
Encoding of Multivariate Stimuli with MIMO Neural Circuits

Aurel A. Lazar
Department of Electrical Engineering

Columbia University, New York, NY 10027
Email: aurel@ee.columbia.edu

Eftychios A. Pnevmatikakis
Department of Statistics and Center for Theoretical Neuroscience

Columbia University, New York, NY 10027
Email: eftychios@stat.columbia.edu

Abstract—We present a general MIMO neural circuit architec-
ture for the encoding of multivariate stimuli in the time domain.
The signals belong to the finite space of vector-valued trigono-
metric polynomials. They are filtered with a linear time-invariant
kernel and then processed by a population of leaky integrate-and-
fire neurons. We present formal, intuitive, necessary conditions
for faithful encoding and provide a perfect recovery (decoding)
algorithm. We extend these results to multivariate product
spaces and apply them to video encoding with MIMO neural
circuits. We demonstrate that our encoding circuits can serve as
measurement devices for compressed sensing of frequency sparse
signals. Finally, we provide necessary spike density conditions for
the decoding of infinite-dimensional vector valued bandlimited
functions encoded with MIMO neural circuits.

Index Terms—time encoding, spiking neurons, MIMO sam-
pling, video encoding, compressed sensing.

I. INTRODUCTION

The wide availability of multi-electrode recordings as well as
functional imaging techniques that operate at the cellular level
has shifted the focus towards population-centric approaches to
neural encoding. Multi-input multi-output (MIMO) time en-
coding machines (TEMs) encode vector-valued analog stimuli
into a population of spike trains. Examples of MIMO models
abound in the system neuroscience literature (e.g., the antennal
lobe in insects). Such models have also been used in brain-
machine interfaces [1] as well as silicon retinas and related
hardware applications [2].

In this paper we investigate conditions for the faithful repre-
sentation of analog video with MIMO TEMs. The canonical
input stimulus is an M -dimensional vector-valued trigonomet-
ric polynomial. Such stimuli are a natural discretization of
bandlimited functions in the frequency domain. The stimulus is
passed through a linear filter (kernel) whose output is fed
to a population of N spiking neurons. For simplicity we
consider here neurons of leaky integrate-and-fire (LIF) type.
Faithful encoding with spiking neurons has a simple geometric
interpretation. The circuit projects the input stimulus onto spike
dependent functions that span the space of input signals.

We reduce the recovery problem to the solution of a system
of linear equations and derive necessary conditions on the
number of spikes and the structure of the filtering kernel
that are required for the existence of a solution. Since the
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canonical input space is finite dimensional, these conditions can
be reduced to certain matrix rank conditions that are analytically
tractable. We postulate that these necessary conditions are also
sufficient. MIMO TEMs were first investigated in [3]; however,
the problem of perfect reconstruction was not addressed.

We extend our results to multivariate spaces that are
constructed by the tensor product between the space of
trigonometric polynomials and an arbitrary finite Hilbert space.
We focus on the space of space-time video signals and show
that MIMO TEMs can be used for the encoding of video
signals within a neural modeling framework. We present
several examples for vector-valued and video signals. By using
the standard l1-norm relaxation algorithms from compressed
sensing, we also demonstrate that MIMO TEMs can be used
for sub-Nyquist sampling of frequency sparse video signals.
These insights demonstrate that MIMO TEMs provide a sensing
mechanism suitable for a wide range of applications while at
the same time leverage the advantages of an asynchronous,
temporal code. Finally, we extend our results to multivariate
stimuli defined with infinite-dimensional bandlimited temporal
components and provide conditions for MIMO generalized
sampling.

II. MIMO NEURAL POPULATION ENCODING

In this section we introduce the space of stimuli and describe
their representation by the two stages of MIMO TEM architec-
ture: the filtering kernel and the ensemble of spiking neurons.

A. The Space of Trigonometric Polynomials

The stimuli of interest are assumed to belong to the space of
vector-valued trigonometric polynomials. The latter consists of
functions that are simultaneously bandlimited with bandwidth
Ω (in rad/sec) and periodic with period T = 2πS/Ω, where S
is a positive integer that denotes the order (resolution) of the
space. An element u of the space (denoted by HMS ) is of the
form u = [u1, . . . , uM ]′, with

ui(t) =
1√
T

S∑
s=−S

ais exp (jsωSt) , t ∈ [−T/2, T/2], (1)

where ωS = Ω/S. The space H1
S is a natural discretization of

the space of bandlimited functions in the frequency domain.
The exponentials in (1) have a line Fourier spectrum at the
points sωS with s = −S, . . . , S. By letting S → ∞, this
spectrum becomes dense in [−Ω,Ω]. We assume, wlog, that



all the input components have the same bandwidth and the
same resolution. Since all stimuli are real signals, ai−m = aim.
The inner product on HMS is given by

〈u,w〉 =
1

M

M∑
i=1

∫ T/2

−T/2
ui(s)wi(s) ds. (2)

Under (2), the set of functions (eis), i = 1, . . . ,M, s =
−S, . . . , S, whose i-th component is equal to exp (jsωSt) /

√
T

and zero, otherwise, constitutes an orthonormal basis (ONB)
for HMS .

B. Stimulus Encoding with the Filtering Kernel

Stimuli in HMS are encoded with a MIMO TEM architecture
consisting of an N ×M -dimensional filtering kernel and an
ensemble of N neural circuits. The latter, in their most general
form, are characterized by piecewise linear dynamics and spike-
triggered feedback (pulse coupling) [3]. Here, for simplicity
we assume that each neural circuit consists of a single LIF
neuron.
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Fig. 1. Multi-Input Multi-Output Time Encoding Machine.

Let H : [−T/2, T/2] 7→ RN×M be a filtering kernel defined
as a N ×M matrix-valued function with [H(t)]ji = hji(t).
We assume that any filter hji, j = 1, . . . , N, i = 1, . . . ,M, of
the kernel belongs to H1

S and can be written in the form of (1)
with coefficients hjis , s = −S, . . . , S. Each filter of the kernel
receives input from one of the M component inputs and its
output is additively coupled into a single neuron (see Fig. 1).
Filtering u with H leads to a signal v = [v1, v2, . . . , vN ]′ in
HNS where

vj(t) =

M∑
i=1

(hji ∗ ui)(t) =

S∑
s=−S

vjses(t), with

vjs =
√
T

M∑
i=1

aish
ji
s .

(3)

For each frequency sΩ/S, s = −S, . . . , S, (3) can be written

Hsas = vs, (4)

where Hs is a N × M matrix with [Hs]ji = hjis , as =
[a1
s, a

2
s, . . . , a

M
s ]′ and vs = [v1

s , v
2
s , . . . , v

N
s ]′. Regardless of

the spiking behavior of the neural circuits, a trivial necessary
condition for stimulus recovery, is that (4) has a solution for
every s. Equivalently, Hs has rank M. A necessary condition
for the latter is N ≥M , i.e., the number of neurons is greater
or equal to the number of inputs.

C. Stimulus Encoding with the Integrate-and-Fire Neurons

The neural model that we employ here is the LIF neuron. The
stimulus v biased by a constant background current b is fed into
a LIF neuron with threshold δ, resistance R and capacitance C.
Assume that after each spike the neuron is reset to zero. The
operation of the neuron is described by the piecewise linear
differential equation

C dV (t)
dt = −V (t)

R +v(t)+b, with V (tk) = δ ⇒ lim
t→t+k

V (t) = 0.

Let (tk), k = 1, 2, . . . , n+1, denote the output spike train of the
LIF neuron. By solving the equation between two consecutive
spike times, we obtain the t-transform equations∫ tk+1

tk

exp
(
− tk+1−t

RC

)
(b+ v(t)) dt = Cδ. (5)

The measurements of (5) can be written in the inner product
form

〈v, χk〉 = qk, qk = Cδ−bRC
(

1− exp
(
− tk+1−tk

RC

))
(6)

and the sampling functions χk, k = 1, 2, . . . , n, can be
expressed as χk =

∑
|s|≤S bs,kes, where the coefficients bs,k

are given by

bs,k =
1√
T

∫ tk+1

tk

e−
tk+1−t

RC es(t) dt. (7)

Lemma 1. Let B ∈ Rn×(2S+1) with [B]k,s = bs−S−1,k. Then

r(B) = min(n, 2S + 1).

Proof: The matrix B can be written as a product of an
upper-triangular, a Vandermonde and a diagonal matrix, all of
which are of full rank.

III. STIMULUS RECONSTRUCTION

In this section we discuss the problem of perfect recovery of
the input vector-valued stimulus from the set of spike times.
We provide necessary conditions regarding the spiking density
of the neurons and the frequency support of the filtering matrix
H. Finally we present an algorithm that can perfectly recover
the stimulus.

A. Necessary Conditions for Perfect Recovery

We assume that every LIF neuron j fired a total of nj + 1
spikes, j = 1, 2, . . . , N. Using (3), the t-transform equation
〈vj , χjk〉 = qjk can be rewritten as

∑
s

(
M∑
i=1

√
Taish

ji
s

)
bjs,k = qjk ⇒

M∑
i=1

∑
s

√
T
(
hjis b

j
s,k

)
ais = qjk.

(8)



Writing (8) for all k = 1, 2, . . . , nj , we obtain in matrix form

BjH̃ja = qj , (9)

with qj = [qj1, . . . , q
j
nj

]′, a = [a−S ;a−S+1; . . . ;aS ]. The
matrices Bj and H̃j have dimensions nj × (2S + 1) and
(2S + 1)×M(2S + 1), respectively, and are given by

[Bj ]kl =
√
Tbjl−S−1,k, H̃j = diag(hj−S , . . . ,h

j
S),

with hjs = [hj1s , h
j2
s , . . . , h

jM
s ]. Repeating for all neurons we

obtain the system of equations
B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...
0 0 . . . BN




H̃1

H̃2

...
H̃N

a =


q1

q2

...
qN

 , or Fa = q

(10)
with F = BH̃. In order to recover the vector a, the matrix F
has to be of rank equal to the dimension of a, i.e., M(2S+ 1).

Lemma 2. The matrices B and H̃ have rank, respectively,

r(B) =

N∑
j=1

min(nj , 2S + 1), r(H̃) =

S∑
s=−S

r(Hs). (11)

Proof: Since B is block-diagonal its rank equals the sum of
the rank of its blocks and the result follows from Lemma 1. By
rearranging the rows of H̃, we obtain the block-diagonal matrix
H∗ = diag(H−S ,H−S+1, . . . ,HS) and the result follows.

Theorem 1. A necessary condition for perfect recovery is

min

 N∑
j=1

min(nj , r(H̃
j)),

S∑
s=−S

r(Hs)

 = M(2S+1) (12)

Proof: Since F = BH̃, we have that r(F) ≤
min(r(B), r(H̃)) [4]. By applying Lemma 2 we obtain

r(F) ≤ min

 N∑
j=1

min(nj , 2S + 1),

S∑
s=−S

r(Hs)

 . (13)

Moreover, by decomposing F into its blocks we have

r(F) ≤
N∑
j=1

r(BjH̃j) ≤
N∑
j=1

min
(
nj , 2S + 1, r(H̃j)

)
. (14)

Combining (13) and (14) and noting that r(H̃j) ≤ 2S + 1 for
all j = 1, 2, . . . , N we get

r(F) ≤ min

 N∑
j=1

min(nj , r(H̃
j)),

S∑
s=−S

r(Hs)

 .

(12) follows by noting that the recovery condition is r(F) =
M(2S + 1) and r(Hs) ≤M for all s = −S, . . . , S.

Remark 1. The intuitive full rank condition r(Hs) = M for
every frequency s is naturally embedded into (12). Moreover,
(12) shows that the number of linear independent measurements

that each neuron contributes is equal to the number of frequency
components that its filtering vector supports. The condition
substantially improves upon the ones presented in [5], where
separated loose conditions were presented for the filtering
kernel and the spiking densities.

Remark 2. Condition (12) is also sufficient if (14) holds
with strict equality. In practice this always holds as long as
the matrices H̃j and the LIF neurons satisfy some ‘linear
independence condition’. The exact conditions will be pursued
elsewhere.

B. Perfect Recovery Algorithm

To solve the system of complex equations (10) we first reduce
it to a system of real equations. This can be achieved by noting
that a and F have a special structure and can be written in the
following form

F = [FS ,FS−1, . . . ,F0, . . . ,FS−1,FS ]

a = [aS ;aS−1; . . . ;a0; . . . ;aS−1;aS ],
(15)

where each submatrix Fs has dimensions
∑
j nj×M and each

sub-vector as has dimensions M × 1. With that in mind, (10)
can be written in the form Frar = q with

Fr = [F0, 2<(F1), . . . , 2<(FS),−2=(F1), . . . ,−2=(FS)]

ar = [a0;<(a1); . . . ;<(aS);=(a1); . . . ;=(aS)],

where <(·) and =(·) denote the real and imaginary part.
We now present an algorithm that can perfectly recover the
stimulus.

Algorithm 1. If r(F) = M(2S+ 1), then u can be recovered
as

u =

S∑
s=−S

[
c1s, c

2
s, . . . , c

M
s

]′
es(t)

[c1s, c
2
s, . . . , c

M
s ] = <(a|s|) + sign(s)=(a|s|),

(16)

with the entries of the vector ar given by ar = Fr+q, where
Fr+ denotes the pseudoinverse of the matrix Fr.

C. Two Examples

1) Example: Delay Filter Bank: We present the realization
of the recovery algorithm for a filtering kernel that induces
arbitrary, but known, delays and weights on the stimulus. The
kernel models dendritic tree latencies in sensory neurons (motor,
olfactory) or, in general, delays and synaptic weights between
groups of pre- and postsynaptic neurons. Each filter hji is
the form hji(t) = wjiδ(t − dji) with dji ≥ 0, for all j =
1, 2 . . . , N , and all i = 1, 2, . . . ,M . When projected onto HMS
we obtain hji(t) =

∑S
s=−S w

jie−jsωSd
ji

es(t).
The vector valued signal u(t) was chosen to have four

trigonometric components (M = 4) all with Ω = 2π · 80 Hz
and S = 20 defined on the interval [0, 0.25]sec. In total, 16
ideal IAF neurons were used to encode the signal (N = 16).
The delays were drawn from an exponential distribution with
mean π/3Ω. The weights, biases and thresholds were drawn
from uniform distributions on the intervals [0.5, 1], [1.3, 2.3]
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Fig. 2. SNR as a function of the number of neurons.

and [1.4, 2.4], respectively. Finally, Cj = 0.01 for all neurons.
The 16 neurons respectively produced 13, 18, 29, 31, 14, 13,
17, 25, 13, 27, 20, 15, 20, 23, 13 and 18 spikes.

Fig. 2 shows the SNR of the recovery of each stimulus
component when 4, 5, . . . , 16 neurons are used. Overall, as
more neurons are added, the SNR increases, eventually reaching
very high values (> 60 [dB]). This occurs for the first 12
neurons that have a total of 203 samples, i.e., have a total
number of samples above the perfect recovery bound of M(2S+
1) = 163 spikes.

2) Applications to Compressed Sensing: MIMO TEMs (and
more generally TEMs) can also be used as measurement
devices for sub-Nyquist sampling of sparse signals and related
compressed sensing applications [6], [7]. In our setup a sparse
vector-valued stimulus in HMS corresponds to sparsity in the
frequency domain. We investigated whether such sparse stimuli
can be recovered from the spike times even when the necessary
rank conditions are not satisfied by solving the standard l1-norm
optimization problem

a∗ = argmin
Frar=q

‖ar‖l1 . (17)

We considered an example with a vector-valued stimulus with
4 components (M = 4) and S = 30, Ω = 2π · 30. Several
vector-valued stimuli were constructed with levels of sparsity
that ranged from 5% up to 35%. 6 neurons were used to
encode the stimulus. The filters of the filtering kernel were
random with coefficients drawn from a standard complex
normal distribution. The neurons were of LIF type and their
parameters were chosen in such a way that the total number
of spikes approximately ranged from 20% up to 90% of the
required rank M(2S + 1) given by Theorem 1. The recovery
results were obtained with the l1-magic toolbox [8]. For each
combination of sparsity level and total number of spikes 100
repetitions were run with different stimuli and filtering kernels.
Fig. 3 shows the probability of perfect recovery (defined as
reconstruction with SNR > 40 [dB]) as a function of the
number of spikes normalized by the required rank (Nyquist
rate equivalent), plotted separately for each sparsity level.

The example shows that the solution of (17) achieves perfect
recovery for each sparsity level checked, provided that the
number of total spikes is sufficiently high (although that is
always below the dimensionality of the system M(2S + 1)).
The example suggests that, in addition to generalized sampling
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Fig. 3. Probability of successful recovery of sparse, undersampled stimuli
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sparsity. Each curve corresponds to a different level of sparsity.

under Nyquist-type conditions, TEMs are a natural real-time
measurement (sampling) device suitable for compressed sensing
and analog-to-information conversion [9].

IV. ENCODING VIDEO WITH MIMO NEURAL CIRCUITS

The results of Theorems 1 and 2 (see Appendix A) can
be easily extended to the case of video TEMs [10]. Let
(fi(x, y)), (x, y) ∈ R2, i = 1, . . . ,M , be an ONB for an image
space V . Then the set of functions (esfi), s = −S, . . . , S, i =
1, . . . ,M , is an ONB for the product video space V ⊗HS . An
element I ∈ V ⊗HS can be written as

I(x, y, t) =

M∑
i=1

S∑
s=−S

aises(t)fi(x, y) =

M∑
i=1

ui(t)fi(x, y),

(with ai−s = ais), where ui ∈ HS and is given by

ui(t) =

S∑
s=−S

aises(t).

Similarly, the spatio-temporal receptive field (STRF) of the
neuron j, j = 1, . . . , N , can be written as

Dj(x, y, t) =

M∑
i=1

S∑
s=−S

hjis es(t)fi(x, y) =
M∑
i=1

hji(t)fi(x, y),

with hji(t) defined similarly (again hji−s = hjis ). In the case of
video TEMs (and visual neurons), the filtering is performed
by multiplication in the spatial domain and convolution in the
time domain. Therefore the output vj of the STRF of the j-th
neuron is a temporal signal given by

vj(t) =

M∑
i=1

M∑
m=1

〈fi, fm〉V (hji ∗ um)(t) =

M∑
i=1

(hji ∗ ui)(t),

that has exactly the same form as (3). Therefore, Theorem 1
can be directly applied to video TEMs and, in general, TEMs
encoding multivariate signals. Note that this result generalizes
the ones presented in [10], since it allows neurons to fire an
arbitrary number of spikes.

As an example we demonstrate, how a video stimulus can be
faithfully represented in a compressed form by a MIMO TEM
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in the spike domain. For the image space we used again the
space of trigonometric polynomials with resolution (defined
in a similar way as in the pure temporal case) Sx = Sy = 7.
For the temporal domain we had S = 11 (total dimensionality
5,175). The input video used was constructed by randomly
picking 938 coefficients and assigning them a nonzero value
(ending in 18% sparse signal in the frequency domain). The
signal was sensed from 600 LIF neurons with appropriate
parameters that produced a total of 3,362 spikes, significantly
below the total dimensionality of the stimulus. Using the same
L1 minimization algorithm, we are able to reconstruct the video
stimulus with a total SNR= 64.97 [dB]. Three representative
frames of the reconstruction are shown in Fig. 4.

V. CONCLUSIONS

We introduced the concept of MIMO TEMs for the representa-
tion of multivariate stimuli in the time domain. MIMO TEMs
can serve as models for video neural population encoding. We
showed how information is represented in the time domain and
provided necessary, and practically sufficient, conditions on the
spike density as well as on the structure of the filtering kernel
that guarantee the representation to be reversible. Interestingly,
our MIMO architecture can also serve as a measurement circuit
for sub-Nyquist sampling of sparse signals in the frequency
domain. The work presented here raises a number of theoretical
questions (e.g., frames for vector-valued bandlimited functions,
bounds on the number of spikes needed for compressed sensing)
and practical issues (e.g., modeling of more complex dendritic
tree mechanisms or accounting for other forms of sparsity).
These and other issues including neural circuits with random
elements [11] will be addressed elsewhere.

APPENDIX A
MIMO Encoded Vector-Valued Bandlimited Stimuli

By letting S →∞ we extend the necessary conditions derived
in section III to the case of the infinite dimensional space
of bandlimited functions. In what follows we denote by Π
a subset of the set {1, 2, . . . , N}, and by Πc its complement.
Moreover for a matrix A let AΠ denote its row restriction to Π

and Ĥ denotes the Fourier transform of H. Since the number
of spikes becomes infinite, we denote by Dj = limS→∞ nj/T
the average firing rate (spike density) of neuron j.

Theorem 2. A necessary condition for perfect recovery is that
for every subset Π ⊆ {1, 2, . . . , N},∑

j∈Π

min
(
Dj , R({j})

)
≥M Ω

π
−R(Πc), (18)

where R(Π) , 1
2π

∫ Ω

−Ω
r(ĤΠ(ω))dω.

Proof: We first note that

lim
S→∞

1

T
r(H̃j) =

1

2π

∫ Ω

−Ω

r
(
Ĥj(ω))

)
dω.

Conditions (12) can be relaxed to the spiking conditions:∑
j∈Π

min(nj , r(H̃
j)) ≥M(2S + 1)−

S∑
s=−S

r(HΠc

s ). (19)

By dividing both sides by T and letting S →∞ (18) follows.
These conditions improve the ones derived in [12] as the latter
did not include the rank term on the left side.

Remark 3. A case that is of particular interest to neuroscience
is when N � M . Let Π be a subset with |Π| < N −M .
Assuming that the matrix HΠc is of full rank for all ω, then
the right side of (18) becomes 0. This suggests that if the
population of neurons is very large, then small subsets of the
population do not require an actual minimum density.
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