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Time Encoded Communications for
Human Area Network Biomonitoring
Csaba Káldy, Aurel A. Lazar,Fellow, IEEE, Ernő K. Simonyi, and László T. Tóth

Abstract— Power constraints play a key role in designing
Human Area Networks (HANs) for biomonitoring. To alleviate
the power constraints, we advocate a design that uses an asyn-
chronous time encoding mechanisms for representing biomoni-
toring information and the skin surface as the communication
channel. Time encoding does not require a clock while allows
perfect signal recovery; the communication channel is operated
below 1 MHz. We (i) review the fundamental theory behind time
encoding and signal recovery, (ii) describe the implementation of
a HAN prototype and (iii) present research data obtained from
our experimental platform. We demonstrate that the fidelity of
the proposed signal representation and transmission scheme is
well above the biomedical monitoring requirements even in the
case of additive channel-noise and neighboring channel interfer-
ence. Consequently, the traditional HAN architecture consisting
of clocked A/D converters feeding into digital RF channels can
be replaced with a less power demanding time encoding/decoding
pair that uses the skin surface as a communications channel.

I. I NTRODUCTION

Energy efficiency is of extreme importance in cer-
tain biomedical or health-monitoring applications such as
pulseoximetry, electrocardiography (ECG), and electroen-
cephalography (EEG). In contrast, the requirements for accu-
racy and speed (bandwidth) are rather modest. For example,
8-bit accuracy and 100-500 Hz bandwidth is typical in ECG
and EEG systems [2]. The energy consumption of the body-
mounted sensors is the most critical factor. More power can be
assigned to the personal digital assistant (PDA) placed close to
or on the human body. The sensor signals are often evaluated
at a remote site (center) where practically unlimited powercan
be assumed.

Technological evolution of low-power integrated circuits
(ICs), and wireless communication allows the production
of low-cost, miniature, lightweight, intelligent physiological
sensors. These units enable the deployment of sensor networks
for health monitoring often referred to as human, personal or
body area networks. In these solutions analog-to-digital (A/D)
conversion and wireless digital transmission is carried out
by the sensor nodes using radio-frequency (RF) channels via
tiny antennas. Power dissipation due to both A/D conversion
and digital transmission are two major limitations. Ongoing
development can be observed in the literature for low-power
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A/D converters, see, e.g., [18] and the references therein.In
typical recent RF applications the amount of energy needed for
transmitting one single bit amounts to that of executing about
1000 of 32-bit computations [7]. Intelligent on-sensor signal
processing methods have been investigated with the potential
to save power (hence extend battery life) by transmitting
processed data rather than raw signals [6].

Fig. 1 depicts an alternative method for biomonitoring that
is closely related to a method originally proposed for digital
transmission in personal area network (PAN) applications [22],
[23], [19]. As shown, several sensors (only 3 sensors are
shown) and the PDA are connected to the human body via in-
sulators. The transmit power can be reduced by using the skin
surface as a short range communication channel. Briefly, since
any two distinct points of the human body are interconnected
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Fig. 1. The basic architecture of the Human Area Network for biomonitoring.

via capacitive coupling, signals with high enough frequency
content can travel between any two points. Whereas a radio
transmitting PAN device needs to be operated at frequencies
in the MHz-to-GHz range in order to efficiently transmit
biomonitoring information, electrostatic coupling reaches the
same efficiency by running the devices at much lower fre-
quencies (0.1 to 1 MHz). Given that the energy consumption
of electronic devices increases with frequency, substantial
amount of energy can be saved [22]. Note that, data transmitted
through the human body eventually escapes through the feet
into the ground, thereby minimizing the chance of intercept
and, thus, providing secure communications [19].

Instead of using A/D converters that represent biomoni-
toring information in the amplitude domain, we propose to
represent the same information in the time domain with Time
Encoding Machines (TEMs) [11]. TEMs can be typically
implemented as low-power, nonlinear, asynchronous, analog
circuits and are suitable for IC implementation [20], [9]. At
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a remote site signal reconstruction and application-specific
evaluations are carried out. The reconstruction algorithmand
its implementation in software and/or hardware is referredto
as the Time Decoding Machine (TDM) [11].

TEMs represent analog signals in the time domain without
any loss of information [11]. Since such circuits do not
use a clock, they are candidates for replacing the traditional
A/D converters based on clocked sigma/delta modulators or
other low power converters [18]. In a HAN environment for
biomonitoring a number of problems arise including crosstalk
from neighboring sensors and additive noise.

The goal of this paper is to demonstrate that using of
the shelf components, the traditional A/D converter can be
replaced by a TEM/TDM pair and the resulting system (shown
in Fig. 1) displays an accuracy that is well above typical
biomonitoring requirements. This provides a basis for using
low power TEMs for representing biomonitoring information
in HANs.

This paper is organized as follows. In section II we present
the overall architecture of the HAN and summarize the basic
principles of time encoding and decoding. We also review
a class of parameter insensitive stable algorithms for signal
recovery. Implementation details of the HAN prototype are
described in Section III. Finally, performance evaluationof
the HAN prototype is given in Section IV.

II. T HE ARCHITECTURE OF THEHAN EXPERIMENTAL

PLATFORM

A. The Architecture of the Human Area Network

Fig. 1 shows the proposed HAN architecture in block
diagram form. As seen, each sensor drives a TEM whose
output undergoes analog modulation for increased frequency
content. The modulators are connected to the human body
via an insulator. After strong attenuation and often corruption
by noise and/or low-frequency interference, the aggregateof
the modulated signals becomes available at another location
of the human body via another insulator. The received signal
is first demodulated after the appropriate sensor is selected.
Based on the demodulator output, the PDA determines the time
information contained in the demodulated (selected) signal,
quantizes the latter, and forwards it in digital form to the
remote center for reconstruction.

The skin-surface channel has been shown to have substan-
tially less power requirements compared to RF channels [22],
[23], [19]. The reduced power requirements of (asynchronous)
TEMs when compared to (clocked) A/D converters have
also been been extensively documented in the literature [3],
[16]. Whether the TEM/TDM pair can be employed in the
architecture above with a skin-channel that has strong and
unpredictable attenuation in a practical low power application
has received, however, little attention.

B. TEM and TDM Building Blocks

The TEM that we built (see [11] and the references therein),
is the asynchronous sigma/delta modulator (ASDM) [8],
[17] consisting of an integrator and a symmetrically-centered

Schmitt trigger. Other TEM realizations include integrate-and-
fire neurons [12] and frequency modulators [11]. More general
TEMs are described in [14].
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Fig. 2. TEM realized as an asynchronous sigma/delta modulator.

The schematic diagram of the TEM employed is shown in
Fig. 2. u(t) is a signal bandlimited to[−Ω, Ω]; κ, δ and b
are circuit parameters,c is the amplitude bound and|u(t)| ≤
c < b. Since the TEM outputz(t) takes either the valuesb or
−b, the input to the integrator is eitheru(t) + b or u(t) − b.
Finally, since|u(t)| < b, the integrator outputy(t) is a strictly
increasing or decreasing function fort ∈ [tk, tk+1] and thus
eithery(tk) = δ or y(tk) = −δ.

The TEM circuit in Fig. 2 is described by thet-transform
[11]

∫ tk+1

tk

u(t)dt = qk, (1)

whereqk = b(−1)k(2κδ − Tk) with Tk = tk+1 − tk for all
k, k ∈ Z (Z denotes the integers). It is easy to see that the
Tk’s are bounded by:

2κδ

b + c
≤ Tk ≤

2κδ

b − c
. (2)

Therefore, the integrals ofu(t) over fixed time intervals are
available at the decoder as a linear function of a bounded time
sequence.

The mathematical approach for devising the TDM algorithm
is closely related to the one used in irregular sampling and is
built on frame theory, see, e.g., [4] or [1]. Related techniques
are also needed to establish Nyquist-type rate conditions under
which u(t) can be perfectly reconstructed in terms of the
integrals in (1), hence theTk’s [11], [12].

Theorem 1 If the Nyquist-type rate condition

κδ <
b − c

2
·

π

Ω
(3)

is satisfied, the bandlimited input signalu = (u(t)), t ∈ R,
can be recovered as

u(t) =
∑

ℓ∈Z

cℓg(t − sℓ), (4)

wheresℓ = (tℓ + tℓ+1)/2 and

g(t) =
sin(Ωt)

πt
(5)

is the impulse response of an ideal lowpass filter (LPF) with
cutoff frequencyΩ. The set of coefficients (cℓ), ℓ ∈ Z, satisfy
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the system of linear equations

∑

ℓ∈Z

cℓ
︸︷︷︸

[c]ℓ

∫ tk+1

tk

g(s − sℓ)ds

︸ ︷︷ ︸

[G]kℓ

= qk
︸︷︷︸

[q]k

, (6)

for all k, k ∈ Z. Finally, the matrixG, and the vectorsq and
c introduced above, verify the linear equation

Gc = q. (7)

SinceG, q andc are infinite dimensional, the mathematical
formalism above cannot be directly implemented. In practice
only a finite set of theTk’s is available for signal reconstruc-
tion.

An efficient real-time TDM can be developed, however,
using an overcomplete stitching formulation of signal recovery
[13]. This involves two steps. First, we shall consider the
covering sequence[ti, ti+N ], i ∈ Z, of the real lineR, where
N is an arbitrary positive integer and approximateu(t) on
[ti, ti+N ] by the periodic bandlimited signal

ui(t) =

N∑

n=0

j(Ω − n
2Ω

N
)di,nej(−Ω+n 2Ω

N
)t. (8)

The bandwidth and the period ofui(t) areΩ and2Nπ/Ω (for
N ≥ 1), respectively. Heredi,n is a set of coefficients whose
values are to be determined as follows.

Proposition 1 The coefficients[di]n = di,n satisfy the matrix
equation

Vidi = DiPqi, (9)

for all i, i ∈ Z, where [Vi]nm = ejm2Ωti+n/N is a Vander-
monde matrix,Di = diag(ejΩti+n) is a diagonal matrix,P
is an upper triangular matrix with values[P]nm = 1 and
[P]nm = 0 for n < m + 1 and n ≥ m + 1, respectively, and
[qi]n = qi+n, for all n, m = 0, . . . , N .

Second, by stitching the finite dimensional coverings to-
gether a natural approximation of the bandlimited signalu =
u(t), t ∈ R, is given by

û(t) =
∑

n∈Z

wn(t)unJ (t), (10)

wherewn(t) is a window function andJ is a design parameter
[13]. Due to the representation above, the window introduces a
spreading of the bandwidth toΩ+ν, whereν is also a design
parameter. Sampling the recovered signal at time instanceskS
with S < π/(Ω + ν) for all k, k ∈ Z, largely avoids aliasing
[13].

Algorithm 1 The reconstructed signal in discrete time (DT) is
given byû(kS) ∗h[k], where theh[k] is the impulse response
of a DT LPF with (digital) cutoff frequencyπ/(1+ ν/Ω) and
∗ denotes the convolution.

The algorithm above requires the exact knowledge of the
key parametersκ andδ of the TEM. As was previously noted

in [11], by adding equation (1) fork andk + 1, respectively,
we obtain the relationship

qk+1 + qk =

∫ tk+2

tk

u(t)dt = b(−1)k(Tk+1 − Tk). (11)

The latter is a description of the TEM that isinsensitive
with respect to the circuit parametersκ and δ. The Schmitt-
trigger heightb merely appears as a generally tolerable scaling
factor. This observation is the basis for an insensitive algorithm
for determining the coefficients in (8). The corresponding
algorithm developed in [13] is included in Appendix VI-A.

As shown in [13], the recovery algorithm is (i) insensitive
with respect to the TEM circuit parameters, (ii) suitable for
a real-time TDM implementation, and (iii) avoids numerical
overflow. Further details and pointers can be found in [13].

III. I MPLEMENTATION OF THE HAN PROTOTYPE

A. Experimental Environment

Our controlled environment for measurements and evalua-
tions is depicted in Fig. 3. Exact error evaluations requirethe
accurate knowledge of the input signals. Since real sensorsdo
not faithfully represent their input, we opted to employ ECG
recorded signals instead. As seen, the definition of the input
signalu(t), the implementation of the PDA and the TDM, and
the performance evaluation were carried out in a computational
environment.
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Fig. 3. Measurement and evaluation setup corresponding to Fig. 1.

The TEM, the modulator, and the demodulator were im-
plemented using standard discrete-component circuit elements
and commercially available ICs. In our experiments we used
both skin and a skin substitute (a wet sponge placed in a
metalized plastic bag used for electrostatic discharge storage
[19]).

The main (solid line) and the auxiliary (dashed line)
programmable generators (Tektronix AFG 3252) createu(t)
shown in Fig. 4(b) and the interfering signals (crosstalk
from other channel and noise), respectively. Any node volt-
age in the circuits can be measured and the measurements
(samples with given sampling frequency) can be stored by
a digital oscilloscope (Tektronix DPO 7104). A companion
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software package (ArbExpress, Tektronix) allows data transfer
between the computational environment and the generator
and/or oscilloscope using the CSV (comma-separated value)
file format. As shown, the samples of the demodulator output
serve as input to the reconstruction (PDA and TDM) and the
performance evaluation module. The calibration unit evaluates
relevant error measures and establishes the accuracy limits
of the arrangement. For completeness, we included a brief
description of error measures and calibration in Appendix VI-
B.

B. Reconstruction Accuracy in the Computational Environ-
ment

In order to emulate a realistic class of sensor-generated
signals, we selected an ECG signal from the MIT-BIH public
arrhythmia database [15]. This database contains a number
of ambulatory ECG recordings digitized at 360 samples per
second with 11-bit resolution over a 10 mV range.

0 1 2 3 4 5

-0.1

0

0.1

0.2

t (s)

(a)

(b)

Fig. 4. ECG signal segment after a 7-th order polynomial interpolation
(a) and measured result of the periodic input generated by a Fourier-series
expansion with 750 Fourier-coefficients (b).

One of the (scaled) signal segments obtained after a 7-th
order polynomial interpolation is shown in Fig. 4(a). Due
to measurement constraints (see also Section VI-B in the
Appendix), we employed a periodic input in our experimental
platform. A periodic bandlimited waveformu(t) was gener-
ated by expanding a segment of length 2.5 s of the signal in
Fig. 4(a) into Fourier-series. The fast FFT algorithm computed
750 Fourier coefficients. Measured results ofu(t) so obtained
and employed in the subsequent experiments are shown in
Fig. 4(b). Therefore the bandwidth ofu(t) amounts toΩ =
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Fig. 5. TEM signals of Fig. 2 in a reduced range (a) and the overall
reconstruction error defined in (A-4) (b).

750 × (2π/2.5) = 2π × 300 rad/s. As shown,c = 0.3 is an
appropriate amplitude bound on the emulated ECG signal.

With TEM parametersδ = 0.17, b = 0.6, andκ = 0.001 s,
the condition in (3) is satisfied withκδ = 0.402(b − c)π/Ω.
For u(t) in Fig. 4(b) the numerical calculation of4975 Tk ’s
was carried out by solving (1) recursively. Using these values
we determined the TEM signalsy(t) andz(t) for visualization
purposes as shown in Fig. 5(a). Setting the sampling rate of
the TDM to S = π/(4Ω) = 3.472 ms, the recovery error
evaluated according to (A-4) is shown in Fig. 5(b). Thus, under
ideal circumstances (TEM/TDM pair only) the accuracy of
signal recovery satisfies most requirements in practice.

C. The TEM Circuit

Fig. 6 shows the circuit implementation of the TEM in
Fig. 2 using resistors and capacitors with 2% tolerance, LF256
opamps, and diodes. The middle opamp with the 47 nF capaci-
tor and 28 kΩ resistor implements the integrator. The rightmost
opamp with resistors 1 kΩ, 56.3 kΩ, 11.5 kΩ, and the diodes
realizes the Schmitt trigger. The diodes force the Schmitt-

u(t)
−

+

−

+

−

+

100 kΩ

100 kΩ

100 kΩ 47 nF

28 kΩ

56.3 kΩ

1 kΩ

11.5 kΩ

100 kΩ

Fig. 6. Circuit implementation of the time encoding machine.

trigger output to take voltages around±0.6 V independent of
the±9 V power supply voltages of the opamps (not shown).
In this way, the TEM can be operated properly by batteries for
relatively long time. The adder implemented by the leftmost
opamp and the 100 kΩ resistors allow measuring the sum of
u(t) and the Schmitt-trigger output for test purposes. With
the resistance and capacitance values shown, we set the same
TEM parameter values (b, δ, andκ) as those in the example of
Section III-B. With zero input, the self-oscillation frequency
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Fig. 7. Small input segment of Fig. 4(b) (upper trace) and thecorresponding
TEM output (lower trace). The scope’s sampling frequency is200 kHz.

of the TEM output turned out to be around 900 Hz. This
measurement is close to the duty cycle value of 882.35 Hz of
the ASDM obtained by settingc = 0 [11], [17]. The upper
and lower trace of Fig. 7 show measured results of a small
input segment of Fig. 4(b) and the corresponding TEM output,
respectively.

D. The Recovery of theTk’s

The schematic of modulation and demodulation is depicted
in Fig. 8. First, s(t) is created by pulse shapingz(t) (see
[10] for a discussion on pulse shaping). As a result, the
bandwidth ofs(t) is about 30 kHz.m(t) is obtained by AM-
modulatings(t) with a rectangular carrier with frequency of
fM = 354 kHz. d(t) is the AM demodulator output of a
sensitive receiver of 30 kHz bandwidth. The receiver was built
with a CSF455 type ceramic filter and the TDA 1046 chip. We
employed a highly sensitive receiver because the skin-surface
channel has a strong and unpredictable attenuation.

Pulse shaping

TEM

AM modulator

Human body

AM demodulator

z(t)

s(t)

d(t)

fM

m(t)

Fig. 8. Schematic of modulation and demodulation implemented with
measured signals. The scope’s sampling frequency is 10 MHz.

In our current HAN prototype the PDA recovers theTk ’s
from the demodulator outputd(t), digitizes them, and forwards
the digitizedTk ’s for signal reconstruction at the remote site.
As can be seen in the lowest trace of Fig. 8 the distance
between the representative values ofd(t) above a certain
level (such as the peaks) is about the same as the distance
between the transitions ofz(t). This allows the extraction of

an approximation of theTk’s using a simple level-crossing
scheme as shown in Fig. 9. From the output of a comparator

a(t)
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Digital logic
processor

Nk = N1
k + N2

k

T̂k =
N1

k + N2
k

2fCLK

1

fCLK

N1
k

N2
k

demodulator
AM

d(t) a(t)

q2q1

Nk

q2

q1

d(t)

Fig. 9. Measurement of theTk ’s based on the AM-demodulator output.

with hysteresis (Schmitt trigger) fed byd(t) and a time-
measuring clock, the digitizedTk’s (denoted byT̂k in the same
figure) can be obtained by counting clock cycles and applying
the simple formula shown. Note that the clock frequency
fCLK is known at the center (remote site). A software module
carries out this algorithm using the samples of the demodulator
output delivered by the digital oscilloscope. The hardware
implementation using an 8 Mhz clock provided results that
are in very good agreement with the ones of Figure 10. They
are not included here because of space limitations.

IV. PERFORMANCEEVALUATION

In what follows we reconstruct the samples of a segment of
u(t) in Fig. 4(b) with and without noise or interference due to a
neighboring channel. The same parameters for the input-signal
bandwidth and the sampling frequency of the reconstructed
signal are used as in Section III-B. TheTk’s were determined
by the algorithm implementing the functionality depicted in
Fig. 9 with appropriate levels forq1 and q2. The evaluation
is based on measuring the root-mean-square (RMS) error
between the reconstructed samplesû[kS] and the samples
u(kS) as described in Appendix VI-B.

A. Evaluation without Interference and Noise

In this section the reconstruction of the signalu(t) is
considered without sources of noise or interference. With
levels q1 = 2.5 and q2 = 2.7, the Tk’s were digitized by
employing several time-measuring frequency valuesfCLK. First,
the number of bits needed to represent eachNk in Fig. 9 was
determined. Then, the bit rate was calculated as the ratio of
the total number of bits so obtained and the time interval
over which the reconstruction was carried out. Fig. 10(a)
shows the RMS reconstruction errors and the corresponding
bit rate as a function offCLK. As seen, for high enoughfCLK

values, the accuracy of the reconstruction is limited by circuit
imperfections and the skin-surface channel. Fig. 10(b) shows
the reconstructed samples withfCLK = 1 GHz on a 1.9 s time
range foru(t).
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Fig. 10. Bitrate and RMS error for differentfCLK (a) (see Fig. 9), and
reconstructed samples for a segment ofu(t) in Fig. 4(b) of length 1.9 s.

We note that these results were obtained by making tight
contact with the skin. With loose contacts the signal level of
the demodulator output drops and the reconstruction accuracy
decreases.

B. Evaluation with Crosstalk from a Neighboring Sensor

In this experiment the auxiliary (dashed) signal generator
in Fig. 3 was used to emulate the AM-modulator output
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Fig. 11. Demodulator-output measurements with interfering AM-modulator
at different carrier frequencies,fM .

corresponding to the interfering sensor. In particular, a pe-
riodic s(t) was created by the auxiliary signal generator
with frequency of 2 kHz. This emulates the pulse-shaped
signal corresponding to a TEM with zero input. Modulating
this signal externally with a rectangular pulse stream witha
frequency of 354 kHz models the interfering AM-modulator
output. With several pulse-stream frequencies,fM as carrier,
the Tk ’s were determined and the reconstruction was carried
out. In order to avoid errors due to the quantization of the
Tk’s, we usedfCLK = 1 GHz as in Fig. 10(b). Fig. 11 shows
measured demodulator outputs including the values used for
q1, q2, fM , and the RMS reconstruction errorE . Comparing

the results with that of Fig. 10(b) a realistic, around 12 dB,
performance degradation was experienced in the best case (top
trace in Fig. 11).

C. Evaluation with Additive Noise

Finally, as in Fig. 3, a broadband noise generated by the
auxiliary generator was added to the AM-modulator output.
For the accurate level setting of signal and noise, the atten-

-73.2
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9.6/6
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+
−
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AM

2 kΩ 20 kΩ
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TEM+TEM modulator
50 Ω

sM(t)

E (dB)

-72

-69.1

-63.8
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0.48/-20

2.4/-6

4.8/0

Fig. 12. Circuit implementation for modeling additive noise and the
attenuation due to the skin-surface channel and measured results.

uation of the skin-surface transmission was also emulated by
the resistive voltage divider shown in Fig. 12.

As seen, the outputs of the AM-modulator and the noise
source were taken into account by their Thévenin equivalents
with Thévenin-resistances of 50Ω and 2 kΩ, respectively.
Using the resistances shown, a source of noise with RMS value
4.8 V turned out to give the same power at the demodulator
input as that contributed by the AM-modulator output (noise
level of 0 dB). For different noise levels reconstructions were
carried out based on a time segment of 1.6 s withfCLK =
1 GHz. Measured results are summarized in the table of
Fig. 12. Although we have a narrowband receiver, the effect of
a 6 dB noise is still visible in the demodulator output as shown
in Fig. 13. The reconstructed signal samples with -63.8 dB
reconstruction RMS error cannot be visually distinguished
from the samples ofu(t). Thus, timing information is less
sensitive than amplitude information to additive noise.

V. CONCLUSIONS

We have investigated an architecture for Human Area
Networks that is based on representing biomonitoring in-
formation in the time domain and uses the skin surface to
transmit this representation to a PDA. We demonstrated that
the performance of such a system is above the biomonitoring
requirements adopted in practice.

In our experimental environment we used a simple to
implement AM modulation/demodulation scheme. Although
AM-based schemes are sensitive to interference, the evaluation
of our prototype has demonstrated a level of performance
acceptable in biomonitoring applications. We expect to readily
improve on our results by using better suited modulation
schemes (e.g., FM).
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x(t)

6 dB noise added

d(t)

no noise added

Fig. 13. Measured results for the input (upper trace) and theeffect of additive
noise of6 dB (lower trace). The scope’s sampling frequency is 250 kHz.

Thus, the traditional HAN architecture consisting of clocked
A/D converters feeding into digital RF channels can be
replaced in biomonitoring applications with a less power
demanding asynchronous TEM/TDM pair that uses the skin
surface as a communications channel. We shall follow up on
our work with the IC design of the main components of the
HAN architecture.
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APPENDIX

A. Parameter Insensitive Computation of thedi’s

Algorithm 2 The Vandermonde system in (9) can be reduced
to an underdetermined linear system whose minimum-least-
square and minimim-norm solution is given by

di = b

(

xi −
1

αi
yiy

H
i xi

)

, (A-1)

whereαi = yH
i yi and,xi andyi denote the solutions of the

Vandermonde systems

Vixi = Di(P − abH)ri (A-2)

and

Viyi = Dia, (A-3)

respectively, where[ri]n = (−1)i+n+1Ti+n does not depend
κδ, aH = [· · · , 0, 1, 0, 1], andbH = [0, · · · , 0, 0, 1].

B. Error Measures and Calibration

Our prototype TDM implementation in Mathematica [21]
outputs the sequence (discrete-time signal)û[kS] that ap-
proximates the uniformly-spaced input samplesu(kS). The
sampling periodS and the signal bandwidthΩ are input pa-
rameters. The error sequence and its root-mean-square (RMS)
value in dB defined as

e[k] = u(kS) − û[kS]

and E = 10 lg
( P

Kmax
k=Kmin

e2[k]

Kmax−Kmin+1

)

,
(A-4)

respectively, quantify the quality of the TDM. HereKmin and
Kmax are appropriate integers.

Because of the periodicity of the generator output, absolute
time in comparing the original and the reconstructed input
cannot be used. Note that in order to use absolute time, some
starting timet0 and the corresponding value ofz(t) (δ or
−δ) is needed at the TDM site in addition to theTk ’s. A
constant delay between these has to be allowed. In addition,a
DC offset and a constant scaling factor should also be included
since (i) neither the circuit parameterb in (1) nor the generator
tuning parameters are known with high accuracy and, (ii) TEM
imperfections beyond the ideal TEM model of Fig. 2 (such as
parameter offsets and frequency-dependent gain of opamps)
also result in DC offset, constant scaling factor, and constant
delay in the reconstructed signal [9]. Therefore, we again use
the RMS error measureE of (A-4), but the error sequence is
defined by

e[k] = αu(kS − τ) + β − û[kS],

where the parametersα, β, and τ are chosen such thatE
is minimized. We developed a software algorithm for this
optimization and used it in all performance evaluations.

We also sampled and measured the signal of Fig. 4(b)
with the scope and, generated and evaluated u(kS) in the
computational environment (see Fig. 3) withS = 5 µs. The
RMS error between these two signals was -83 dB. This error
as the ultimate precision limit for this setup is in agreement
with the claimed 14-bit accuracy of both the scope and the
generator.
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