoding a 0.4 [s] signal bandlimited to 10 [Hz] using neural circuits described in the
Supplementary Figure 1, with M = 4. That is, a total of 8 neurons are used for encoding. The order of
the input space is L = 4.

We choose the following feedforward and feedback kernels for neural circuit 1:

1h1111 (t) = 400

(
exp (−100t) (100t)

3

3!
− exp (−100t) (100t)

5

5!

)
,

1h1112 (t1, t2) = 16(gc(t1)gc(t2) + gs(t1)gs(t2)),

1h1121 (t) = 0,
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1h1122 (t1, t2) = 16(gc(t1)gc(t2)− gs(t1)gs(t2)),

1h2211 (t) = 20 exp
(
−200(t− 10−3)

) (200(t− 10−3))3

3!
,

1h2121 (t) = 10 exp
(
−200(t− 10−3)

) (200(t− 10−3))3

3!
,

The DSP kernels for the rest of three neural circuits uses variations of the above, e.g., different scales
(dilations), weights and signs.

We choose a Hodgkin-Huxley neuron in this example. The bias current of all the neurons is set to
10µA/cm2. We used a simple forward Euler scheme (Gabbiani and Cox, 2010) in simulations the
Hodgkin-Huxley neuron with integration time step 10−6[s]. The time step is small enough to guarantee
the stability and precision of numerical integration. We did not use higher order methods, for example,
the staggered Euler scheme (Hines, 1984) since the Euler scheme may be more directly comparable to
Euler-Maruyama scheme we employed in the stochastic case.

A stimulus is constructed using equation (1) with complex coefficients with real and imaginary parts
randomly chosen from a standard normal distribution. A total of 155 spikes are generated from all 8
neurons. Among those 93 are valid measurements. We note that since the t-transform is approximate even
under noiseless condition, introducing a smoothing parameters is still necessary. We set λ1 = λ2 = λ and
used leave-out-one cross validation to find the optimal λ. We leaved out the valid measurements from one
neuron each time in the cross validation. We determined the optimal λ = 8.25× 10−8. The reconstruction
of u1(t) is shown in Supplementary Figure 5A. Signal-to-Noise Ratio (SNR) is 25.29 [dB]. The error of
the reconstruction of u2(t1, t2) is shown in Supplementary Figure 5E. As suggested, only the part that is
sampled by the second order feedforward kernels is recovered. This can be seen from the overlaid kernel
on the reconstruction. In particular, u21(t) is recovered as û2(t, t) and the SNR of this recovery is 24.85
[dB] (see Supplementary Figure 5B). By comparison, the SNR of reconstructions without smoothing, i.e.,
λ = 0, are 19.14 [dB] for u1(t) and 8.70 [dB] for u21(t).

Note that in this example, the spaceH1
1 is of dimension 2L+1 = 9, andH1

2 is of dimension (2L+1)2 =
81. However, since the second order feedforward kernel are all symmetric, they generate a subspace of
symmetric functions when sampling u2(t1, t2). This subspace is of dimension (L + 1)(2L + 1) = 45. In
addition, each neuron can generate upto 2 ·2L+1 linearly independent sampling functions. Therefore, the
minimum number of neurons required for faithfully representing the input stimuli is (45+9)/(2·2L+1) =
4.

3.3 HODGKIN-HUXLEY NEURON WITH CONDUCTANCE NOISE

We constructed the stochastic ion channels using a model of conductance noise rather than the subunit
noise used in (30) (Goldwyn and Shea-Brown, 2011; Goldwyn et al., 2011). This stochastic Hodgkin-
Huxley system is simulated using the diffusion approximation of (Orio and Soudry, 2012). The system
of SDEs can be expressed as (for clarity, neuron index is not shown)

dY = f(Y, I)dt+B(Y)dZ(t),

where Y has 14 state variables:

Y = [V,N0, N1, N2, N3, N4,M0H0,M1H0,M2H0,M3H0,M0H1,M1H1,M2H1,M3H1]
T ,
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Supplementary Figure 5: Examples of decoding under noiseless condition. (A) Original signal u1
(blue) and its reconstruction (green). (B) Original u21(t) (blue) and its reconstruction (green). (C)
Original u2(t1, t2) = u1(t1)u1(t2). (D) Reconstruction û2(t1, t2). (E) Error between original u2(t1, t2) =
u1(t1)u1(t2) and its reconstruction (top). When evaluating the second order feedforward DSP output, u2
(in (C)) is multiplied by nonzero values of h11i2 (bottom) only in the domain between the black lines. u2
in this domain is well reconstructed, whereas it is poorly reconstructed outside of this domain.
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whereNi, i = 0, · · · , 4, denote the subunit states of potassium channels andMiHj , i = 0, · · · , 3, j = 0, 1,
denote the stochastic processes modeling the subunit states of sodium channels. The SDE is defined as:

dV =(−gNaM3H1(V − ENa)− gKN4(V − EK)− gL(V − EL) + I + v)dt+ σ1dW1

dN0 =(−4αnN0 + βnN1)dt+
1√
NK

√
4αnN0 + βnN1dW2

dN1 =(4αnN0 − βnN1 − 3αnN1 + 2βnN2)dt

− 1√
NK

√
4αnN0 + βnN1dW2 +

1√
NK

√
3αnN1 + 2βnN2dW3

dN2 =(3αnN1 − 2βnN2 − 2αnN2 + 3βnN3)dt

− 1√
NK

√
3αnN1 + 2βnN2dW3 +

1√
NK

√
2αnN2 + 3βnN3dW4

dN3 =(2αnN2 − 3βnN3 − αnN3 + 4βnN4)dt

− 1√
NK

√
2αnN2 + 3βnN3dW4 +

1√
NK

√
αnN3 + 4βnN4dW5

dN4 =(αnN3 − 4βnN4)dt−
1√
NK

√
αnN3 + 4βnN4dW5

dM0H0 =(−3αmM0H0 + βmM1H0 − αhM0H0 + βhM0H1)dt

+
1√
NNa

√
3αmM0H0 + βmM1H0dW6 +

1√
NNa

√
αhM0H0 + βhM0H1dW9

dM1H0 =(3αmM0H0 − βmM1H0 − 2αmM1H0 + 2βmM2H0 − αhM1H0 + βhM1H1)dt

− 1√
NNa

√
3αmM0H0 + βmM1H0dW6 +

1√
NNa

√
2αmM1H0 + 2βmM2H0dW7

+
1√
NNa

√
αhM1H0 + βhM1H1dW10

dM2H0 =(2αmM1H0 − 2βmM2H0 − αmM2H0 + 3βmM3H0 − αhM2H0 + βhM2H1)dt

− 1√
NNa

√
2αmM1H0 + 2βmM2H0dW7 +

1√
NNa

√
αmM2H0 + 3βmM3H0dW8

+
1√
NNa

√
αhM2H0 + βhM2H1dW11

dM3H0 =(αmM2H0 − 3βmM3H0 − αhM3H0 + βhM3H1)dt

− 1√
NNa

√
αmM2H0 + 3βmM3H0dW8 +

1√
NNa

√
αhM3H0 + βhM3H1dW12

dM0H1 =(−3αmM0H1 + βmM1H1 + αhM0H0 − βhM0H1)dt

+
1√
NNa

√
3αmM0H1 + βmM1H1dW13 −

1√
NNa

√
αhM0H0 + βhM0H1dW9

dM1H1 =(3αmM0H1 − βmM1H1 − 2αmM1H1 + 2βmM2H1 + αhM1H0 − βhM1H1)dt

− 1√
NNa

√
3αmM0H1 + βmM1H1dW13 +

1√
NNa

√
2αmM1H1 + 2βmM2H1dW14

− 1√
NNa

√
αhM1H0 + βhM1H1dW108



dM2H1 =(2αmM1H1 − 2βmM2H1 − αmM2H1 + 3βmM3H1 + αhM2H0 − βhM2H1)dt

− 1√
NNa

√
2αmM1H1 + 2βmM2H1dW14 +

1√
NNa

√
αmM2H1 + 3βmM3H1dW15

− 1√
NNa

√
αhM2H0 + βhM2H1dW11

dM3H1 =(αmM2H1 − 3βmM3H1 + αhM3H0 − βhM3H1)dt

− 1√
NNa

√
αmM2H1 + 3βmM3H1dW15 −

1√
NNa

√
αhM3H0 + βHM3H1dW12

where αn = αn(V ), βn = βn(V ), αm = αm(V ), βm = βm(V ), αh = αh(V ), βh = βh(V ) are defined as
in the standard form (S2) and NK , NNa are the numbers of potassium and sodium channels, respectively.

4 SUPPLEMENTARY MATERIAL FOR SECTION 4

4.1 EXAMPLE OF IDENTIFICATION UNDER NOISELESS CONDITION

We provide here an example of functional identification of the neuron circuit 1 of Supplementary
Section 3.2 under noiseless condition; the same DSP kernels and Hodgkin-Huxley neuron model were
used.

First, we use the circuit to encode a 50 [Hz] input signals of duration 0.4 [s]. We repeat this for 1, 000
times with a different, randomly generated input each time.

In the 1, 000 trials, a total of 18, 964 spikes are generated by BSG 1 and 25, 271 spikes are generated by
BSG 2. We deem the maximum valid interspike interval to be 13.713[msec]. Among all the spikes, valid
measurements amount to 9, 615 for BSG 1 and 8, 093 for BSG 2. The identified DSP kernels are shown in
Supplementary Figure 6. We also show identification quality against the number of valid measurements in
Figure 6I. The identification quality saturates after using more than 2, 000 measurements. This correspond
to about 200 trials.

The identification results for the DSP kernels associated with Neuron 2 are shown in Supplementary
Figure 7.

4.2 EXAMPLE OF IDENTIFICATION WITH INTEGRATE-AND-FIRE NEURON

We also provide here an example using Integrate-and-Fire (IAF) Neurons instead of using Hodgkin-
Huxley neurons as in Supplementary Section 4.1. Since the t-transforms of encoding with IAF neurons
are exact, we show here that the identification algorithm leads to perfect identification when appropriate
input stimuli and spike spaces are used.

Supplementary Figure 8 shows the identification result for neuron 1 using the same input stimulus spaces
and spike spaces as in Supplementary Section 4.1.

Supplementary Figure 9 shows the identification result for neuron 1 using a higher bandwidth for the
spike space when compared with the one used in Supplementary Figure 8.
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Supplementary Figure 6: Examples of functional identification of a neural circuit with Hodgkin-Huxley
neurons as spike generators under noiseless condition (Neuron 1). (A) Original first order feedforward
kernel (black) and identified projection of the kernel (red). (B) Original first order feedback kernel (black)
and identified projection of the kernel (red). (C) Original second order feedforward kernel. (D) Identified
projection of second order feedforward kernel. (E) Error of identified second order feedforward kernel.
(F) Original second order feedback kernel. (G) Identified projection of second order feedback kernel. (H)
Error of identified second order feedback kernel. (I) SNR of the identified DSP kernels that feed into
Neuron 1 against number of valid spikes used in identification.
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Supplementary Figure 7: Examples of functional identification of a neural circuit with Hodgkin-Huxley
neurons as spike generators under noiseless condition (Neuron 2). (A) Original first order feedforward
kernel (black) and identified projection of the kernel (red). Note that the original first order kernel is zero.
(B) Original first order feedback kernel (black) and identified projection of the kernel (red). (C) Original
second order feedforward kernel. (D) Identified projection of second order feedforward kernel. (E) Error
of identified second order feedforward kernel. (F) Original second order feedback kernel. (G) Identified
projection of second order feedback kernel. (H) Error of identified second order feedback kernel. (I) SNR
of the identified DSP kernels that feed into Neuron 2 against number of valid spikes used in identification.
h11 is omitted since it is zero.
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Supplementary Figure 8: Examples of functional identification of a neural circuit with IAF neurons
as spike generators under noiseless condition (Neuron 1). The IAF neurons has a refractory period of 2
[msec]. (A) Original first order feedforward kernel (black) and identified projection of the kernel (red).
(B) Original first order feedback kernel (black) and identified projection of the kernel (red). (C) Original
second order feedforward kernel. (D) Identified projection of second order feedforward kernel. (E) Error
of identified second order feedforward kernel. (F) Original second order feedback kernel. (G) Identified
projection of second order feedback kernel. (H) Error of identified second order feedback kernel. (I) SNR
of the identified DSP kernels that feed into Neuron 1 against number of valid spikes used in identification.
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Supplementary Figure 9: Examples of functional identification of a neural circuit with IAF neurons
as spike generators under noiseless condition (Neuron 1). The IAF neurons has a refractory period of 2
[msec]. Compared to the example in Supplementary Figure 8, we increased the bandwidth of the space
H2

1, i.e., the space of spikes, to better approximate the effect of feedback spikes on the dendritic current.
One can see that the quality of the identified feedback kernels further increases. So does the quality
of the identified feedforward kernels. The sum of the orders of the kernel spaces is 2982. (A) Original
first order feedforward kernel (black) and identified projection of the kernel (red). (B) Original first
order feedback kernel (black) and identified projection of the kernel (red). (C) Original second order
feedforward kernel. (D) Identified projection of second order feedforward kernel. (E) Error of identified
second order feedforward kernel. (F) Original second order feedback kernel. (G) Identified projection
of second order feedback kernel. (H) Error of identified second order feedback kernel. (I) SNR of the
identified DSP kernels that feed into Neuron 1 against number of valid spikes used in identification.
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