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Abstract— Video Time Decoding Machines faithfully recon-
struct bandlimited stimuli encoded with Video Time Encoding
Machines. The key step in recovery calls for the pseudo-
inversion of a typically poorly conditioned large scale matrix.
We investigate the realization of time decoders employing only
neural components. We show that Video Time Decoding Ma-
chines can be realized with recurrent neural networks, describe
their architecture and evaluate their performance. We provide
the first demonstration of recovery of natural and synthetic
video scenes encoded in the spike domain with decoders realized
with only neural components. The performance in recovery
using the latter decoder is not distinguishable from the one
based on the pseudo-inversion matrix method.

I. INTRODUCTION

Time Encoding Machines (TEMs) model the representa-
tion (encoding) of stimuli by sensory systems with neural cir-
cuits that communicate via spikes (action potentials). TEMs
asynchronously encode time-varying analog stimuli into a
multidimensional time sequence [1]. Given Nyquist-type
rate conditions, a bandlimited signal can be recovered with
arbitrary accuracy by Time Decoding Machines (TDMs).
Video Time Encoding Machines (vTEMs) encode space-
time-varying signals including visual stimuli (movies, ani-
mation) into a multidimensional time sequence [2]. Different
models of neural encoding circuits have been investigated
including circuits with random parameters [3].

Hardware implementations of TEMs are also available. For
example Asynchronous Sigma-Delta Modulators (ASDMs),
that have been shown to be an instance of TEMs, can
be robustly implemented in low power analog VLSI [4].
With the ever decreasing voltage and increasing clock rate,
amplitude domain high precision quantizers are more and
more difficult to implement. In the nanoworld, it is more cost
effective to measure “time” as opposed to measuring “space”
(signal amplitude). The next generation silicon encoders are
expected to operate in the time domain [5]. Representing in-
formation in time domain follows the miniaturization trends
of nanotechnology.

Although the encoding mechanism can be efficiently im-
plemented in neural circuits, the reconstruction algorithms
call for the pseudo-inversion of a large scale matrix. Several
real-time reconstruction algorithms have been demonstrated
in the past [5], [6]. In this paper, we seek a solution to the
reconstruction of time encoded signals using neural hardware
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components [7]. Clearly, a decoding circuit built using neural
components has to minimize the same cost function that leads
to a solution via a matrix pseudo-inversion.

Neural network methods for solving optimization prob-
lems have received considerable attention in the past 20
years [8]. These networks have attractive properties. First, the
key components of the neural network mimic the properties
of biological neurons. Second, the structure of the neural
network can be efficiently implemented in analog VLSI.

We propose in this paper a reconstruction method for sig-
nals encoded with TEMs based on recurrent neural networks.
We further extend the method to the recovery of space-time
stimuli encoded with vTEMs. Simulation results show that
the proposed method provides high quality reconstructions
that are comparable to the ones obtained by applying the
matrix pseudo-inverse method. The recurrent neural network
decoding method has two main advantages: (i) it is intrin-
sically parallel and thereby scalable for real-time decoding,
and (ii) it can be implemented using simple neural hardware
components.

This paper is organized as follows. In Section II, a
faithful reconstruction algorithm is provided for time-varying
bandlimited stimuli encoded with a single neuron TEM. In
Section III, two recurrent neural networks are used to recon-
struct the encoded signal, and their performance is examined
by simulations. In Section IV, space-time stimuli are encoded
with video TEMs and their faithful reconstruction is obtained
using a class of video TDMs. In Section V, a recurrent
neural network realization is given for the recovery of stimuli
encoded by video TDMs. Section VI briefly concludes the
paper.

II. TIME ENCODING MACHINES

In order to better understand the encoding properties of the
more complex vTEM architecture, we first consider a single-
input single-output TEM that encodes time-varying signals
and provide the stimulus reconstruction algorithm.

In what follows we shall assume that the signal u =
u(t), t ∈ R, is mapped into a time sequence (tk), k ∈ Z.
Given the complexity of the encoding and decoding process,
it is advantageous to assume that the signal u lives in a finite
dimensional space.

A. Modeling the Stimuli

The time-varying stimuli (signals) assumed here are ele-
ments of a Hilbert space. The Hilbert spaceHt we consider is
the space of trigonometric polynomials, where every element



u = u(t), t ∈ R, is of the form

u(t) =

Mt∑
mt=−Mt

cmt
emt

, (1)

with

emt
= exp

(
jmt

Ωt
Mt

t

)
an element of the basis spanning the space Ht; Ωt and Mt

are the bandwidth and the order of the space of trigonometric
polynomials, respectively. Note that every element in this
Hilbert space is periodic with period

St =
2πMt

Ωt
.

Assuming that all signals are real, c−mt
= cmt

, where (·)
denotes the complex conjugate.

The inner product in Ht is defined in the usual way:
∀u, v ∈ Ht,

〈u, v〉 =
1

St

∫ St

0

u(t)v(t)dt. (2)

Note that, the space of trigonometric polynomials is a finite
dimensional Hilbert space, and therefore, a Reproducing
Kernel Hilbert Space (RKHS), with reproducing kernel

K(t, s) =

Mt∑
mt=−Mt

emt
(t− s), (3)

with t, s ∈ R.
Modeling the set of stimuli in a Hilbert space enables us

to use the geometry of the space to reduce stimulus encoding
to projections on a set of functions.

B. Encoding

The encoding of time-varying signal consists of two cas-
caded modules, as shown in Fig. 1. The signal is passed
through a temporal receptive field DT (t) before being fed
into a neural circuit. The processing of the temporal receptive
field is modeled as filtering. More formally, we define an
operator rL : Ht → Ht such that

v(t) = rLu =

∫
R
DT (t− s)u(s)ds = (DT ∗ u)(t).

Neural

Circuit

signal
Temporal

Receptive

Field

Fig. 1. Encoding diagram of a TEM with a single neuron.

The neural circuit encodes the output of the receptive field.
The neural circuit can be realized with different neural build-
ing blocks such as Integrate-And-Fire neurons (IAF) and
Hodgkin-Huxley neurons as well as Asynchronous Sigma-
Delta Modulators (ASDM). In what follows we denote the

spike times of the spike train at the output of the neural
circuit as (tk), k = 0, 1, 2, · · · , n.

The operation of the neural circuit can be described by
a bounded linear functional TLk : Ht → R. The explicit
formula of this functional is determined by the t-transform
[1] of the neuron and it is given by

TLku = qk, for u ∈ Ht.

where TLk and qk usually depend on (tk), k = 0, 1, 2, · · · , n.
For example, for an ideal IAF neuron with the t-transform
given by ∫ tk+1

tk

u(s)ds = κδ − b(tk+1 − tk),

we have
TLku =

∫ tk+1

tk

u(s)ds,

qk = κδ − b(tk+1 − tk),

where κ, δ and b are, respectively, the integration constant,
the threshold and the bias of the IAF neuron.

Combining the two cascaded building blocks together, we
define the bounded linear functionals Lk : Ht → R as

Lk = TLk
rL

and therefore
Lku = TLk

rLu = qk.

By the Riesz representation theorem, the above functionals
can be expressed in inner product form as

Lku = 〈u, φk〉, for all u ∈ Ht,

where, by the reproducing property,

φk(t) = 〈φk,Kt〉 = LkKt,

with Kt(s) = K(t, s).
Formulation of time encoding of stimuli in inner product

form provides a simple but very powerful insight into the
encoding process itself. Since the inner products are merely
projections of the time-varying stimulus onto the axes defined
by the φk’s, encoding is interpreted as generalized sampling,
and the qk’s are the measurements given by sampling the
signal. Note however that unlike in traditional sampling, the
sampling functionals in time encoding are signal dependent.

C. Reconstruction

Reconstruction of a time-varying signal u is formulated
here as the variational problem

û = argmin
u∈Ht

{
n∑
k=1

(〈u, φk〉 − qk)
2

+ nλ‖u‖2Ht
}. (4)

By the Representer Theorem, the solution to problem (4) is
of the form

û =

n∑
k=1

ckφk. (5)



Substituting the solution into equation (4), the coefficients ck
can be obtained by solving the unconstrained optimization
problem

minimize ‖Gc− q‖2l2 + nλcTGc, (6)

where c = [c1, c2, · · · , cn]
T , q = [q1, q2, · · · , qn]

T and G is
a symmetric matrix with entries

[G]k,l = 〈φk, φl〉 =

Mt∑
mt=−Mt

(∫ tk+1

tk

(DT ∗ emt)(s)ds·∫ tl+1

tl

(DT ∗ e−mt
)(s)ds

)
.

The minimization problem in (6) has an explicit analytical
solution with c the solution of the system of linear equations

GT (G + nλI)c = GTq, (7)

where I is the n×n identity matrix. Therefore, the stimulus
reconstruction depends on solving a system of linear equa-
tions. Given that the matrix G is usually singular, this is often
achieved by employing the (computationally demanding)
Moore-Penrose pseudo-inverse.

III. USING RECURRENT NEURAL NETWORKS FOR TDMS

Based on [8] and [9], we present here two recurrent neural
networks, respectively, for reconstructing the encoded signal
from spike times.

A. Recurrent Neural Network I

Using a general gradient approach for solving problem (6),
we consider the system of differential equations

dc

dt
= −µ∇E(c), (8)

with initial condition c(0) = 0, where

E(c) =
1

2

(
‖Gc− q‖2l2 + nλcTGc

)
, (9)

and µ(c, t) is an n × n symmetric positive definite matrix
that determines the speed of convergence and whose entries
are usually dependent on the variables c(t) and time t. It
follows that

∇E(c) = GT ((G + nλI)c− q) . (10)

Since E(c) is clearly convex in c, the system of differential
equations (8) asymptotically approaches the unique solution
of the regularized optimization problem (6).

Consequently, we have

dc

dt
= −µGT ((G + nλI)c− q) .

The above set of differential equations can be mapped into
a recurrent neural network as shown in Figure 2. This is
a three layer neural network. In the first layer, consisting
of n multiply/add units as shown in the left most column,
the vector (G + nλI) c−q is computed. The multiplication
factors are the entries of the matrix G+ nλI and the vector
q. In the second layer, ∇E(c) is evaluated. This layer

also consists of n multiply/add units, with multiplication
factors provided by the entries of the matrix G. Note that
G is a symmetric matrix. The gradient is weighted by the
learning rate µ in the third layer, that also consists of n
multiply/add units. The outputs of the third layer provide
the time derivative of the vector c(t). The time derivatives
are then integrated and the outputs are fed back to the first
layer.
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Fig. 2. Block diagram of the recurrent neural network I.

B. Recurrent Neural Network II

Alternatively, we can formulate the reconstruction of the
encoded stimulus as the spline interpolation problem

û = argmin
u∈Ht,{Lku=qk}nk=1

{‖u‖2Ht
}, (11)

that seeks to minimize the norm as well as satisfy all the t-
transform equations. In addition, the solution is of the form
(5). Substituting the solution into equation (11), the vector
of coefficients c are the solution of the optimization problem

minimize 1
2c
TGc

subject to Gc = q,
(12)

where G, c,q are as defined in equation (6). We notice that
due to the RKHS property, G is a positive semidefinite ma-
trix. Therefore, the above optimization problem is a convex
quadratic programming problem with equality constraints.

Problem (12) can be reformulated as a standard quadratic
programming problem. By setting x =

[
x+

T x−
T
]T

with x+ ≥ 0,x− ≥ 0 such that c = x+−x−, we obtain the
following convex programming problem

minimize 1
2x

TQx
subject to Ax = q,x ≥ 0,

(13)

where
Q =

[
G −G
−G G

]
,

and
A =

[
G −G

]
.

The neural network that solves problem (13) is then given
by [9]

d

dt

(
x
y

)
= β

( (
x− αQx + αATy

)+ − x
α (−Ax + q)

)
, (14)
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Fig. 3. Block diagram of the recurrent neural network II with β = 1.

where (x)+ = [(x1)+, · · · , (xn)+]
T and (xi)

+ =
max{0, xi}, α is a positive constant and β > 0 is the
scaling constant. The recurrent neural network implementing
(14) can be realized by a simplified diagram as shown in
Fig. 3, where β = 1. Note that we simplified the circuit
diagram by observing that Qx =

[
(Gc)T −(Gc)T

]T
,

ATy =
[

(Gy)T −(Gy)T
]T

and Ax = Gc.
The two recurrent neural networks described above are

realized with adders, integrators, multipliers and piecewise
linear activation functions and, equally importantly, are
highly parallel. For solving large scale problems in real-time
these can be implemented in analog VLSI.

C. Results

In what follows, we show some illustrative examples
of the neural networks discussed above being used in the
reconstruction of signals encoded by TEMs.

We consider a bandlimited signal u with bandwidth Ωt =
2π · 10 rad/s of the form

u(t) =

20∑
n=1

u(kT )sinc (Ωt(t− kT )) ,

where T = π
Ωt

and the signal is defined in the time interval
[0, 1]. Note that the signal can be well approximated by (1)
using appropriate parameters. Here, we consider Mt = 20.
The temporal receptive field we employed is a low-pass filter
with impulse response given by

DT (t) = 100e−0.01t

(
(0.01t)6

6!
+

(0.01t)7

7!

)
.

An ideal IAF neuron is used with parameters κ = 1, b =
1.5, δ = 0.05. 35 spikes were generated in the simulation.

Recurrent neural network I was first used in reconstruction,
µ set to a diagonal matrix with each of the diagonal entries

107 and λ = 10−11. After running the neural network
for 5 seconds, the reconstruction is shown in Fig. 4(a)
with a resulting signal-to-noise-ratio (SNR) of 48.0 [dB].
As a comparison, by solving equation (7), the SNR of the
reconstruction is 65.91 [dB]. We note from the trajectories of
c(t) shown in Fig. 4(b) that the convergence is very fast in
the beginning, but as the gradient decreases, the convergence
rate slows down substantially. Reconstruction quality reaches
52.0 [dB] after the network ran for about 40 seconds. The
objective function as a function of time is shown in Fig. 4(c).
The SNR of the stimulus reconstruction is shown in Fig. 4(d).

When recurrent neural network II was used in the re-
construction, β = 104 and α = 200. The SNR of the
reconstruction is 65.65 [dB], a performance that is very close
to the SNR achieved by the pseudo-matrix inversion method.
The trajectory of the output c(t) = x+ − x− is shown in
Fig. 5(a). We notice that after 5 seconds the system has
not yet settled down to an equilibrium point. The objective
function cTGc depicted in Fig. 5(b) has reached its stability
point after about 0.9 seconds. This may be due to the fact
that the equality constraint is hard or even impossible to
satisfy. Even if it is satisfied, c may be very large because
G is ill-conditioned. As shown in Fig. 5(d), the l2 norm
of the error Gc− q is still decreasing at an extremely
slow rate after t = 1 but may take a very long time to
vanish. Nevertheless, as shown in Fig. 5(c), the SNR of
the reconstructed signal stays very high even when using
c at t = 0.7s. Consequently, a stopping rule needs to be
introduced for determining whether the objective function
has remained essentially unchanged.

As seen in the above examples, both neural networks pro-
vide a high quality reconstruction for time-varying signals.
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Fig. 4. Characterization of the performance of stimulus recovery
using the recurrent neural network I. (a) Original (blue) and the
reconstructed stimulus (red). (b) Trajectories of the vector c. (c)
Value of the objective function cTGc as a function of time. (d)
SNR of the reconstructed signal.

IV. VIDEO TIME ENCODING MACHINES

As we already mentioned, video TEMs represent space-
time stimuli in the spike domain. The video TEM architecture
consists of receptive fields in cascade with a population of
spiking neurons. Along with the parameters describing the
encoding circuit, the multidimensional output spike train is
used to reconstruct the original spatio-temporal stimulus.
Following an approach similar to the one in the previous
sections, we first describe the process of encoding and then
provide a reconstruction algorithm based on spike times.

A. Modeling of video signal

The space of trigonometric polynomials we considered in
the previous sections can easily be extended to the tri-variable
trigonometric space of polynomials H. In H every element
is expressed as

I(x, y, t) =

Mx∑
mx=−Mx

My∑
my=−My

Mt∑
mt=−Mt

cmx,my,mtemx,my,mt

(15)
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Fig. 5. Characterization of stimulus recovery using the recurrent
neural network II. (a) Trajectories of the vector c. (b) Value of the
objective function cTGc as a function of time. (c) SNR of the
reconstructed signal. (d) Norm of the error Gc− q of the equality
constraint.

where

emx,my,mt
(x, y, t) = exp

(
jmx

Ωx
Mx

x+ jmy
Ωy
My

y + jmt
Ωt
Mt

t

)
is an element of the basis of the space H, (Ωx,Ωy,Ωt) and
(Mx,My,Mt) are, respectively, the bandwidth and the order
of the trigonometric polynomial in each variable. An element
I ∈ H is, respectively, periodic in each variable with period

Sx =
2πMx

Ωx
, Sy =

2πMy

Ωy
, St =

2πMt

Ωt
.

The inner product is defined ∀I1, I2 ∈ H as,

〈I1, I2〉 =
1

SxSySt

∫ Sx

0

∫ Sy

0

∫ St

0

I1(x, y, t)I2(x, y, t)dxdydt.

(16)
H is also a RKHS with reproducing kernel

K(x, y, t;x′, y′, t′) =

Mx∑
mx=−Mx

My∑
my=−My

Mt∑
mt=−Mt

emx,my,mt(x− x′, y − y′, t− t′).

The effectiveness of using the above Hilbert space as a
model of visual stimuli is justified in [3].



B. Encoding

As shown in Fig. 6, the architecture of the vTEM consists
of two cascaded building blocks, similar in structure to the
TEMs described in the previous sections.

 Neural

Circuit 1

 Neural

Circuit 2

 Neural

Circuit N

Fig. 6. Architecture of the Video Time Encoding Machine.

First, the video signal is passed through a set of visual
receptive fields. The operation of the jth visual receptive
field Dj(x, y, t) is given by the operator SLj : H → Ht by

SLjI =

∫
R

(∫
R2

Dj(x, y, s)I(x, y, t− s)dxdy
)
ds = vj(t).

(17)
Here, Ht denotes the univariable trigonometric polynomial
space with bandwidth Ωt and order Mt. Note that the above
operator maps a 3-D space into a 1-D space.

A simplified case when the visual receptive field is spatio-
temporal separable is usually considered. In this case, the j’th
receptive field can be separated into the spatial receptive field
Dj
S(x, y) and the temporal receptive field Dj

T (t) such that

Dj(x, y, t) = Dj
S(x, y)Dj

T (t).

The type of spatial receptive fields usually considered
are Gabor frames and Difference of Gaussian frames. They
resemble the spatial receptive fields of simple cells in the
Primary Visual Cortex (V1) and Retinal Ganglion Cells
(RGCs) in the retina, respectively.

Each spatial receptive field is derived from a mother
wavelet. Given the mother wavelet γ(x, y), the set of all
receptive fields can be obtained by performing the following
three operations or their combinations:
• Dilation Dα, α ∈ R\{0}: Dαγ(x, y) = |α|−1γ( xα ,

y
α ),

• Rotation Rθ, θ ∈ [0, 2π): Rθγ(x, y) = γ(x cos θ +
y sin θ,−x sin θ + y cos θ),

• Translation τx0,y0 , (x0, y0) ∈ R2: τx0,y0γ(x, y) = γ(x−
x0, y − y0).

In order to reconstruct the video signal, we require the set
of the receptive field to form a frame and cover the entire
spatial field.

Then, each output of the visual receptive fields is fed into
a neural circuit. Let us denote the output of the jth neural
circuit as (tjk), k = 1, 2, · · · , nj . The operation of the neural
circuit can be described by a bounded linear functional TLjk :
Ht → R, where

TLjkv
j = qjk, for vj ∈ Ht.

Combining the two cascaded modules together and assum-
ing that there is a total N visual receptive fields, the jth of
which is connected with the jth neural circuit that generates
a single spike train (tjk), k = 1, 2, · · · , nj , j = 1, 2, · · · , N ,
we define bounded linear functionals Ljk : H → R as

Ljk = TLjk
SLj

and therefore

LjkI = TLjk
SLjI = 〈I, φjk〉 = qjk,

where

φjk(x, y, t) = 〈φjk,Kx,y,t〉 = LjkKx,y,t,

with Kx,y,t(x
′, y′, t′) = K(x, y, t;x′, y′, t′). Thus the op-

eration of the vTEMs can again be reduced to generalized
sampling for functions in H.

C. Video Time Decoding

As before, the output spike trains of vTEMs are used
for the reconstruction of the video stimulus. Adapting the
previous notation, reconstruction is again formulated as a
variational problem of the form

Î = argmin
I∈H

{
N∑
j=1

nj∑
k=1

(
〈I, φjk〉 − q

j
k

)2

+ nλ‖I‖2H}, (18)

where λ is the smoothing parameter and n =
∑N
j=1 nj is

the total number of spikes. Its solution is of the form

Î =

N∑
j=1

nj∑
k=1

cjkφ
j
k, (19)

where c =
[
c11, c

1
2, · · · , c1n1

, c21, c
2
2, · · · , c2n2

, · · · , cNnN

]T
sat-

isfies the system of linear equations

GT (G + nλI)c = GTq (20)

with q =
[
q1
1 , q

1
2 , · · · , q1

n1
, q2

1 , q
2
2 , · · · , q2

n2
, · · · , qNnN

]T
, I the

n× n identity matrix and G the block matrix

G =


G11 G12 · · · G1N

G21 G22 · · · G2N

...
...

. . .
...

GN1 GN2 · · · GNN

 ,
with entries of each block given by[

Gij
]
kl

= 〈φik, φ
j
l 〉.

Again, the video reconstruction problem reduces to solving
a system of linear equations [3].



Similar to the single neuron case, we can formulate the
reconstruction as the spline interpolation problem

Î = argmin
I∈H,{Lj

kI=q
j
k}

(n,N)

(k,j)=(1,1)

{‖I‖2H}. (21)

The solution is given by equation (19) and the vector c is
the solution to the optimization problem

minimize 1
2c
TGc

subject to Gc = q
(22)

with G, c,q defined as in equation (20).

V. USING RECURRENT NEURAL NETWORKS FOR VIDEO
TDMS

A. Recurrent Neural Networks

The two recurrent neural networks proposed in section III
can be used, with appropriate modifications, for realizing
video TDMs as well.

For realizing recurrent neural network I differential equa-
tion (8) with c,G and q defined as in equation (20) can be
used. For realizing recurrent neural network II, the differen-
tial equation (14) can again be used with c,G and q defined
by equation (20).

As we have already seen in the results of encoding of
stimuli with a single neuron TEM the decoding may perform
well for small problems that are well-conditioned. If the
problem is ill-conditioned, however, the recurrent neural
network is not able to find the exact solution in a short
period of time. As the encoding circuit grows larger, the
situation could get worse, since the number of spikes for
reconstructing a short video is usually larger than ∼ 10, 000.
A settling time τ can be chosen whenever the cost function
E(c) is within a neighborhood of radius ε of the minimum. In
this case c(t) can be viewed as an approximate solution to the
unconstrained optimization problem. In addition, an adaptive
learning rate [8] can be used to obtain faster convergence.

B. Results

In this section we show an illustrative example of encoding
and decoding a natural video sequence. Shot by a high
speed camera, the video describes the flight initiation of a
fruit fly [3]. It consists of 100 frames with a screen size
of 96 × 96 pixels. For simplicity, the video is considered
to have 100 frames per second with a spatial resolution
of 1/16 (degree/pixel). I(x, y, t) is defined on the domain
[−3, 3] × [−3, 3] × [0, 1]. To encode the video, the vTEM
consisted of 3,408 spatial visual receptive fields, i.e.,

Dj(x, y, t) = Dj(x, y)δ(t), j = 1, 2, · · · , 3408,

where δ(t) is the Dirac delta function. All the spatial
receptive fields are derived from a Gabor mother wavelet.
The output of each receptive field is encoded with an ideal
IAF neuron. The temporal resolution of each spike time is
10−6 s. A total of 47,242 spikes were fired by the 3, 408
neurons in the 1 second duration of the video. To reconstruct
the video, we chose the space of trigonometric polynomials

with parameters Ωx = Ωy = 2π · 4 rad/degree,Ωt =
2π · 4 rad/s,Mx = My = 40,Mt = 8.

The simulations were performed on a computational plat-
form of Tesla S2050 GPU’s. The use of GPU’s is very natural
for our problem setting since the decoding circuit is highly
parallelized. Due to memory constraints, 7 overlapped seg-
ments of the video were reconstructed each time: [0, 200] ms,
[150, 350] ms, [300, 500] ms, [450, 650]ms, [600, 800] ms,
[750, 950] ms and [900, 1000] ms. Two consecutive segments
have an overlap of 50 ms. For the reconstruction of each
time segment, the spikes fired during the time interval of
the segment were used. In order to reduce error at the
boundary of each segment, for each neuron, the last spike
fired before the time segment starts and the first spike
fired after the segment ends were used in the stimulus
reconstruction on each segment. This process of segmented
recovery results in a total of about 12,000 spikes in each
segment. After 7 segments were reconstructed separately,
the whole video was stitched together. The stitching of
50 ms overlaps between two consecutive segments follows
the simple rule: I1(x, y, t)(1− θ(t)) + I2(x, y, t)θ(t), where
θ(t) = sin2

(
π
2 ·

t
0.05

)
and I1, I2 are the 50 ms overlaps of

the first and the second segment, respectively [5].
We first show the decoding results achieved with a video

TDM realized using the recurrent neural network I. In the
simulations, µ was set to a diagonal matrix with equal
diagonal entries. The initial value of the diagonal entries was
set to 5 and exponentially increased with a rate 2.5−10 until
it reached about 300 and the values kept constant thereafter.
(Further increase of the rate may result in numerical instabil-
ity.) After running the neural network for 200 ms, the overall
SNR of the video was 25.4 [dB] and the SSIM index was
0.949.

In the first row of Fig. 7, we show the original video signal
at multiple time instances. From left to right, the motion
video at 0.1s, 0.3s, 0.5s, 0.7s and 0.9s is depicted. In the
second row of Fig. 7, the video reconstruction using recurrent
neural network I is shown. The reconstruction showed high
perceptual quality, although the time for the neural network
to reach the results shown is quite large. A better convergence
may be achieved by adapting the learning rate separately for
each gradient component.

Recall that in the single neuron case the stimulus recov-
ery using the recurrent neural network II showed a better
performance than when using the recurrent neural network
I. Furthermore decoding with RNN II showed a decoding
performance comparable with the recovery method based
on the pseudo-matrix inversion. The reconstruction of video
stimuli encoded in the spike domain with a TDM realized
with the recurrent neural network II after 20 ms is shown
in Fig. 7, bottom row. The SNR is 27.8 dB and the SSIM is
0.967. Note that the decoding performance is similar to that
obtained using the pseudo-inverse method of reconstruction.

With appropriate parameters, the recurrent neural network
II is able to provide a high quality solution to the decoding
problem in very short amount of time. The result above was



Fig. 7. Original Video (top row), reconstruction using the recurrent
neural network I (middle row) and the recurrent neural network II
(bottom row) at t = 0.1, 0.3, 0.5, 0.7 and 0.9 seconds (from left to
right).

obtained after simulating the neural network for only 20
msec. However, even for a shorter amount of time, the RNN
II-based recovery method is able to provide visually accept-
able reconstructions. In Fig. 8 we show the reconstruction
of the same video frame after 0.1, 0.5, 1, 5, 10, 15, 20 msec.
Perceptually, they all show high reconstruction quality. The
SNR and SSIM of the reconstruction are already over 25 [dB]
and 0.94, respectively, at t = 1 ms.

Fig. 8. The same video frame reconstructed using the recurrent
neural network II and shown at iteration time t = 0.1, 0.5, 1, 5, 10,
15 and 20 msec (from left to right).

It is also interesting to note that even in simulations, the
amount of time it takes to obtain a high quality reconstruction
is about the same as when employing the pseudo-inverse
matrix method. A high performance single precision pseudo-
inverse of a square matrix of row order ∼ 12, 000 on a
Tesla C2050 GPU takes about 300 seconds, and the SNR
of the resulting reconstruction is about 27.7 [dB]. With 300
seconds, the neural network for the same problem can be
simulated for about 10 milliseconds. As we have shown, the
perceptual quality as well as other metrics, such as the SSIM
index and the SNR, are comparable to using the pseudo-
inverse matrix method of stimulus recovery. Thus we were
able to provide an alternative to the pseudo-inverse method
of realization of the video TDM. Moreover, the simulation
of the proposed neural network only requires matrix-vector
multiplications that can be readily parallelized for solving
substantially larger problems.

VI. DISCUSSION

The overall method proposed here shall be extended to
more complex situations. As long as the reconstruction is
formulated as an optimization problem, a large variety of
recurrent neural networks can be utilized. These problems
include nonlinear optimization with equality or inequality

constraints [9], [10]. Additional constraints can be imposed
on the reconstruction problem. For example, a sparse solution
can be obtained by minimizing the l1 norm, and the problem
can be formulated as a linear program. Recently, a time
domain linear programming circuit has been proposed [11].
The connections between each layer of the neural network in
the proposed circuit are represented in time domain. Such a
circuit can operate at a very high pulse rate and thus supports
a real-time solution of the optimization problem.

As we have seen, the size of the recurrent neural network
equals the number of spikes to be decoded, rather than the
number of neurons that generate these spikes. For a more
realistic visual stimulus, a much larger neural network is
needed for stimulus reconstruction. Therefore, a massive
number of neurons is required to process the information
encoded by a relatively small number of neurons. This
observation may explain why there is an explosively larger
number of spiking neurons in V1 than in the retina.

How to model the computation of the entries of the matrix
G and the vector q with processes native to dendritic trees
will be described elsewhere.
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