
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 682930, 14 pages
doi:10.1155/2009/682930

Research Article

Reconstruction of Sensory Stimuli Encoded with
Integrate-and-Fire Neurons with Random Thresholds

Aurel A. Lazar and Eftychios A. Pnevmatikakis

Department of Electrical Engineering, Columbia University, New York, NY 10027, USA

Correspondence should be addressed to Eftychios A. Pnevmatikakis, eap2111@columbia.edu

Received 1 January 2009; Accepted 4 April 2009

Recommended by Jose Principe

We present a general approach to the reconstruction of sensory stimuli encoded with leaky integrate-and-fire neurons with random
thresholds. The stimuli are modeled as elements of a Reproducing Kernel Hilbert Space. The reconstruction is based on finding
a stimulus that minimizes a regularized quadratic optimality criterion. We discuss in detail the reconstruction of sensory stimuli
modeled as absolutely continuous functions as well as stimuli with absolutely continuous first-order derivatives. Reconstruction
results are presented for stimuli encoded with single as well as a population of neurons. Examples are given that demonstrate the
performance of the reconstruction algorithms as a function of threshold variability.

Copyright © 2009 A. A. Lazar and E. A. Pnevmatikakis. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. Introduction

Formal spiking neuron models, such as integrate-and-fire
(IAF) neurons, encode information in the time domain
[1]. Assuming that the input signal is bandlimited and the
bandwidth is known, a perfect recovery of the stimulus based
upon the spike times can be achieved provided that the spike
density is above the Nyquist rate [2]. These results hold
for a wide variety of sensory stimuli, including audio [3]
and video [4], encoded with a population of IAF neurons.
More generally, Time Encoding Machines (TEMs) encode
analog amplitude information in the time domain using only
asynchronous circuits [2]. Time encoding has been shown
to be closely related to traditional amplitude sampling. This
observation has enabled the application of a large number of
recovery results obtained for signals encoded using irregular
sampling to time encoding.

A common underlying assumption of TEM models is
that the input stimulus is bandlimited with known band-
width. Implicit in this assumption is that the signal is defined
on the entire real line. In sensory systems, however, the
bandwidth of the signal entering the soma of the neuron is
often unknown. Ordinarily good estimates of the bandwidth
are not available due to nonlinear processing in the upstream
transduction pathways, for example, contrast extraction in

vision. In addition, stimuli have limited time support and the
neurons respond with a finite number of spikes.

Furthermore, neuronal spike trains exhibit variability
in response to identical input stimuli. In simple formal
spiking neuron models, such as IAF neurons, this variability
is associated with random thresholds [5]. IAF neurons with
random thresholds have been used to model the observed
spike variability of certain neurons of the fly visual system
[6]. Linear recovery methods were proposed in [7] for an
ideal IAF neuron with exponentially distributed thresholds
that exhibits Poisson statistics.

A perfect recovery of a stimulus encoded with a formal
neuron model with random threshold along the lines of [3]
is not possible, and an alternative reconstruction formalism
is needed. Consequently, a major goal is the development
of a mathematical framework for the representation and
recovery of arbitrary stimuli with a population of neurons
with random thresholds on finite time intervals. There are
two key elements to such an extension. First, the signal
model is defined on a finite time interval and, therefore, the
bandlimited assumption does not hold. Second, the number
of degrees of freedom in signal reconstruction is reduced by
either introducing a natural signal recovery constraint [8] or
by assuming that the stimuli are restricted to be “smooth.”

mailto:eap2111@columbia.edu

2 EURASIP Journal on Advances in Signal Processing

In this paper, we propose a Reproducing Kernel Hilbert
Space (RKHS) [9] framework for the representation and
recovery of finite length stimuli with a population of leaky
integrate-and-fire (LIF) neurons with random thresholds.
More specifically, we set up the recovery problem as a
regularized optimization problem, and use the theory of
smoothing splines in RKHS [10] to derive an optimal
(nonlinear) solution.

RKHSs play a major role in statistics [10] and in machine
learning [11]. In theoretical neuroscience they have been
little used with the exception of [12]. In the latter work,
RKHSs have been applied in a probabilistic setting of point
process models to study the distance between spike trains
of neural populations. Spline models have been used in
computational neuroscience in the context of estimating
the (random) intensity rate from raster neuron recordings
[13, 14]. In this paper we will bring the full power of RKHSs
and the theory of smoothing splines to bear on the problem
of reconstruction of stimuli encoded with a population of
IAF neurons with random thresholds.

Although the methodology employed here applies to
arbitrary RKHSs, for example, space of bandlimited stimuli,
we will focus in this paper on Sobolev spaces. Signals in
Sobolev spaces are rather natural for modeling purposes
as they entail absolutely continuous functions and their
derivatives. A more precise definition will be given in
the next section. The inner-product in Sobolev spaces is
based on higher-order function derivatives. In the RKHS
of bandlimited functions, the inner-product formulation of
the t-transform is straightforward because of the simple
structure of the inner-product in these space [3, 4]. However
this is not the case for Sobolev spaces, since the inner-product
has a more complex structure. We will be interpreting the t-
transform as a linear functional on the Sobolev space, and
then through the use of the Riesz representation theorem,
rewrite it in an inner-product form that is amenable to
further analytical treatment. We can then apply the key
elements of the theory developed in [10].

This paper is organized as follows. In Section 2 the
problem of representation of a stimulus defined in a class of
Sobolev spaces and encoded by leaky integrate-and-fire (LIF)
neurons with random thresholds is formulated. In Section 3
the stimulus reconstruction problem is addressed when the
stimuli are encoded by a single LIF neuron with random
threshold. The reconstruction algorithm calls for finding
a signal that minimizes a regularized optimality criterion.
Reconstruction algorithms are worked out in detail for the
case of absolutely continuous stimuli as well as stimuli with
absolutely continuous first-order derivatives. Two examples
are described. In the first, the recovery of a stimulus from
its temporal contrast is given. In the second, the recovery of
stimuli encoded with a pair of rectifier neurons is presented.
Section 4 generalizes the previous results to stimuli encoded
with a population of LIF neurons. The paper concludes with
Section 5.

2. Encoding of Stimuli with LIF Neurons with
Random Thresholds

In this section we formulate the problem of stimulus
encoding with leaky integrate-and-fire neurons with random
thresholds. The stimuli under consideration are defined on a
finite time interval and are assumed to be functions that have
a smoothness property. The natural mathematical setting for
the stimuli considered in this paper is provided by function
spaces of the RKHS family [15]. A brief introduction to
RKHSs is given in Appendix A.1.

We show that encoding with LIF neurons with random
thresholds is akin to taking a set of noisy measurements on
the stimulus. We then demonstrate that these measurements
can be represented as projections of the stimulus on a set of
sampling functions.

2.1. Modeling of Sensory Stimuli as Elements of RKHSs. There
is a rich collection of Reproducing Kernel Hilbert Spaces
that have been thoroughly investigated and the modeler can
take advantage of [9]. In what follows we restrict ourselves
to a special class of RKHSs, the so-called Sobolev spaces
[16]. Sobolev spaces are important because they combine the
desirable properties of important function spaces (e.g., abso-
lute continuous functions, absolute continuous derivatives,
etc.), while they retain the reproducing property. Moreover a
parametric description of the space (e.g., bandwidth) is not
required.

Stimuli are functions u = u(t), t ∈ T , defined as
elements of a Sobolev space Sm = Sm(T), m ∈ N∗. The
Sobolev space Sm(T), for a given m, m ∈ N∗, is defined as

Sm =
{
u | u,u′, . . . ,u(m−1) absolutely continuous,

u(m) ∈ L2(T)
}

,
(1)

where L2(T) is the space of functions of finite energy over
the domain T . We will assume that the domain T is a finite
interval on R and, w.l.o.g, we set it to T = [0, 1]. Note that
the space Sm can be written as Sm := H0 ⊕H1 (⊕ denotes
the direct sum) with

H0 := span
{

1, t, . . . , tm−1},

H1 :=
{
u | u ∈ Cm−1(T), u(m) ∈ L2(T),

u(0) = u′(0) = · · · = u(m−1)(0) = 0
}

,

(2)

where Cm−1(T) denotes the space of m − 1 continuously
differentiable functions defined on T . It can be shown [9]
that the space Sm endowed with the inner-product 〈·, ·〉 :
Sm × Sm �→ R given by

〈u, v〉 :=
m−1∑
i=0

u(i)(0)v(i)(0) +
∫ 1

0
u(m)(s)v(m)(s) ds (3)

is an RKHS with reproducing kernel

K(s, t) =
m∑
i=1

χi(s)χi(t) +
∫ 1

0
Gm(s, τ)Gm(t, τ) dτ, (4)

EURASIP Journal on Advances in Signal Processing 3

with χi(t) = ti−1/(i − 1)! and Gm(t, s) = (t − s)m−1
+ /(m −

1)!. Note that the reproducing kernel of (4) can be written as
K(s, t) = K0(s, t) + K1(s, t) with

K0(s, t) =
m∑
i=1

χi(s)χi(t),

K1(s, t) =
∫ 1

0
Gm(s, τ)Gm(t, τ) dτ.

(5)

The kernels K0, K1 are reproducing kernels for the spaces
H0, H1 endowed with inner products given by the two terms
on the right-hand side of (3), respectively. Note also that the
functions χi(t), i = 1, 2, . . . ,m, form an orthogonal base in
H0.

Remark 1. The norm and the reproducing kernel in an RKHS
uniquely determine each other. For examples of Sobolev
spaces endowed with a variety of norms, see [9].

2.2. Encoding of Stimuli with a LIF Neuron. Let u = u(t), t ∈
T , denote the stimulus. The stimulus biased by a constant
background current b is fed into a LIF neuron with resistance
R and capacitance C. Furthermore, the neuron has a random
threshold with mean δ and variance σ2. The value of the
threshold changes only at spike times, that is, it is constant
between two consecutive spikes. Assume that after each spike
the neuron is reset to the initial value zero. Let (tk), k =
1, 2, . . . ,n + 1, denote the output spike train of the neuron.
Between two consecutive spike times the operation of the LIF
neuron is fully described by the t-transform [1]∫ tk+1

tk
(b + u(s)) exp

(
− tk+1 − s

RC

)
ds = Cδk, (6)

where δk is the value of the random threshold during the
interspike interval [tk, tk+1). The t-transform can also be
rewritten as

Lku = qk + εk, (7)

where Lk : Sm �→ R is a linear functional given by

Lku =
∫ tk+1

tk
u(s) exp

(
− tk+1 − s

RC

)
ds,

qk = Cδ − bRC
(

1− exp
(
− tk+1 − tk

RC

))
εk = C(δk − δ),

, (8)

and the εk’s are i.i.d. random variables with mean zero and
variance (Cσ)2 for all k = 1, 2, . . . ,n. The sequence (Lk), k =
1, 2, . . . ,n, has a simple interpretation; it represents the set of
n measurements performed on the stimulus u.

Lemma 1. The t-transform of the LIF neuron can be written
in inner-product form as

〈φk,u〉 = qk + εk, (9)

where

φk(t) =
∫ tk+1

tk
K(t, s) exp

(
− tk+1 − s

RC

)
ds, (10)

qk, εk are given by (8), k = 1, 2, . . . ,n, and 〈·, ·〉 is the inner-
product (3) for the space Sm,m ∈ N. In addition the εk’s are
i.i.d. random variables with mean zero and variance (Cσ)2 for
all k = 1, 2, . . . ,n.

Proof. We will rewrite the linear functionals of (7) in inner-
product form, that is, as projections in Sm. The existence of
an inner-product form representation is guaranteed by the
Riesz lemma (see Appendix A.2). Thus, there exists a set of
functions φk ∈ Sm, such that

Lku = 〈φk,u〉, (11)

for all k = 1, 2, . . . ,n. Since Sm is a RKHS, we also have that

φk(t) = 〈φk,Kt〉 = LkKt =
∫ tk+1

tk
K(t, s) exp

(
− tk+1 − s

RC

)
ds,

(12)

where Kt(·) = K(·, t), for all t ∈ T .

The main steps of the proof of Lemma 1 are schematically
depicted in Figure 1. The t-transform has an equivalent
representation as a series of linear functionals acting on
the stimulus u. These functionals are in turn represented as
projections of the stimulus u on a set of functions in the space
Sm.

2.3. Encoding of Stimuli with a Population of LIF Neurons. In
this section we briefly discuss the encoding of stimuli with
a population of LIF neurons with random thresholds. The
presentation follows closely the one in Section 2.2. The main
result obtained in Lemma 2 will be used in Section 4.

Consider a population of N LIF neurons where neuron j
has a random threshold with mean δ j and standard deviation
σ j , bias bj , resistance Rj , and capacitance Cj . Whenever the
membrane potential reaches its threshold value, the neuron

j fires a spike and resets its membrane potential to 0. Let t
j
k

denote the kth spike of neuron j, with k = 1, 2, . . . ,nj + 1.
Here nj + 1 denotes the number of spikes that neuron j
triggers, j = 1, 2, . . . ,N .

The t-transform of each neuron j is given by (see also
(6))

∫ t jk+1

t
j
k

(
bj + u(s)

)
exp

⎛⎝− t jk+1 − s
RjC j

⎞⎠ ds = Cjδ
j
k , (13)

for all k = 1, 2, . . . ,nj , and j = 1, 2, . . . ,N .

Lemma 2. The t-transform of the LIF population can be
written in inner-product form as〈

1
Cjσ j

φ
j
k,u

�
= 1
Cjσ j

q
j
k + ε

j
k, (14)

4 EURASIP Journal on Advances in Signal Processing

(tk)
∫ tk+1

tk
(b + u(s))e−(tk+1−s)/RCds = Cδ

t-transform equations

Lku = qk

Linear
functional

〈φk ,u〉 = qk

Inner productSpike train

Figure 1: The operator interpretation of stimulus encoding with a LIF neuron.

with φ
j
k, q

j
k essentially given by (10), (8) (plus an added

superscript j), and

ε
j
k =

δ
j
k − δ j
σ j

(15)

are i.i.d. random variables with mean zero and variance one for
all k = 1, 2, . . . ,nj , and j = 1, 2, . . . ,N .

Proof. Largely the same as the proof of Lemma 1.

3. Reconstruction of Stimuli Encoded with a LIF
Neuron with Random Threshold

In this section we present in detail the algorithm for the
reconstruction of stimuli encoded with a LIF neuron with
random threshold. Two cases are considered in detail. First,
we provide the reconstruction of stimuli that are modeled
as absolutely continuous functions. Second, we derive the
reconstruction algorithm for stimuli that have absolutely
continuous first-order derivatives. The reconstructed stimu-
lus satisfies a regularized optimality criterion. Examples that
highlight the intuitive properties of the results obtained are
given at the end of this section.

3.1. Reconstruction of Stimuli in Sobolev Spaces. As shown in
Section 2.2, a LIF neuron with random threshold provides
the reader with the set of measurements

〈φk,u〉 = qk + εk, (16)

where φk ∈ Sm for all k = 1, 2, . . . ,n. Furthermore, (εk),
k = 1, 2, . . . ,n, are i.i.d. random variables with zero mean
and variance (Cσ)2.

An optimal estimate û of u minimizes the cost functional

1
n

n∑
k=1

(
qk − 〈φk,u〉)2 + λ‖P1u‖2, (17)

where P1 : Sm �→ H1 is the projection of the Sobolev space
Sm to H1. Intuitively, the nonnegative parameter λ regulates
the choice of the estimate û between faithfulness to data
fitting (λ small) and maximum smoothness of the recovered
signal (λ large). We further assume that the threshold of the
neuron is modeled as a sequence of i.i.d. random variables
(δk), k = 1, 2, . . . ,n, with Gaussian distribution with mean
δ and variance σ2. Consequently, the random variables (εk),
k = 1, 2, . . . ,n, are i.i.d. Gaussian with mean zero and
variance (Cσ)2. Of main interest is the effect of random
threshold fluctuations for σ � δ. (Note that for σ � δ the
probability that the threshold is negative is close to zero). We
have the following theorem.

Theorem 1. Assume that the stimulus u = u(t), t ∈ [0, 1], is
encoded into a time sequence (tk), k = 1, 2, . . . ,n, with a LIF
neuron with random threshold that is fully described by (6).
The optimal estimate û of u is given by

û =
m∑
i=1

diχi +
n∑
k=1

ckψk, (18)

where

χi(t) = ti−1

(i− 1)!
,

ψk(t) =
∫ tk+1

tk
K1(t, s) exp

(
− tk+1 − s

RC

)
ds,

(19)

and the coefficients [c]k = ck and [d]i = di satisfy the matrix
equations

(G + nλI)c + Fd = q,

F
′
c = 0,

(20)

with [G]kl = 〈ψk,ψl〉, [F]ki = 〈φk, χi〉, and [q]k = qk, for all
k, l = 1, 2, . . . ,n, and i = 1, 2, . . . ,m.

Proof. Since the inner-product 〈φk,u〉 describes the mea-
surements performed by the LIF neuron with random
thresholds described by (6), the minimizer of (17) is exactly
the optimal estimate of u encoded into the time sequence
(tk), k = 1, 2, . . . ,n. The rest of the proof follows from
Theorem 3 of Appendix A.3.

The representation functions ψk are given by

ψk(t) = P1φk = 〈P1φk,Kt〉

= 〈φk, P1Kt〉 = LkK
1
t

=
∫ tk+1

tk
K1(t, s) exp

(
− tk+1 − s

RC

)
ds.

(21)

Finally, the entries of the matrices F and G are given by

[F]ki =
∫ tk+1

tk
χi(s) exp

(
− tk+1 − s

RC

)
ds,

[G]kl =
〈
ψk,ψl

〉 = ∫
T
ψ(m)
k (s)ψ(m)

l (s) ds,

(22)

for all k, l = 1, 2, . . . ,n, and i = 1, 2, . . . ,m. The system of
(20) is identical to (A.8) of Theorem 3 of Appendix A.3.

EURASIP Journal on Advances in Signal Processing 5

Algorithm 1. The coefficients c and d satisfying the system of
(20) are given by

c = M−1
(

I− F
(

F′M−1F
)−1

F′M−1
)

q,

d = (F′M−1F
)−1

F′M−1q,
(23)

with M = G + nλI.

Proof. The exact form of the coefficients above is derived as
part of the results of Algorithm 6 (see Appendix A.3). The
latter algorithm also shows how to evaluate the coefficients c
and d based on the QR decomposition of the matrix F.

3.2. Recovery in S1 and S2. In this section we provide
detailed algorithms for reconstruction of stimuli in S1 and
S2, respectively, encoded with LIF neurons with random
thresholds. In the explicit form given, the algorithms can be
readily implemented.

3.2.1. Recovery of S1-Stimuli Encoded with a LIF Neuron
with Random Threshold. The stimuli u in this section are
elements of the Sobolev space S1. Thus, stimuli are modeled
as absolutely continuous functions on [0, 1] whose derivative
can be defined in a weak sense. The Sobolev space S1

endowed with the inner-product

〈u, v〉 = u(0)v(0) +
∫ 1

0
u′(s)v′(s) ds (24)

is a RKHS with reproducing kernel given by (see also (4))

K(t, s) = 1 +
∫ 1

0
1(s > τ) · 1(t > τ) dτ = 1 + min(t, s). (25)

The sampling functions φk(t), k = 1, 2, . . . ,n, given by (10),
amount to

φk(t)
RC

= 1− exp
(
− tk+1 − tk

RC

)

+
[

1− exp
(
− tk+1 − tk

RC

)]
t · 1(t ≤ tk)

+
[
t − RC exp

(
− tk+1 − t

RC

)
+ (RC − tk) exp

(
− tk+1 − tk

RC

)]
· 1(tk < t ≤ tk+1)

+
[
tk+1− tk exp

(
− tk+1 − tk

RC

)
−RC

(
1−exp

(
− tk+1−tk

RC

))]
· 1(tk+1 < t).

(26)

The representation functions ψk(t) are given, as before, by

ψk(t) = 〈ψk,Kt〉 = 〈φk, P1Kt〉

= LkKt − LkK0
t

= φk(t)− RC
(

1− exp
(
− tk+1 − tk

RC

))
,

(27)

for all k = 1, 2, . . . ,n. For the entries of G and F from (22)
and (24) we have that

[G]kl
(RC)2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1− exp

(
− tl+1 − tl

RC

))
×
(
tk+1−RC−(tk−RC) exp

(
− tk+1−tk

RC

))
, l < k,

tk+1− 3RC
2

−2(tk−RC) exp
(
− tk+1 − tk

RC

)
+
(
tk − RC

2

)
exp

(
− tk+1 − tk

RC/2

)
, l = k,(

1− exp
(
− tk+1 − tk

RC

))
×
(
tl+1−RC−(tl−RC) exp

(
− tl+1 − tl

RC

))
, l > k,

[F]k1= RC
(

1− exp
(
− tk+1 − tk

RC

))
,

(28)

for all k = 1, 2, . . . ,n, and all l = 1, 2, . . . ,n.

Algorithm 2. The minimizer û ∈ S1 is given by (18) where

(i) the coefficients d and c are given by (23) with the
elements of the matrices G and F specified by (28)
and,

(ii) the representation functions (ψk), k = 1, 2, . . . ,n, are
given by (27) and (26).

Remark 2. If the S1-stimuli are encoded with an ideal IAF
neuron with random threshold, the quantities of interest for
implementing the reconstruction Algorithm 2 are given by

φk(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

tk+1 − tk + (tk+1 − tk)t, t ≤ tk,

tk+1 − tk − t2

2
+ tk+1t −

t2k
2

, tk < t ≤ tk+1,

tk+1 − tk +
t2k+1 − t2k

2
, tk+1 < t,

ψk(t) = φk(t)− (tk+1 − tk),

[G]kl =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2

(
t2l+1 − t2l

)
(tk+1 − tk), l < k,

1
3

(tk+1 − tk)2(tk+1 + 2tk), l = k

1
2

(
t2k+1 − t2k

)
(tl+1 − tl), l > k,

,

[F]k1 = tk+1 − tk,

(29)

for all k = 1, 2, . . . ,n, and all l = 1, 2, . . . ,n. Note that the
above quantities can also be obtained by taking the limits of
(8), (26), (27), (28) when R → ∞.

3.2.2. Recovery of S2-Stimuli Encoded with a LIF Neuron with
Random Threshold. In this section stimuli u belong to the
Sobolev space S2, that is, the space of signals with absolutely
continuous first-order derivatives. Endowed with the inner-
product

〈u, v〉 = u(0)v(0) + u′(0)v′(0) +
∫ 1

0
u
′′

(s)v
′′

(s) ds, (30)

6 EURASIP Journal on Advances in Signal Processing

S2 is a RKHS with reproducing kernel

K(s, t) = 1 + ts +
∫min(s,t)

0
(s− τ)(t − τ) dτ

= 1 + ts +
1
2

min (s, t)2 max(s, t)− 1
6

min (s, t)3.

(31)

The sampling functions φk, k = 1, 2, . . . ,n, are given by (10)
and are equal to

etk+1/RCφk(t)

= gk(t) +

[
t2
f1(tk+1)− f1(tk)

2
− t3 f0(tk+1)− f0(tk)

6

]

· 1(t ≤ tk)

+

[
t2
f1(tk+1)− f1(t)

2
− t3 f0(tk+1)− f0(t)

6

+t
f2(t)− f2(tk)

2
− f3(t)− f3(tk)

6

]

· 1(tk < t ≤ tk+1)

+

[
t
f2(tk+1)− f2(tk)

2
− f3(tk+1)− f3(tk)

6

]

· 1(tk+1 < t),

(32)

where the functions f0, f1, f2, f3 : T �→ R are of the form

f0(x) = RC exp
(
x

RC

)
,

f1(x) = RC(x − RC) exp
(
x

RC

)
,

f2(x) = RC
(

(RC)2 + (x − RC)2
)

exp
(
x

RC

)
,

f3(x) = RC
(

(x − RC)3 + (RC)2(3x − 5RC)
)

exp
(
x

RC

)
,

gk(t) = f0(tk+1)− f0(tk) + t
(
f1(tk+1)− f1(tk)

)
.

(33)

Note that for each i, i = 0, 1, 2, 3,

fi(x) =
∫ 1

0
xi exp

(
x

RC

)
dx. (34)

The representation functions are equal to

ψk(t) = φk(t)− e−tk+1/RCgk(t), (35)

and the entries of F are given by

[F]k1 = e−tk+1/RC
(
f0(tk+1)− f0(tk)

)
,

[F]k2 = e−tk+1/RC
(
f 1(tk+1)− f1(tk)

)
.

(36)

Finally, the entries of G can also be computed in closed form.
To evaluate them note that ψk(0) = ψ′k (0) = 0, for all k, k =
1, 2, . . . ,n. Therefore

[G]kl = 〈ψk,ψl〉 =
∫ 1

0
ψ
′′
k (s)ψ

′′
l (s) ds,

ψ
′′
k (t)

RC

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tk+1−RC−(tk−RC) exp
(
− tk+1−tk

RC

)
−t
(

1− exp
(
− tk+1 − tk

RC

))
, t ≤ tk,

tk+1−t−RC
(

1−exp
(
− tk+1 − t

RC

))
, tk < t ≤ tk+1,

0, tk+1 < t.

(37)

Denoting by

yk = 1− exp
(
− tk+1 − tk

RC

)
,

zk = tk+1 − RC − (tk − RC) exp
(
− tk+1 − tk

RC

)
,

(38)

the entries of the G matrix amount to

[G]kl

=
(

1
3
t3k yk yl −

1
2
t2k
(
ykzl + ylzk

)
+ tkzkzl

+ zk

(
(tk+1 − RC)(tk+1 − tk)− t2k+1 − t2k

2
+ (RC)2yk

)

+yk

(
1
2

(tk+1−RC)
(
t2k+1−t2k

)
− 1

3

(
t3k+1−t3k

)
+(RC)2zk

))
· 1(k < l)

+
(

1
3
t3k y

2
k − t2k ykzk + tkz

2
k +

1
3

(tk+1 − tk)3

− RC(tk+1 − tk)2 − 2(RC)2(tk+1 − tk)
(
1− 2yk

)
+

1
2

(RC)3
(

1− exp
(
− tk+1 − tk

RC/2

)))
· 1(k = l)

+
(

1
3
t3l yl yk −

1
2
t2l
(
ylzk + ykzl

)
+ tlzlzk

+ zl

(
(tl+1 − RC)(tl+1 − tl)−

t2l+1 − t2l
2

+ (RC)2yl

)

+yl

(
1
2

(tl+1−RC)
(
t2l+1−t2l

)
− 1

3

(
t3l+1−t3l

)
+(RC)2zl

))
· 1(k > l).

(39)

Algorithm 3. The minimizer û ∈ S2 is given by (18) where

EURASIP Journal on Advances in Signal Processing 7

(i) the coefficients d and c are given by (23) with the
elements of the matrices G and F specified by (39)
and (36), respectively, and,

(ii) the representation functions (ψk), k = 1, 2, . . . ,n, are
given by (35) and (32).

Remark 3. If S2-stimuli are encoded with an ideal IAF
neuron with random threshold, the quantities of interest in
implementing the reconstruction Algorithm 3 are given by

φk(t)= ψk(t) + tk+1 − tk +
t
(
t2k+1 − t2k

)
2

,

ψk(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

t2

4

(
t2k+1 − t2k

)
− t3

6
(tk+1 − tk), t ≤ tk,

t4k
24
− t

6
t3k +

t2

4
t2k+1 −

t3

6
tk+1 +

t4

24
, tk < t ≤ tk+1,

− 1
24

(
t4k+1 − t4k

)
+
t

6

(
t3k+1 − t3k

)
, tk+1 < t,

[G]kl=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
t3l+1−t3l

)(
t2k+1−t2k

)
12

−
(
t4l+1−t4l

)
(tk+1−tk)

24
, l < k,

1
4

(tk+1−tk)2
(

1
3
t3k+tkt2k+1 +

1
5

(tk+1−tk)3
)

, l = k,(
t3k+1−t3k

)(
t2l+1−t2l

)
12

−
(
t4k+1−t4k

)
(tl+1−tl)

24
, l > k,

[F]ki=
tik+1 − tik

i
,

(40)

for all k = 1, 2, . . . ,n, all l = 1, 2, . . . ,n, and all i = 1, 2. Note
that the above quantities can also be obtained by taking the
limits of (8), (32), (35), (36), (39) when R → ∞.

3.3. Examples. In this section we present two examples that
demonstrate the performance of the stimulus reconstruction
algorithms presented above. In the first example, a simplified
model of the temporal contrast derived from the photocur-
rent drives the spiking behavior of a LIF neuron with random
threshold. While the effective bandwidth of the temporal
contrast is typically unknown, the analog waveform is
absolutely continuous and the first-order derivative can be
safely assumed to be absolutely continuous as well.

In the second example, the stimulus is encoded by a
pair of nonlinear rectifier circuits each cascaded with a LIF
neuron. The rectifier circuits separate the positive and the
negative components of the stimulus. Both signal compo-
nents are assumed to be absolutely continuous. However, the
first-order derivatives of the component signals are no longer
absolutely continuous.

In both cases the encoding circuits are of specific
interest to computational neuroscience and neuromorphic
engineering. We argue that Sobolev spaces are a natural
choice for characterizing the stimuli that are of interest in
these applications and show that the algorithms perform well
and can essentially recover the stimulus in the presence of
noise.

3.3.1. Encoding of Temporal Contrast with a LIF Neuron.
A key signal in the visual system is the (positive) input
photocurrent. Nonlinear circuits of nonspiking neurons
in the retina extract the temporal contrast of the visual
field from the photocurrent. The temporal contrast is then
presented to the first level of spiking neurons, that is, the
retinal ganglion cells (RGCs) [17]. If I = I(t) is the input
photocurrent, then a simplified model for the temporal
contrast u = u(t) is given by the equation

u(t) = d log(I(t))
dt

= 1
I(t)

dI

dt
. (41)

This model has been employed in the context of address
event representation (AER) circuits for silicon retina and
related hardware applications [18]. It is aboundingly clear
that even when the input bandwidth of the photocurrent I
is known, the efficient bandwidth of the actual input u to
the neuron cannot be analytically evaluated. However, the
somatic input is still a continuously differentiable function,
and it is natural to assume that it belongs to the Sobolev
spaces S1 and S2. LIF neuron models have been used to fit
responses of RGCs neurons in the early visual system [19].

In our example the input photocurrent is assumed to
be a positive bandlimited function with bandwidth Ω =
2π · 30 rads/s. The neuron is modeled as a LIF neuron with
random threshold. After each spike, the value of the neuron
threshold was picked from a Gaussian distribution N (δ, σ2).
The LIF neuron parameters were b = 2.5, δ = 2.5, σ = 0.1,
C = 0.01, and R = 40 (all nominal values). The neuron fired
a total of 108 spikes.

Figure 2(a) shows the optimal recovery in S2 with
regularization parameter λ = 1.3× 10−14. Figure 2(b) shows
the Signal-to-Noise Ratio for various values of the smoothing
parameter λ in S1 (blue line) and S2 (green line). The red
line shows the SNR when the perfect recovery algorithm of
[1] with the sinc kernel K(s, t) = sin(2Ω(t − s))/π(t − s),
(s, t) ∈ R2, is used (other choices of sinc kernel bandwidth
give similar or lower SNR). The cyan line represents the
threshold SNR defined as 10 log10(δ/σ). Recovery in S2

outperforms recovery in S1 but gives satisfactory results for a
smaller range of the smoothing parameter. For a range of the
regularization parameter λ both reconstructions outperform
the performance of the recovery algorithm for bandlimited
stimuli based upon the sinc kernel [1]. Finally, the stimulus
recovery SNR is close to the threshold SNR.

3.3.2. Encoding the Stimulus Velocity with a Pair of LIF
Neurons. The stimulus is encoded by a pair of nonlinear
rectifier circuits each cascaded with a LIF neuron. The
rectifier circuits separate the positive and the negative
components of the stimulus. (see Figure 3). Such a clipping-
based encoding mechanism has been used for modeling the
direction selectivity of the H1 cell in the fly lobula plate [7].

8 EURASIP Journal on Advances in Signal Processing

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
A

m
pl

it
u

de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

Original
Recovered S2

(a)

0

2

4

6

8

10

12

14

16

SN
R

(d
B

)

10−18 10−16 10−14 10−12 10−10 10−8 10−6

λ

S1

S2

TDM
SNRln

(b)

Figure 2: Recovery of temporal contrast encoded with a LIF. The stimulus and its first-order derivative are absolutely continuous.

u(t)

u+(t)

u−(t)

R1C1

R2C2

δ1

δ2

(t1k)

(t2k)

Recovery
algorithm

Recovery
algorithm

û+(t)

û(t)

û−(t)

Spike triggered reset

Figure 3: Circuit for encoding of stimuli velocity.

Formally, the stimulus is decomposed into its positive
u+ and negative u− components by the nonlinear clipping
mechanism:

u+(t) = max(u(t), 0),

u−(t) = −min(u(t), 0),

u(t) = u+(t)− u−(t).

(42)

As an example, the input stimulus u is a bandlimited function
with bandwidth Ω = 2π ·30 rad/s. After clipping, each signal
component is no longer a bandlimited or a differentiable
function. However it is still an absolutely continuous func-
tion and, therefore, an element of the Sobolev space S1. Each
component is encoded with two identical LIF neurons with
parameters b = 1.6, δ = 1, R = 40, andC = 0.01 (all nominal
values). The thresholds of the two neurons are deterministic,
that is, there is no noise in the encoding circuit. Each neuron
produced 180 spikes.

By applying the recovery algorithm for S1-signals, the
two signal components are separately recovered. Finally, by
subtracting the recovered signal components, the original
stimulus is reconstructed. Figure 4 shows the recovered
version of the positive and negative signal components and
of the original stimulus. As it can be seen, both components
are very accurately recovered. Note that since the threshold is
deterministic, the regularization (or smoothing) parameter

λ is set to 0. The corresponding SNRs for the positive
component, negative component, and original stimulus were
27.3 dB, 27.7 dB and 34 dB, respectively.

4. Reconstruction of Stimuli Encoded with a
Population of LIF Neurons with Random
Thresholds

In this section we encode stimuli with a population of
leaky integrate-and-fire neurons with random thresholds.
As in Section 3, the stimuli are assumed to be elements of
a Sobolev space. We first derive the general reconstruction
algorithm. We then work out the reconstruction of stimuli
that are absolutely continuous and stimuli that have an
absolutely continuous first-order derivative. Examples of the
reconstruction algorithm are given at the end of this section.

4.1. Reconstruction of Stimuli in Sobolev Spaces. Let u = u(t),
t ∈ T , be a stimulus in the Sobolev space Sm, m ∈ N∗. An
optimal estimate of û of u is obtained by minimizing the cost
functional

1
n

N∑
j=1

nj∑
k=1

⎛⎝q jk − 〈φjk,u〉
Cjσ j

⎞⎠2

+ λ‖P1u‖2, (43)

EURASIP Journal on Advances in Signal Processing 9

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Time (s)

Positive component

(a)

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

Time (s)

Negative component

(b)

−1.5

−1

−0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

Time (s)

Total

(c)

Figure 4: Encoding the stimulus velocity with a pair of rectifier LIF Neurons. (a) Positive signal component. (b) Negative signal component.
(c) Reconstructed stimulus.

where n = ∑N
j=1 nj and P1 : Sm �→ H1 is the projection of

the Sobolev space Sm to H1. In what follows q denotes the
column vector q = [(1/(C1σ1))q1; . . . ; (1/(CNσN))qN] with

[q j]k = q
j
k, for all j = 1, 2, . . . ,N , and all k = 1, 2, . . . ,nj . We

have the following result.

Theorem 2. Assume that the stimulus u = u(t), t ∈ [0, 1]
is encoded into a time sequence (t

j
k), j = 1, 2, . . . ,N , k =

1, 2, . . . ,nj , with a population of LIF neurons with random
thresholds that is fully described by (13). The optimal estimate
û of u is given by

û =
m∑
i=1

diχi +
N∑
j=1

1
Cjσ j

nj∑
k=1

c
j
kψ

j
k , (44)

where

χi(t) = ti−1

(i− 1)!
,

ψ
j
k(t) =

∫ t jk+1

t
j
k

K1(t, s) exp

⎛⎝− t jk+1 − s
RjC j

⎞⎠ ds.

(45)

The coefficients vectors c = [c1; . . . ; cN] with [c j]k = c
j
k, for all

j = 1, 2, . . . ,N , and all k = 1, 2, . . . ,nj , and [d]i = di, for all
i = 1, 2, . . . ,m, satisfy the matrix equations⎛⎝G + λ

N∑
j=1

nj · I

⎞⎠c + Fd = q,

F′c = 0,

(46)

where G is a block square matrix defined as

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

(C1σ1)2 G11 . . .
1

C1σ1CNσN
G1N

...
. . .

...

1
CNσNC1σ1

GN1 . . .
1

(CNσN)2 GNN

⎤⎥⎥⎥⎥⎥⎥⎥⎦, (47)

with [Gi j]kl = 〈ψik,ψ
j
l 〉, for all i, j = 1, . . . ,N , all k = 1, . . . ,ni,

and all l = 1, . . . ,nj . Finally, F is a block matrix defined as F =
[(1/(C1σ1))F1; . . . ; (1/(CNσN))FN] with [F j]ki = 〈φjk, χi〉, for
all j = 1, 2, . . . ,N , all k = 1, 2, . . . ,nj , and all i = 1, 2, . . . ,m.

Proof. The noise terms

q
j
k − 〈φ

j
k,u〉 (48)

that appear in the cost functional (43) are independent
Gaussian random variables with zero mean and variance
(Cjσ j)2. Therefore, by normalizing the t-transform of each
neuron with the noise standard deviation Cjσ j , these
random variables become i.i.d. with unit variance. After
normalization, the linear functionals in (8) can be written
as

L
j
ku =

∫ t jk+1

t
j
k

1
Cjσ j

u(s) exp

⎛⎝− t jk+1 − s
RjC j

⎞⎠ ds. (49)

This normalization causes a normalization in the sampling

and reconstruction functions φ
j
k and ψ

j
k as well as in the

entries of F. We have

[
F j
]
ki
= 1
Cjσ j

∫ t jk+1

t
j
k

χi(s) exp

⎛⎝− t jk+1 − s
RjC j

⎞⎠ ds, (50)

for all i = 1, 2, . . . ,m, all k = 1, 2, . . . ,nj , and all
j = 1, 2, . . . ,N . The rest of the proof follows from
Theorem 3.

4.2. Recovery in S1 and S2. In this section we provide
detailed algorithms for reconstruction of stimuli in S1 and
S2, respectively, encoded with a population of LIF neurons
with random thresholds. As in Section 3.2, the algorithms
provided can be readily implemented.

4.2.1. Recovery of S1-Stimuli Encoded with a Population of
LIF Neurons with Random Thresholds. Let u be an absolutely
continuous signal in T , that is, u ∈ S1. We have the
following.

10 EURASIP Journal on Advances in Signal Processing

Algorithm 4. The minimizer û ∈ S1 is given by (44) and

(i) the coefficients d and c are given by (23) with
the elements of the matrices G and F specified in
Theorem 2 and,

(ii) the representation functions (ψ
j
k), k = 1, 2, . . . ,nj ,

and j = 1, 2, . . . ,N , are essentially given by (27) and
(26) (plus an added superscript j).

Remark 4. If S1-stimuli are encoded with a population of
ideal IAF neurons with random thresholds, then the entries
of the matrix G can be computed analytically. We have

[
Gi j
]
kl

=
[

1
2

(
τ2
l+1 − τ2

l

)
(τk+1 − τk)

]
· 1(τl+1 < τk)

+
[

1
2

((
τ2
k − τ2

l

)
(τk+1 − τk) +

(
τ2
l+1 − τ2

k

)
(τk+1 − τl+1)

)
+

1
3

(
τ3
l+1 − τ3

k

)
− τ2

k (τl+1 − τk)
]

· 1(τl ≤ τk ≤ τl+1 ≤ τk+1)

+
[
−1

6

(
τ3
k+1−τ3

k

)
+

1
2
τl+1

(
τ2
k+1−τ2

k

)
− 1

2
τ2
l (τk+1−τk)

]
· 1(τl ≤ τk < τk+1 ≤ τl+1)

+
[
−1

6

(
τ3
l+1−τ3

l

)
+

1
2
τk+1

(
τ2
l+1−τ2

l

)
− 1

2
τ2
k (τl+1−τl)

]
· 1(τk ≤ τl < τl+1 ≤ τk+1)

+
[

1
2

((
τ2
l − τ2

k

)
(τl+1 − τl) +

(
τ2
k+1 − τ2

l

)
(τl+1 − τk+1)

)
+

1
3

(
τ3
k+1 − τ3

l

)
− τ2

l (τk+1 − τl)
]

· 1(τk ≤ τl ≤ τk+1 ≤ τl+1)

+
[

1
2

(
τ2
k+1 − τ2

k

)
(τl+1 − τl)

]
· 1(τk+1 < τl),

(51)

where τk = tik, τk+1 = tik+1, τl = t
j
l , τl+1 = t

j
l+1, for all i, j =

1, . . . ,N , all k = 1, . . . ,ni, and all l = 1, . . . ,nj . The analytical
evaluation of the entries of the matrix F is straightforward.

4.2.2. Recovery of S2-Stimuli Encoded with a Population of
LIF Neurons with Random Thresholds. Let u be a signal with
absolutely continuous first-order derivative in T , that is,
u ∈ S2. We have the following.

Algorithm 5. The minimizer û ∈ S2 is given by (44) and

(i) the coefficients d and c are given by (23) with
the elements of the matrices G and F specified in
Theorem 2 and,

Table 1: Nominal values of the neuron parameters (δ represents the
mean value of the threshold value).

Neuron 1 2 3 4

b 0.92 0.79 1.15 1.19

δ 2.94 2.61 2.76 2.91

R 31.9 25.2 32.1 34.2

C 0.01 0.01 0.01 0.01

(ii) the representation functions (ψ
j
k), k = 1, 2, . . . ,nj ,

and j = 1, 2, . . . ,N , are essentially given by (35) and
(32) (plus an added superscript j).

4.3. Examples. In this section we present two examples
that demonstrate the performance of the reconstruction
algorithms for stimuli encoded with a population of neurons
as presented above. In both cases the encoding circuits
are of specific interest to neuromorphic engineering and
computational neuroscience. The first example presented in
Section 4.3.1 shows the results of recovery of the temporal
contrast encoded with a population of LIF neurons with
random thresholds. Note that in this example the stimulus
is in S2 and therefore also in S1. Stimulus reconstruction
as a function of threshold variability and the smoothing
parameter are demonstrated. In the example in Section 4.3.2,
the stimulus is encoded using, as in Section 3.3.2, a rectifier
circuit and a population of neurons. Here the recovery can
be obtained in S1 only. As expected, recovery improves as the
size of the population grows larger.

4.3.1. Encoding of Temporal Contrast with a Population of LIF
Neurons. We examine the encoding of the temporal contrast
with a population of LIF neurons. In particular, the temporal
contrast input u was fed into a population of 4 LIF neurons
with nominal parameters given in Table 1.

In each simulation, each neuron had a random threshold
with standard deviation σ j for all j = 1, 2, 3, 4. Simulations
were run for multiple values of δ j/σ j in the range [5, 100],
and the recovered versions were computed in both S1 and
S2 spaces for multiple values of the smoothing parameter λ.
Figure 5 shows the SNR of the recovered stimuli in S1 and S2.

Figure 6 examines how the maximum SNR and the
optimal value for the smoothing parameter that attains this
maximum depend on the noise level. From Figures 5 and 6
we note that the

(i) recovery in S2 gives in general better results than
recovery in S1. This is expected since u ∈ S2 ⊂ S1;

(ii) the optimal value of the smoothing parameter is
largely independent of the noise level. This is due
to the averaging in the cost functional across the
population of neurons;

(iii) The encoding mechanism is very sensitive to the
variability of the random threshold. In general if
the threshold-to-noise ratio δ/σ is below 15, then
accurate recovery is not possible (SNR < 5 dB).

EURASIP Journal on Advances in Signal Processing 11

SNR S1

−60

−40

−20

0

20

SN
R

(d
B

)

10−10

λ 20
40

60
80 100

δ/σ

−50

−40

−30

−20

−10

0

10

(a)

SNR S2

−60

−40

−20

0

20

SN
R

(d
B

)

100

10−10

λ 20
40

60
80

100

δ/σ

−50

−40

−30

−20

−10

0

10

(b)

Figure 5: Signal-to-Noise Ratio for different noise threshold levels and different values of the smoothing parameter λ. The x-axis represents
the threshold-to-noise ratio δ/σ . (a) SNR for recovery in S1. (b) SNR for recovery in S2.

−15

−10

−5

0

5

10

15

20

SN
R

(d
B

)

0 10 20 30 40 50 60 70 80 90 100

δ/σ

S1

S2

Maximum SNR for different noise levels

(a)

10−9

10−8

10−7

10−6

10−5

10−4

10−3

O
pt

im
u

m
λ

10 20 30 40 50 60 70 80 90 100

δ/σ

S1

S2

Optimum λ for different noise levels

(b)

Figure 6: (a) Maximum SNR over all possible values of the smoothing parameter λ for a fixed noise level δ/σ . (b) Optimal value of the
parameter λ for which the recovered stimuli attain the maximum SNR. Blue line for S1 and green line for S2.

4.3.2. Velocity Encoding with a Population of Rectifier LIF
Neurons. This example is a continuation of the example
presented in Section 3.3.2. The positive and negative com-
ponents of the stimulus are each fed into a population of 8
LIF neurons with random thresholds. The nominal values
of the neuron parameters and the number of spikes that
each neuron fired are given in Table 2. Using the same
stimulus, the simulation was repeated one hundred times. In
Figure 7 an example of the recovered positive and negative
clipped signal components are shown each encoded with
1, 2, 4, and 8 neurons. The clipped signal components
are elements of the Sobolev space S1 but not S2. The
difference between the recovered components approximates
the original stimulus (third column). The three columns
correspond to the recovery of the positive and of the negative
components, and the total stimulus, respectively. The four
rows show the recovery when 1, 2, 4, and 8 encoding neurons

are, respectively, used. Blue lines correspond to the original
stimuli and green to the recovered ones. It can be seen that
the recovery improves when more neurons are used. This can
also be seen from Figure 8 where the corresponding mean
value SNRs are plotted. The error bars in the same figure
correspond to the standard deviation of the associated SNR.

5. Conclusions

In this paper we presented a general approach to the
reconstruction of sensory stimuli encoded with LIF neurons
with random thresholds. We worked out in detail the recon-
struction of stimuli modeled as elements of Sobolev spaces
with absolutely continuous, and with absolutely continuous
first-order derivatives. Clearly the approach advocated here
is rather general, and the same formalism can be applied
to other Sobolev spaces or other RKHSs. Finally, we note

12 EURASIP Journal on Advances in Signal Processing

Table 2: Nominal values of the neuron parameters and the number of spikes fired. For each neuron we also had Ci
+ = Ci

− = 0.01 and
σi+ = δi+/20 and σi− = δi−/20 for all i = 1, 2, . . . , 8.

Neuron 1 2 3 4 5 6 7 8

b+ 0.14 0.25 0.15 0.28 0.15 0.25 0.14 0.16

b− 0.12 0.22 0.24 0.21 0.19 0.23 0.23 0.24

δ+ 2.03 2.35 1.61 2.11 1.64 1.52 2.01 1.85

δ− 1.86 2.1 2.18 1.75 2.06 1.81 2.24 2.23

R+ 35 42 42 41 47 35 26 32

R− 49 43 40 43 41 43 41 44

Spikes+ 19 22 25 26 25 35 19 22

Spikes− 19 23 22 26 21 27 21 22

Positive component

−1

0

1

2

N
u

m
be

r
of

n
eu

ro
n

s:
8

0 0.5 1

Time (s)

−1

0

1

2

N
u

m
be

r
of

n
eu

ro
n

s:
4

0 0.5 1
Time (s)

−1

0

1

2

N
u

m
be

r
of

n
eu

ro
n

s:
2

0 0.5 1
Time (s)

−1

0

1

2

N
u

m
be

r
of

n
eu

ro
n

s:
1

0 0.5 1
Time (s)

(a)

Negative component

−1

0

1

2

N
u

m
be

r
of

n
eu

ro
n

s:
8

0 0.5 1

−1

0

1

2

N
u

m
be

r
of

n
eu

ro
n

s:
4

0 0.5 1
−1

0

1

2

N
u

m
be

r
of

n
eu

ro
n

s:
2

0 0.5 1

−1

0

1

2
N

u
m

be
r

of
n

eu
ro

n
s:

1

0 0.5 1

Time (s)

Time (s)

Time (s)

Time (s)

(b)

Total

−2

0

2

N
u

m
be

r
of

n
eu

ro
n

s:
8

0 0.5 1

Time (s)

−2

0

2

N
u

m
be

r
of

n
eu

ro
n

s:
4

0 0.5 1
Time (s)

−2

0

2

N
u

m
be

r
of

n
eu

ro
n

s:
2

0 0.5 1
Time (s)

−2

0

2

N
u

m
be

r
of

n
eu

ro
n

s:
1

0 0.5 1
Time (s)

(c)

Figure 7: Recovery of absolutely continuous stimuli encoded with a population of LIF neurons with random thresholds.

that the recovery methodology employed here also applies to
stimuli encoded with a population of LIF neurons.

We extensively discussed the stimulus reconstruction
results for Sobolev spaces and gave detailed examples in the
hope that practicing systems neuroscientists will find them
easy to apply or will readily adapt them to other models of
sensory stimuli and thus to other RKHSs of interest. The
work presented here can also be applied to statistical learning
in neuroscience. This and other closely related topics will be
presented elsewhere.

Appendix

A. Theory of RKHS

A.1. Elements of Reproducing Kernel Hilbert Spaces.

Definition 1. A Hilbert space H of functions defined on a
domain T associated with the inner-product 〈·, ·〉 : H ×
H �→ R is called a Reproducing Kernel Hilbert Space (RKHS)
if for each t ∈ T the evaluation functional Et : H �→ R with
Etu = u(t), u ∈H , t ∈ T , is a bounded linear functional.

From the Riesz representation theorem (see Section A.2), for
every t ∈ T and every u ∈H there exists a function Kt ∈H
such that

〈Kt ,u〉 = u(t). (A.1)

The above equality is known as the reproducing property
[15].

Definition 2. A function K : T × T �→ R is a reproducing
kernel of the RKHS H if and only if

EURASIP Journal on Advances in Signal Processing 13

0

2

4

6

8

10

12

14

SN
R

(d
B

)

1 2 3 4 5 6 7 8

Number of neurons

Positive
Negative
Total

Figure 8: SNR for the positive (blue), negative (green), and total
stimulus (red) as a function of the number of encoding neurons.

(1) K(·, t) ∈H , for all t ∈ T ,

(2) 〈u,K(·, t)〉 = u(t), for all t ∈ T and u ∈H .

From the above definition it is clear that K(s, t) =
〈K(·, s),K(·, t)〉. Moreover, it is easy to show that every
RKHS has a unique reproducing kernel [15].

A.2. Riesz Representation Theorem. Here we state the Riesz
Lemma, also known as the Riesz Representation Theorem.

Lemma 3. Let H be a Hilbert space and let L : H �→ R be
a continuous (bounded) linear functional. Then there exists a
unique element v ∈H such that

Lu = 〈v,u〉, (A.2)

for all u ∈H .

Proof. The proof can be found in [20]. Note that if H is a
RKHS with reproducing kernel K , then the unique element
can be easily found since

v(t) = 〈v,Kt〉 = LKt. (A.3)

A.3. Smoothing Splines in Sobolev Spaces. Suppose that a
receiver reads the following measurements

qk = 〈φk,u〉 + εk, (A.4)

where φk ∈ Sm and εi are i.i.d. gaussian random variables,
with zero mean and variance 1, for all k = 1, 2, . . . ,n. An
optimal estimate û of u minimizes the cost functional

1
n

n∑
k=1

(
qk − 〈φk,u〉)2 + λ‖P1u‖2, (A.5)

where P1 : Sm �→ H1 is the projection of the Sobolev space
Sm to H1. Intuitively, the nonnegative parameter λ regulates

the choice of the estimate û between faithfulness to data
fitting (λ small) and maximum smoothness of the recovered
signal (λ large). We have the following theorem.

Theorem 3. The minimizer û of (A.5) is given by

û =
m∑
i=1

diχi +
n∑
k=1

ckψk, (A.6)

where

χi(t) = ti−1

(i− 1)!
,

ψk = P1φk.

(A.7)

Furthermore, the optimal coefficients [c]k = ck and [d]i = di
satisfy the matrix equations

(G + nλI)c + Fd = q,

F′c = 0,
(A.8)

where [G]kl = 〈ψk,ψl〉, [F]ki = 〈φk, χi〉, and [q]k = qk, for all
k, l = 1, 2, . . . ,n, and i = 1, 2, . . . ,m.

Proof. We provide a sketch of the proof for completeness.
A detailed proof appears in [10]. The minimizer can be
expressed as

û =
m∑
i=1

diχi +
n∑
k=1

ckψk + ρ, (A.9)

where ρ ∈ Sm is orthogonal to χ1, . . . , χm, ψ1, . . . ,ψn. Then
the cost functional defined in (A.5) becomes

1
n

∥∥q− (Gc + Fd)
∥∥2 + λ

(
c′Gc +

∥∥ρ∥∥2
)

, (A.10)

and thus ρ = 0. By differentiating with respect to c, d we get
the system of (A.8).

Algorithm 6. The optimal coefficients c and d are given by

c = M−1
(

I− F
(

F′M−1F
)−1

F′M−1
)

q,

d = (F′M−1F
)−1

F′M−1q,
(A.11)

with M = G + nλI. Alternatively,

c = Q2
(

Q2
′MQ2

)−1Q2
′q,

d = R−1Q1
′(q−Mc

)
,

(A.12)

where F = (Q1 : Q2)
(R

0

)
is the QR decomposition of F, Q1

is n×m, Q2 is n× (n−m), Q = (Q1 : Q2) is orthogonal, and
R is an m×m upper triangular matrix.

Proof. Equations (A.11) come from the minimization of
(A.10) with respect to c and d. For (A.12), note that since
F′c = 0 it must be that Q1

′c = 0. Since Q is orthogonal,
c = Q2γ for some (n −m)-dimensional vector γ. Equations
(A.12) follow easily by substituting in the first equation in
(A.11) and multiplying with Q2

′.

14 EURASIP Journal on Advances in Signal Processing

Remark 5. The two formulas for the coefficients (A.11) and
(A.12) give exactly the same results. According to [10] the
formulas given by (A.12) are more suitable for numerical
work than those of (A.11). Note however, that when m = 1,
the matrix F becomes a vector and (A.11) can be simplified
since the term F′M−1F becomes a scalar.

Acknowledgments

This work was supported by NIH Grant R01 DC008701-
01 and NSF Grant CCF-06-35252. E. A. Pnevmatikakis was
also supported by the Onassis Public Benefit Foundation.
The authors would like to thank the reviewers for their
suggestions for improving the presentation of this paper.

References

[1] A. A. Lazar, “Multichannel time encoding with integrate-and-
fire neurons,” Neurocomputing, vol. 65-66, pp. 401–407, 2005.

[2] A. A. Lazar and L. T. Tóth, “Perfect recovery and sensitivity
analysis of time encoded bandlimited signals,” IEEE Transac-
tions on Circuits and Systems I, vol. 51, no. 10, pp. 2060–2073,
2004.

[3] A. A. Lazar and E. A. Pnevmatikakis, “Faithful representation
of stimuli with a population of integrate-and-fire neurons,”
Neural Computation, vol. 20, no. 11, pp. 2715–2744, 2008.

[4] A. A. Lazar and E. A. Pnevmatikakis, “A video time encoding
machine,” in Proceedings of the 15th IEEE International
Conference on Image Processing (ICIP ’08), pp. 717–720, San
Diego, Calif, USA, October 2008.

[5] P. N. Steinmetz, A. Manwani, and C. Koch, “Variability and
coding efficiency of noisy neural spike encoders,” BioSystems,
vol. 62, no. 1–3, pp. 87–97, 2001.

[6] G. Gestri, H. A. K. Mastebroek, and W. H. Zaagman,
“Stochastic constancy, variability and adaptation of spike
generation: performance of a giant neuron in the visual system
of the fly,” Biological Cybernetics, vol. 38, no. 1, pp. 31–40,
1980.

[7] F. Gabbiani and C. Koch, “Coding of time-varying signals
in spike trains of integrate-and-fire neurons with random
threshold,” Neural Computation, vol. 8, no. 1, pp. 44–66, 1996.

[8] A. A. Lazar and E. A. Pnevmatikakis, “Consistent recovery of
stimuli encoded with a neural ensemble,” in Proceedings of
IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’09), pp. 3497–3500, Taipei, Taiwan, April
2009.

[9] A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert
Spaces in Probability and Statistics, Kluwer Academic Publish-
ers, Dordrecht, The Netherlands, 2004.

[10] G. Wahba, Spline Models for Observational Data, SIAM,
Philadelphia, Pa, USA, 1990.

[11] V. N. Vapnik, Statisitical Learning Theory, Wiley-Interscience,
New York, NY, USA, 1998.

[12] A. R. C. Paiva, I. Park, and J. C. Prı́ncipe, “A reproducing ker-
nel hilbert space framework for spike train signal processing,”
Neural Computation, vol. 21, no. 2, pp. 424–449, 2009.

[13] I. Dimatteo, C. R. Genovese, and R. E. Kass, “Bayesian curve-
fitting with free-knot splines,” Biometrika, vol. 88, no. 4, pp.
1055–1071, 2001.

[14] R. E. Kass and V. Ventura, “A spike-train probability model,”
Neural Computation, vol. 13, no. 8, pp. 1713–1720, 2001.

[15] N. Aronszajn, “Theory of reproducing kernels,” Transactions of

the American Mathematical Society, vol. 68, no. 3, pp. 337–404,
1950.

[16] R. A. Adams, Sobolev Spaces, Academic Press, New York, NY,
USA, 1975.

[17] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Compu-
tational and Mathematical Modeling of Neural Systems, MIT
Press, Cambridge, Mass, USA, 2001.

[18] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 dB
15 μs latency asynchronous temporal contrast vision sensor,”
IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 566–576,
2008.

[19] J. W. Pillow, L. Paninski, V. J. Uzzell, E. P. Simoncelli, and E. J.
Chichilnisky, “Prediction and decoding of retinal ganglion cell
responses with a probabilistic spiking model,” The Journal of
Neuroscience, vol. 25, no. 47, pp. 11003–11013, 2005.

[20] M. Reed and B. Simon, Methods of Modern Mathematical
Physics. Vol. 1: Functional Analysis, vol. 1, Academic Press, New
York, NY, USA, 1980.

	Introduction
	Encoding of Stimuli with LIF Neurons with Random Thresholds
	Modeling of Sensory Stimuli as Elements of RKHSs
	Encoding of Stimuli with a LIF Neuron
	Encoding of Stimuli with a Population of LIF Neurons

	Reconstruction of Stimuli Encoded with a LIF Neuron with Random Threshold
	Reconstruction of Stimuli in Sobolev Spaces
	Recovery in S1 and S2
	Recovery of S1-Stimuli Encoded with a LIF Neuron with Random Threshold
	Recovery of S2-Stimuli Encoded with a LIF Neuron with Random Threshold

	Examples
	Encoding of Temporal Contrast with a LIF Neuron
	Encoding the Stimulus Velocity with a Pair of LIF Neurons

	Reconstruction of Stimuli Encoded with a Population of LIF Neurons with Random Thresholds
	Reconstruction of Stimuli in Sobolev Spaces
	Recovery in S1 and S2
	Recovery of S1-Stimuli Encoded with a Population of LIF Neurons with Random Thresholds
	Recovery of S2-Stimuli Encoded with a Population of LIF Neurons with Random Thresholds

	Examples
	Encoding of Temporal Contrast with a Population of LIF Neurons
	Velocity Encoding with a Population of Rectifier LIF Neurons

	Conclusions
	Appendix
	Theory of RKHS
	Elements of Reproducing Kernel Hilbert Spaces
	Riesz Representation Theorem
	Smoothing Splines in Sobolev Spaces

	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

