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Abstract

We investigate the sparse functional identification of complex cells and the decod-
ing of spatio-temporal visual stimuli encoded by an ensemble of complex cells. The
reconstruction algorithm is formulated as a rank minimization problem that signifi-
cantly reduces the number of sampling measurements (spikes) required for decoding.
We also establish the duality between sparse decoding and functional identification,
and provide algorithms for identification of low-rank dendritic stimulus processors.
The duality enables us to efficiently evaluate our functional identification algorithms
by reconstructing novel stimuli in the input space. Finally, we demonstrate that our
identification algorithms substantially outperform the generalized quadratic model, the
non-linear input model and the widely used spike-triggered covariance algorithm.

Keywords: encoding of visual stimuli, complex cells, quadratic receptive fields, dendritic
stimulus processors, sparse neural decoding, sparse functional identification, duality between
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1 Introduction

It is widely accepted that the early mammalian visual system employs a series of neural
circuits to extract elementary visual features, such as edges and motion [1, 2]. Feature
extraction capabilities of simple and complex cells arising in the primary visual cortex (V1)
have been extensively investigated. Layer IV simple cells receive direct input from the Lateral
Geniculate Nucleus [3]. Each simple cell consists of a linear receptive field cascaded with
a highly-nonlinear spike generator. Complex cells in layer II/III of V1 sum the output of
a pool of simple cells having similar orientation selectivity and spatial extent [4] and are
thereby selective to oriented edges/lines over a spatially restricted region of the visual field
[1]. While simple cells respond maximally to a particular phase of the edge, complex cells
are largely phase invariant [5, 6]. Therefore, the receptive fields of complex cells cannot be
simply mapped into excitatory and inhibitory regions [1]. Receptive fields of simple cells are
often modeled as spatio-temporal linear filters with a spatial impulse response that resemble
Gabor functions [7], whereas the receptive fields of complex cells are often modeled as a sum
of squared linear filters [8]. For simplicity, a quadrature pair of space-time Gabor filters has
been employed in an energy model of complex cells [9, 10, 11]. Neural circuits comprising
complex cells constitute a highly nonlinear circuit as illustrated in Figure 1.

Spike Generator 2

Spike Generator M

Spike Generator 1+

+

+

NON-LINEAR NON-LINEAR

Figure 1: A neural circuit consisting of a population of complex cells.

Feedforward projections from V1 to other cortical areas mainly originate from layer II/III
[12], suggesting that complex cells play a critical role in relaying visual information processed
in V1 to higher brain areas. While tuning properties of individual complex cells have been
characterized [13, 14], the information about visual stimuli that an ensemble of complex
cells can provide, and how efficiently they can represent such information has yet to be
elucidated.

Under the modeling framework of Time Encoding Machines (TEMs) [15, 16], it has been
shown that decoding of stimuli and functional identification of linear receptive fields of simple
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cells are dual to each other [17]. This led to mathematically rigorous identification algorithms
for identifying linear receptive fields of simple cells [17]. By modeling the nonlinear processing
in complex cells as Volterra Dendritic Stimulus Processors (DSPs) [18, 19], the representation
of stimuli encoded by spike times generated by neural circuits with complex cells was also
exhaustively analyzed. Functional identification of a complex cell DSP was possible again
thanks to the demonstrated duality between decoding and functional identification. While
these theoretical methods exhibit deep structural properties, they have been shown to be
tractable only for decoding and functional identification problems of small dimensions. In
their current form they are not tractable due to the “curse of dimensionality” [20].

The non-linear transformations taking place in the DSP of complex cells lead to loss of
phase information. Previous work has empirically found that static images recovered from
the magnitude response of Gabor wavelets are perceptually recognizable, albeit they exhibit
significant errors in their pixel intensity values [43]. Here, we formulate the reconstruction
of stimuli encoded with complex cells as a phase retrieval problem [21] and, in search of
tractable algorithms, utilize recent developments in optimization theory of low-rank matrices
[22, 23, 21]. By applying such methods, we develop algorithms that are highly effective in
decoding visual stimuli encoded by complex cells. As will be detailed in the next sections,
the complex cells, as defined in this paper, have DSP kernels that are low-rank and include
the ones shown in Figure 1 as a particular case.

After demonstrating that the decoding of visual stimuli becomes tractable, we describe
sparse algorithms that functionally identify the DSPs of complex cells using the spike times
they generate. The sparse identification algorithms are based on the key observation that
functional identification can be viewed as the dual problem of decoding stimuli that are
encoded by an ensemble of complex cells. While the generalization of the duality results
from simple cells to complex cells was already given in [18], we show in this paper that these
results remain valid under the assumption of sparsity, that is, for the case of low-rank DSP
kernels. This significantly reduces the time of stimulus presentation that is needed in the
identification process. The sparse duality result also enables us to evaluate the identified
circuits in the input space. We achieve the latter by computing the mean square error or
signal-to-noise ratio (SNR) of novel stimuli decoded using the identified circuits [17]. The
sparse decoding and functional identification algorithms presented here apply to circuits build
around a wide range of neurons models including Integrate-and-Fire neurons with random
thresholds and biophysically realistic conductance-based models with intrinsic noise.

This paper is organized as follows. In Section 2, we first introduce the modeling of encoding
of temporal stimuli with complex cells. We provide a detailed review of decoding of stimuli
and the functional identification of complex cells, and point out the current algorithmic
limitations. In Section 3, we provide sparse decoding algorithms that achieve high accuracy
and are algorithmically tractable. We then explicate the dual relationship between sparse
functional identification and decoding and provide examples for the identification of low-rank,
temporal DSP kernels of complex cells. In Section 4, we extend sparse decoding methodology
to spatio-temporal stimuli and functional identification of spatio-temporal complex cells.
Using novel stimuli, we provide evaluation examples of the identification algorithms in the
input space as well as comparisons to other state-of-the-art methods. Finally, we conclude
in Section 5 and suggest how the approach advanced in this paper can be applied beyond
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complex cells.

2 Neural Circuits with Complex Cells:

Encoding, Decoding and Functional Identification

In this section, we model the encoding of temporal stimuli by a neural circuit consisting
of neurons akin to complex cells. We start by modeling the space of temporal stimuli in
Section 2.1. In Section 2.2, the model of encoding is formally described. In Section 2.3,
we proceed to present a reconstruction algorithm for decoding temporal stimuli encoded
by the neural circuit. A method for functional identification of neurons constituting the
neural circuit is provided in Section 2.4. The reconstruction algorithm and the functional
identification algorithm discussed in this section are based on [18].

2.1 Modeling Temporal Stimuli

We model the temporal varying stimuli u1 = u1(t), t ∈ D, to be real-valued elements of
the space of trigonometric polynomials [15]. The choice of the space of the trigonometric
polynomials has, as we will see, substantial computational advantages.
Definition 1. The space of trigonometric polynomials H1 is the Hilbert space of complex-
valued functions

u1(t) =

Lt∑
lt=−Lt

cltelt(t), (1)

over the domain D = [0, St], where

elt(t) =
1√
St

exp

(
jltΩt

Lt
t

)
and clt , lt = −Lt, ..., Lt, are the coefficients of u1 in H1. Here Ωt denotes the bandwidth, and
Lt the order of the space. Stimuli u1 ∈ H1 are extended to be periodic over R with period
St = 2πLt/Ωt.

We denote the dimension of H1 by dim(H1) and dim(H1) = 2Lt + 1.
Definition 2. The tensor product space H2 = H1 ⊗H1 is a Hilbert space of complex-valued
functions

u2(t1; t2) =

Lt∑
lt1

=−Lt

Lt∑
lt2

=−Lt

dlt1 lt2
elt1

(t1) · elt2 (t2) (2)

over the domain D2 = [0, St] × [0, St], where dlt1 lt2
, lt1lt2 ∈ D2, are the coefficients of u2 in

H2.

Note that dim(H2) = dim(H1)2.
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Figure 2: The encoding of temporal stimuli by a neural circuit modeling an ensemble of
complex cells. (A) The ith neuron in the model processes the input u1(t) by two parallel
linear filters with impulse responses gi11 (t) and gi21 (t), respectively, followed by squaring. The
outputs are summed and then fed into a spike generator. (B) An equivalent representation
of the encoding circuit in which the DSPs are represented as second-order Volterra kernels.

2.2 Encoding of Temporal Stimuli by a Population of Complex
Cells

We consider a neural circuit consisting of M neurons as shown in Figure 2A. For the ith

neuron, input stimulus u1(t) (u1 ∈ H1) is first processed by two linear filters with impulse
responses gi11 (t) and gi21 (t), the outputs of which are individually squared and then summed
together. These processing elements are integral part of the DSP of neuron i [18, 19]. The
output of the DSP i, denoted by vi(t), is then fed into the Biological Spike Generator (BSG)
of neuron i. The BSG i encodes the output of DSP i into the spike train (tik)k∈Ii . Here Ii is
the spike train index set of neuron i. We notice the similarity between the overall structure
of neural circuits in Figure 2A and Figure 1. In what follows, we refer to the neurons in the
neural circuit in Figure 2A as complex cells.

The output of the DSP of the ith neuron in Figure 2A amounts to

vi(t) =

[∫
D
gi11 (t− s1)u1(s1)ds1

]2

+

[∫
D
gi21 (t− s2)u1(s2)ds2

]2

, (3)

for all i = 1, 2, · · · ,M .

With
hi2(t1; t2) = gi11 (t1)gi11 (t2) + gi21 (t1)gi21 (t2), (4)

(3) can be rewritten as

vi(t) =

∫
D2
hi2(t− s1; t− s2)u1(s1)u1(s2)ds1ds2, (5)

where hi2(t1; t2) is interpreted as a second-order Volterra kernel [24]. We assume that hi2(t1; t2)
is real, bounded-input bounded-output (BIBO) stable, causal and of finite memory. The I/O
of the neural circuit shown in Figure 2A can be equivalently outlined as in Figure 2B, in
which each neuron processes the input u1(t) nonlinearly by a second order kernel hi2(t1; t2)
followed by a BSG.
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Remark 1. Note that the BSG models the spike generation mechanism of the axon hillock
of a biological neuron, whereas the DSP is an equivalent model of processing of the stimuli
by a sophisticated neural network that proceeds the spike generation. Therefore, stimulus
processing and the spike generation mechanism are naturally separated in the neuron model
considered here.

For simplicity, we first formulate the spike generation mechanism of the encoder as an ideal
Integrate-and-Fire (IAF) (point) neuron (see, e.g., [17]). The integration constant, bias and
threshold of the IAF neuron i = 1, 2, · · · ,M , is denoted by κi, bi and δi, respectively. The
mapping of the input amplitude waveform vi(t) into the time sequence (tik)k∈Z is called the
t-transform [15]. For the i-th neuron, the t-transform is given by [15, 16]:∫ t

i
k+1

t
i
k

vi(t)dt = κiδi − bi(tik+1 − tik). (6)

Lemma 1. The encoding of the temporal stimulus u1 ∈ H1 into the spike train sequence
(tik), k ∈ Ii, i = 1, 2, ...,M , by a neural circuit with complex cells is given in functional form
by

T ik u2 = qik, k ∈ Ii, i = 1, · · · ,M, (7)

where M is the total number of neurons, ni + 1 is the number of spikes generated by neuron
i and T ik : H2 → R, are bounded linear functionals defined by

T ik u2 =

∫ t
i
k+1

t
i
k

∫
D2
hi2(t− s1; t− s2)u2(s1; s2)ds1ds2dt, (8)

with u2(t1; t2) = u1(t1)u1(t2). Finally, qik = κiδi − bi(tik+1 − tik).

Proof: The relationship (7) follows by replacing the functional form of vi(t) given in (5) in
equation (6) above. �

Remark 2. u2(t1, t2) = u1(t1) · u1(t2) can be interpreted as a nonlinear map of the stimulus
u1 into u2 defined in a higher dimensional space. The operation performed by the second
order Volterra kernel on u2 in (8) is linear. Thus, (7) shows that the encoding of temporal
stimuli can be viewed as generalized sampling [18].

The above formalism for encoding stimuli with complex cells can be extended in several
ways. First, conductance-based BSGs such as the Hodgkin-Huxley and Morris-Lecar neuron
models, and Izhikevich point neuron models can be employed [25, 26, 27, 28]. The encoding
can be similarly formulated as generalized sampling [16]. Second, to capture the stochastic
nature of spiking neurons intrinsic noise can be added into the BSG models. For example,
an IAF neuron with random thresholds can be used [29, 15]. It is also natural to consider
intrinsic noise in the conductance-based BSGs [19]. For both models, it has been shown
that the encoding of stimuli can be viewed as generalized sampling with noisy measurements
[15, 19], i.e., the t-transform is of the form

T ik u2 = qik + εik, k ∈ Ii, i = 1, · · · ,M, (9)

where T ik are bounded linear functionals defined according to the neuron model of choice,
and εik represents random noise in the measurements.
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In what follows, we will mainly focus on encoding circuits consisting of complex cells whose
spiking mechanism is modeled by a deterministic IAF neuron. The results obtained can be
extended to the above two cases, and we will provide examples for both of these.

2.3 Decoding of Temporal Stimuli Encoded by a Population of
Complex Cells

Assuming that the spike times (tik), k ∈ Ii, i = 1, 2, ...,M , are known, by Lemma 1, the neural
circuit with complex cells encodes the stimulus via a set of linear functionals acting on u2

(see equation (7)). Thus, the reconstruction of u2 can in principle be obtained by inverting
the set of linear equations (7) [18].
Theorem 1. The coefficients of u2 ∈ H2 in (2) satisfy the following system of linear equa-
tions

Ξd = q, where Ξ = [(Ξ1)T , ..., (ΞM)T ]T and q = [(q1)T , ..., (qM)T ]T (10)

with
[
qi
]
k

= qik, [d]lt1 lt2
= dlt1 lt2

and

[
Ξi
]
k;lt1

lt2
=

∫ t
i
k+1

t
i
k

elt1+lt2
(t)dt

∫
D2
hi2(s1; s2)e−lt1

(s1)e−lt2
(s2)ds1ds2.

The above result can be obtained by plugging (2) into (7). We refer readers to Theorem 1
in [18] for a detailed proof.

We formulate the reconstruction of u2 as the following optimization problem:

û2(t1; t2) = argmin
u2∈H2

M∑
i=1

∑
k∈Ii

(T ik u2 − qik)2. (11)

Algorithm 1. The solution to (11) is given by

û2(t1; t2) =

Lt∑
lt1

=−Lt

Lt∑
lt2

=−Lt

d̂lt1 lt2
elt1

(t1) · elt2 (t2), (12)

where d̂ = [d̂−Lt,−Lt
, · · · , d̂−Lt,Lt

, · · · , · · · , d̂Lt,−Lt
, · · · , d̂Lt,Lt

]T is obtained by

d̂ = Ξ†q (13)

with † denoting the pseudoinverse operator.

We note that a necessary condition for perfect recovery is that the total number of spikes
exceeds dim(H1)(dim(H1) + 1)/2 + M [19]. Therefore, the complexity of the decoding
algorithm is on the order of dim(H1)2.

Following [18, 19], the decoding algorithm is called a Volterra Time Decoding Machine
(Volterra TDM).
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2.4 Functional Identification of DSPs of Complex Cells

In this section, we formulate the functional identification of a single complex cell in the neural
circuit described in Figure 2A. We perform M experimental trials. In trial i, i = 1, · · · ,M , we
present a controlled stimulus ui1(t) to the cell and observe the spike times (tik)k∈Ii . We assume

the cell has a DSP of the from h2(t1; t2) = g1
1(t1)g1

1(t2) + g2
1(t1)g2

1(t2) and an integrate and
fire BSG with integration constant, bias and threshold denoted by κ, b and δ, respectively.
The objective is to functionally identify h2 from the knowledge of ui1 and the observed spikes
(tik)k∈Ii , i = 1, · · · ,M . This is a standard practice in neurophysiology for inferring the
functional form of a component of a sensory system [1].
Definition 3. Let hp ∈ L1(Dp), p = 1, 2, where L1 denotes the space of Lebesgue integrable
functions. The operator P1 : L1(D)→ H1 given by

(P1h1)(t) =

∫
D
h1(t′)K1(t; t′)dt′ (14)

is called the projection operator from L1(D) to H1. Similarly, the operator P2 : L1(D2)→ H2

is given by

(P2h2)(t1; t2) =

∫
D2
h2(t′1; t′2)K2(t1, t2; t′1, t

′
2)dt′1dt

′
2 (15)

is called the projection operator from L1(D2) to H2.

Note, that for ui1 ∈ H1,P1u
i
1 = ui1. Moreover, with ui2(t1, t2) = ui1(t1)ui1(t2),P2u

i
2 = ui2.

Lemma 2. With M trials of stimuli ui2(t1; t2) = ui1(t1)ui1(t2), i = 1, · · · ,M , presented to a
complex cell having DSP h2(t1, t2), we have

Lik(P2h2) = qik, k ∈ Ii, i = 1, · · · ,M, (16)

where

Lik(P2h2) =

∫ t
i
k+1

t
i
k

∫
D2
ui2(t− s1; t− s2)(Ph2)(t− s1; t− s2)ds1ds2dt, (17)

and
qik = κiδi − bi(tik+1 − tik). (18)

Proof: Proof can be found in Appendix A.
Remark 3. The similarity between equations (7) and (72) suggests that the identification
of a complex cell DSP by presenting multiple stimuli is dual to decoding a stimulus encoded
by a population of complex cells. This duality is schematically shown in Figure 3.
Theorem 2. Let P2h2 ∈ H2 be of the form

P2h2(t1; t2) =

Lt∑
lt1

=−Lt

Lt∑
lt2

=−Lt

hlt1 lt2
elt1

(t1) · elt2 (t2). (19)

Then, [h]lt1 lt2
= hlt1 lt2

with lt1 = −Lt, · · · , Lt, lt2 = −Lt, · · · , Lt, satisfies the following

system of linear equations
Θh = q, (20)
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Figure 3: Duality between decoding and identification. (A) The stimulus u1(t) is encoded
with a population of complex cells. (B) The projection of the second-order Volterra DSP
of an arbitrary neuron on the input space generates the same spike trains if the impulse
responses of the DSPs are the same as the input stimuli in repeated trials.

where Θ = [(Θ1)T , ..., (ΘM)T ]T and q = [(q1)T , ..., (qM)T ]T with
[
qi
]
k

= qik, and

[
Θi
]
k;lt1

lt2
=

∫ t
i
k+1

t
i
k

elt1+lt2
(t)dt

∫
D2
ui2(s1; s2)e−lt1

(s1)e−lt2
(s2)ds1ds2. (21)

Thus, to identify P2h2, we can follow the same methodology as in Algorithm 1, and formulate
the functional identification of P2h2 as

P̂2h2 = argmin
P2h2∈H2

M∑
i=1

∑
k∈Ii

(
Lik(P2h2)− qik

)2
. (22)

For a detailed proof we refer the reader to the proof of Theorem 1 in [18] .
Algorithm 2. The solution to (22) is given by

P̂2h2(t1; t2) =

Lt∑
lt1

=−Lt

Lt∑
lt2

=−Lt

ĥlt1 lt2
elt1

(t1) · elt2 (t2), (23)

where ĥ = [ĥ−Lt,−Lt
, · · · , ĥ−Lt,Lt

, · · · , · · · , ĥLt,−Lt
, · · · , ĥLt,Lt

]T is obtained by

ĥ = Θ†q. (24)

The methodology described in Algorithm 2 to identify the nonlinear DSP is called the
Volterra Channel Identification Machine (Volterra CIM) [18, 19].
Remark 4. Formulating the decoding and identification problems in the tensor product space
H2 allows the identification of nonlinear processing by solving a set of linear equations. How-
ever, due to the increased dimensionality, the algorithm requires for decoding O

(
dim (H1)2)

measurements.

3 Low-Rank Decoding and Functional Identification

As shown in Section 2.3, a reconstruction of the signal u2 is in principle possible by solving
a set of linear equations. However, the complexity of the algorithm is prohibitive. We show
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in this section that an efficient decoding algorithm can be constructed that exploits the
structure of encoding circuits with complex cells. Based on the duality between decoding
and functional identification, functional identification algorithms that exploit the structure
of the DSP of complex cells are presented. These algorithms largely reduce the complexity of
decoding of temporal stimuli encoded by an ensemble of complex cells and that of functional
identification of their DSPs.

3.1 Low-Rank Decoding of Stimuli

3.1.1 Exploiting the Structure of Complex Cell Encoding

In Theorem 1, we introduced a vector notation for the coefficients of u2

d = [d−Lt,−Lt
, · · · , d−Lt,Lt

, · · · , · · · , dLt,−Lt
, · · · , dLt,Lt

]T . (25)

We introduce here the matrix notation of the coefficients for u2 ∈ H2,

D =

 d−Lt,Lt
. . . d−Lt,−Lt

...
. . .

...
dLt,Lt

. . . dLt,−Lt

 . (26)

We notice the following: i) since u2 is assumed to be real, dlt1 ,lt2
= d−lt1 ,−lt2

, and ii) since

u2(t1; t2) = u1(t1)u1(t2) = u1(t2)u1(t1) = u2(t2; t1), we have dlt1 ,lt2
= dlt2 ,lt1

. These properties

imply that D is a Hermitian matrix. Moreover, we note that u2 in (7) is the “outer” product
of the stimuli u1, i.e.,

D = ccH , (27)

where
c =

[
c−Lt

, · · · , cLt

]T
(28)

are the coefficients of the basis functions of u1. Therefore, D is a rank-1 Hermitian posi-
tive semidefinite matrix. This property will be exploited in stimulus decoding (reconstruc-
tion).
Theorem 3. Encoding the stimulus u1 ∈ H1 with the neural circuit with complex cells given
in (6) into the spike train sequence (tik), k ∈ Ii, i = 1, 2, ...,M , satisfies the set of equations

Tr(Φi
kD) = qik, k ∈ Ii, i = 1, · · · ,M, (29)

where Tr(·) is the trace operator, D is the rank-1 positive semidefinite Hermitian matrix
D = ccH , qik = κiδi − bi(tik+1 − tik) and (Φi

k), k ∈ Ii, i = 1, · · · ,M , are Hermitian matrices
with entries in the

(
lt2 + Lt + 1

)
-th row and

(
lt1 + Lt + 1

)
-th column given by

[Φi
k]lt2 ,lt1

=

∫ t
i
k+1

t
i
k

elt1−lt2
(t)dt

∫
D2
hi2(s1; s2)e−lt1

(s1)elt2
(s2)ds1ds2. (30)

12



Proof: Plugging in the general form of u2 in (2) into (8), the left hand side of (7) amounts
to

Lt∑
lt1

=−Lt

Lt∑
lt2

=−Lt

dlt1 ,−lt2

∫ t
i
k+1

t
i
k

elt1−lt2
(t)dt

∫
D2
hi2(s1; s2)e−lt1

(s1)elt2
(s2)ds1ds2.

It is easy to verify that the above expression can be written as

Lt∑
lt1

=−Lt

Lt∑
lt2

=−Lt

dlt1 ,−lt2
[Φi

k]lt2 ,lt1
= Tr(Φi

kD). (31)

Finally, we note that since hi2, i = 1, · · · ,M , are assumed to be real valued, (Φi
k), k ∈ Ii, i =

1, · · · ,M , are Hermitian. �

Remark 5. We note that equation (29) in Theorem 3 and equation (10) in Theorem 1 are
the same. These equations represent the t-transform of a complex cell in (rank-1) matrix
and vector form, respectively. The (rank-1) matrix representation is made possible by the
equality u2(t1; t2) = u1(t1)u1(t2).

3.1.2 Reconstruction Algorithms

Solving the systems of equations (29) and (10) requires at least dim(H1)(dim(H1)+1)/2+M
measurements. Consequently, practical solutions become quickly intractable. Fortunately,
the encoded stimulus is of the form u2(t1; t2) = u1(t1)u2(t2). This guarantees that D is a
rank-1 matrix and thus the reconstructed stimulus belongs to a small subset ofH2. Therefore,
we can cast the problem of reconstructing temporal stimuli encoded by neural circuits with
complex cells as a feasibility problem, that is, find all positive semidefinite Hermitian matrices
that satisfy (29) and have rank 1. As we shall demonstrate, the latter condition can be
satisfied with substantially fewer measurements.

Recently, there is an increasing interest in low-rank optimizations such as matrix factoriza-
tion, matrix completion and rank minimization, both from a theoretical and from a practical
standpoint [30, 23, 31]. For example, rank minimization has recently been applied to phase
retrieval problems [21].

Our objective here is to find rank-1, positive-semidefinite matrices that satisfy the t-transform
(29). Since there always exists at least one rank-1 solution, this is equivalent to the following
optimization problem [32]

minimize Rank(D)

s.t. Tr(Φi
kD) = qik, k ∈ Ii, i = 1, · · · ,M,

D < 0
(32)

The rank minimization problem in (32) is NP-hard. A well known heuristic is to relax the
problem (32) to a trace minimization problem [31]. That is, instead of solving (32), we
reconstruct u2 using Algorithm 3.
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Algorithm 3. The reconstruction of u2 from the spike times generated by the neural circuit
with complex cells is given by

û2(t1; t2) =

Lt∑
lt1

=−Lt

Lt∑
lt2

=−Lt

d̂lt1 lt2
elt1

(t1) · elt2 (t2), (33)

where

D̂ =

 d̂−Lt,Lt
. . . d̂−Lt,−Lt

...
. . .

...

d̂Lt,Lt
. . . d̂Lt,−Lt

 . (34)

is the solution to the semidefinite programming (SDP) problem

minimize Tr(D)

s.t. Tr(Φi
kD) = qik, k ∈ Ii, i = 1, · · · ,M

D < 0
, (35)

When the matrices (Φi
k), k ∈ Ii, i = 1, · · · ,M , satisfy the rank restricted isometry property

[23], the trace norm relaxation converges to the true solution of (32) provided that the

number of measurements is of the order O
(
dim(H1)log

(
dim (H1)

))
[23]. These results

suggest that stimuli encoded by complex cells can be decoded with a significantly lower
number of measurements than that required by Algorithm 1. To investigate this further, we
applied the above algorithm to decode a large number of stimuli encoded by complex cells
while varying the number of measurements (spikes) used by the decoding algorithm. The
results show that the number of spikes required to faithfully represent a stimulus by a neural
circuits consisting of complex cells is quasilinearly rather than quadratically proportional
to the dimension of the stimulus space. These results are presented in the subsequent
sections.

The matrix of weights D̂ obtained from the above algorithm can be further decomposed to
extract the signal u1 (up to a sign) as follows.
(i) Perform the eigen-decomposition of D̂. Denote the largest eigenvalue by λ and the
corresponding eigenvector by v. If (35) does not exactly return a rank-1 matrix, choose the
largest eigenvalue and disregard the rest. Let w =

√
λv.

(ii) The reconstructed stimulus û1 is given by (up to a sign)

û1(t) =

Lt∑
lt=−Lt

ĉltelt(t),

where

ĉ =

{
w · |[w]Lt+1|

[w]Lt+1
, if [w]Lt+1 6= 0

w, otherwise
(36)

with ĉ =
[
ĉ−Lt

, · · · , ĉLt

]T
, and [w]Lt+1 is the (Lt + 1)th entry of w, which corresponds to the

coefficient ĉ0.
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If D̂ is rank 1, step (i) decomposes D̂ as an “outer” product of a vector and itself (see (27)).
The resulting vector w differs from the actual coefficient vector of the stimulus u1 by up to
a complex-valued scaling factor. This factor is corrected in step (ii). Since u1 is assumed to
be real-valued, the “DC” component must be real-valued. Therefore, we rotate w to remove
any imaginary part. In practice, this also ensures ĉ−lt = ĉlt .

Remark 6. Note that we can reconstruct u1(t) up to a sign, since D = ccH and D =
(−c)(−cH) are equally possible. For clarity, in all examples given in this paper, the sign of
the recovered stimulus was matched to the original stimulus.
Remark 7. Note that (32) can be alternatively solved by replacing the objective with the
log-det heuristic [31], that is

minimize log det(D + λI)

s.t. Tr(Φi
kD) = qik, k ∈ Ii, i = 1, · · · ,M,

D < 0
(37)

where λ > 0 is a small regularization constant. This optimization may further reduce the
rank of D̂ when Algorithm 3 fails to progress to an exact rank-1 solution [31].
Remark 8. When intrinsic noise is present in the BSG, the encoding of stimuli can be
formulated as generalized sampling with noisy measurements. We modify (35) as follows

minimize Tr(D) + λ
(∑M

i=1

∑
k∈Ii(Tr(Φi

kD)− qik)2
)

s.t. D < 0
, (38)

where λ can be chosen based on the noise estimate. Here, the recovered D may not longer
be rank-1. The largest rank-1 component is used for the reconstruction of stimuli.

While the SDP in (35) provides an elegant way for relaxing the rank minimization problem, it
is limited in practice by the need of large amounts of computer memory for numerical calcu-
lations. The optimization problem (32) can also be solved using an alternating minimization
scheme [33] as outlined in Algorithm 4 below. The alternating minimization approach is
more tractable when the dimension of the space is very large. Algorithm 4 uses an initializa-
tion step (step 1 below) that provides an initial iterate whose distance from D is bounded.
It then alternately solves for the left and right singular vector of the rank-1 matrix D while
keeping the other one fixed (step 2 below). The resulting subproblems admit a straight-
forward least squares solution, that can be much more efficiently solved than the SDP in
Algorithm 3. Moreover, the algorithm is amenable to parallel computation using General
Purpose Graphics Processing Units (GPGPUs). The latter property makes it even more
attractive when the dimension of the stimulus space is large.
Algorithm 4. 1. Initialize ĉ1 and ĉ2 to top left and right singular vector respectively of∑M

i=1

∑
k∈Ii q

i
kΦ

i
k normalized to

√
1
σ

∑M
i=1

∑
k∈Ii(q

i
k)

2, where σ is the top singular value

of
∑M

i=1

∑
k∈Ii q

i
kΦ

i
k.

2. Solve alternately the following two minimization problems

(a) solve for ĉ1 by fixing ĉ2

ĉ1 = min
c1

M∑
i=1

∑
k∈Ii

(Tr(Φi
kc1ĉ

H
2 )− qik)2 (39)
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(b) solve for ĉ2 by fixing ĉ1

ĉ2 = min
c2

M∑
i=1

∑
k∈Ii

(Tr(Φi
kĉ1c

H
2 )− qik)2 (40)

until
∑M

i=1

∑
∈Ii(Tr(Φi

kĉ1ĉ
H
2 )− qik)2 ≤ ε, where ε > 0 is the error tolerance level.

3. compute D̂ = ĉ1ĉ
H
2 .

D̂ approximates the coefficients of u2 ∈ H2 as in (33) We can reconstruct u1, using the
(appropriately scaled) top eigenvector of 1

2
(D̂ + D̂H). This can be obtained directly from ĉ1

and ĉ2 as follows. Let

k =
ĉH1 ĉ2 − ĉH2 ĉ1 +

√(
ĉH1 ĉ2 − ĉH2 ĉ1

)2

+ 4ĉH1 ĉ1ĉ
H
2 ĉ2

2ĉH2 ĉ2

, (41)

and

w =

√
1

2
ĉH2 ĉ1 + kĉH2 ĉ2

ĉ1 + kĉ2

‖ĉ1 + kĉ2‖
, (42)

the reconstructed stimulus û1 is given by (up to a sign)

û1(t) =

Lt∑
lt=−Lt

ĉltelt(t),

with ĉ given by Equation (36).

We point out that we made the decoding manageable by exploiting the structure of u2.
Therefore, there is no constraint on the exact form hi2(t1; t2) can take, and the decoding
algorithms can be applied to neural circuits with neurons whose DSPs take the form of any
second-order Volterra kernel.

3.1.3 Example - Decoding of Temporal Stimuli Encoded with a Population of
Complex Cells

Here, the neural circuit we consider consists of 19 complex cells. The DSPs of the complex
cells are of the form

hi2(t1; t2) = gi11 (t1)gi11 (t2) + gi21 (t1)gi21 (t2), (43)

where gi11 (t) and gi21 (t) are quadrature pairs of temporal Gabor filters and i = 1, · · · , 19. The
Gabor filters are constructed using a dyadic grid of dilations and translations of the mother
wavelets. The mother functions are given by

g1
1(t) = exp

(
−
(

t2

0.001

))
cos (40πt) , (44)
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and

g2
1(t) = exp

(
−
(

t2

0.001

))
sin (40πt) . (45)

The ensemble of Gabor filters spans the frequency range of the input space. The BSG of the
complex cells are point IAF neurons with bias bi = 2 and integration constant κi = 1, for
i = 1, · · · ,M . These two parameters are kept the same for all stimuli. Different threshold
values are chosen for the IAF neurons in order to vary the total number of spikes, which can
be used to evaluate how many measurements are required for perfectly reconstructing the
input stimuli.

The domain of the input space H1 is D = [0, 1] (sec) and Lt = 20,Ωt = 20 · 2π (rad/sec).
Thus, we have dim(H1) = 41. The stimuli were generated by randomly choosing their basis
coefficients from an i.i.d. Gaussian distribution.

We tested the encoding and subsequent decoding of 6, 570 stimuli. The total number of
spikes produced for each stimulus ranged from 20 to 220. Reconstructions of the stimuli
were performed using Algorithm 3, and the SDPs were solved using SDPT3 [34].
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Figure 4: Example of low-rank decoding. (A) Effect of number of measurements (spikes) on
reconstruction quality. (B) Percentage of rank 1 reconstructions.

We show the SNR of all reconstructions in the scatter plot of Figure 4A. Here solid dots
represent exact rank 1 solutions (largest eigenvalue is at least 100 times larger than the sum
of the rest of the eigenvalues), and crosses indicate that the trace minimization found a
higher rank solution that has a smaller trace. The percentage of exact rank 1 solutions is
shown in Figure 4B. A relatively sharp transition from very low probability of recovery to
very high rate of perfect reconstruction can be seen, similar to phase transition phenomena in
other sparse recovery algorithms [35]. It can also be seen that the number of measurements
that are needed for perfect recovery is substantially lower than the 861 spikes required by
decoding based on Theorem 1.

3.1.4 Example - IAF Spike Generators with Random Thresholds

Next, for the circuit presented in Section 3.1.3, we assumed the IAF neurons to have ran-
dom thresholds [15]. More specifically, during the interval [tik, t

i
k+1) the threshold of the

ith neuron was δik. δik are i.i.d Gaussian random variables with mean δ and variance σ2.
Since the thresholds are random, the spike times generated by the circuit are no longer
deterministic.
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We chose five different values for δ and four different values for σ. For each (δ, σ) pair, we
presented 50 stimuli to the circuit and subsequently decoded these by solving (38). We found
that the SNR of the recovery degrades linearly with log(σ). Figure 5 depicts the average
SNR of recovery as a function of σ for various δ. Note that a lower δ corresponds to a higher
number of spikes; the inset in the figure provides the average number of spikes produced
by the circuit for each δ. The results demonstrate that the low-rank decoding algorithm is
stable to noise and applicable to non-deterministic encoding paradigms.
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Figure 5: Robust reconstruction of temporal stimuli encoded by complex cells. The BSGs of
the complex cells are modeled as ideal IAF neurons with random thresholds. The thresholds
of the IAF neurons were independently drawn from N (δ, σ2). The inset shows the average
number of spikes generated by the entire circuit for each choice of the threshold δ.

3.1.5 Example - Hodgkin-Huxley Neurons as Biophysical Spike Generators

Here, we evaluate the decoding of stimuli encoded by complex cells with BSGs modeled as
Hodgkin-Huxley neurons. The space of the input stimuli and the structure of the DSPs of
the neurons is the same as in Sections 3.1.3 and 3.1.4. However, as the Hodgkin-Huxley
point neurons generate significantly more spikes than the IAF neurons considered in the
previous examples, we only use here a total of 5 neurons. Again, the DSPs of these 5
neurons span the frequency range of the input space. We presented the circuit with 1, 000
stimuli and subsequently performed their sparse decoding. The average number of spikes
generated by the circuit across all stimuli was 215. Figure 6 shows the histogram of the SNRs
of the decoded stimuli, with the insets depicting the original and decoded waveforms of a
few representative stimuli. These results demonstrate that the low-rank decoding framework
presented in this section can also be applied to stimuli encoded with a wide range of spike
generators, including the biophysically realistic conductance-based models.
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Figure 6: Histogram of reconstruction SNRs of stimuli encoded by complex cells. The BSGs
of the complex cells are modeled as Hodgkin-Huxley point neurons. Insets show the original
(blue) and recovered (green) stimuli for various SNR values.

3.1.6 Example - Hodgkin-Huxley Neurons with Stochastic Ion Channels

Finally, we again consider the same circuit as in Section 3.1.5. However, intrinsic ion channel
noise is added to the Hodgkin-Huxley point neurons. For a detailed mathematical treatment
of Hodgkin-Huxley point neuron with stochastic ion channels, we refer the reader to [19].
Here, independent Brownian motion processes respectively drive each of the gating variables
of the Hodgkin-Huxley neuron, i.e., n (activation of potassium channels), m (activation of
sodium channels) and h (inactivation of sodium channels). The variance of the Brownian
motion processes denoted by σ2

1, σ2
2 and σ2

3, were respectively chosen to be, 10σ1 = σ2 =
σ3 = σ. We presented 50 stimuli to the circuit and repeated the encoding for eight choices
of σ. For each stimulus presentation, the spike times generated by the circuit were then
utilized to recover the stimulus using the sparse reconstruction algorithm. The results are
presented in Figure 7. The points in the figure correspond to the average SNR of the 50
reconstructions for each value of the chosen σ and the shaded area represents their standard
deviation. As can be seen from the results, the low-rank decoding framework is robust to
intrinsic noise in conductance-based spiking models up to a certain noise level.

3.2 Low-Rank Functional Identification of Complex Cells

3.2.1 Duality Between Low-Rank Functional Identification and Decoding

As discussed in Section 2.4, the complexity of identification using Algorithm 2 can be pro-
hibitively high. Often, a very large number of stimulus presentation trials are required to
fully identify the DSP of biological neurons. To mitigate this, we consider exploiting the
structure of the DSP of complex cells as motivated by the tractability of the low rank de-
coding algorithm.
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Figure 7: Robust reconstruction of stimuli encoded by complex cells with stochastic ion
channels. The BSGs are modeled as Hodgkin-Huxley point neurons with stochastic ion
channels. For each noise level σ, we set 10σ1 = σ2 = σ3 = σ where σ2

i , i = 1, 2, 3, are the
variance of the independent Brownian motion process driving the gating variables n, m and
h, respectively. A larger σ represents higher intrinsic noise strength.

We consider a single complex cell whose DSP is of the form

h2(t1; t2) =
N∑
n=1

gn1 (t1)gn1 (t2), (46)

where gn1 (t), n = 1, · · · , N , are impulse responses of linear filters, and N � dim(H1). We
note that a complex cell described in Figure 2A is a special case of (46) with N = 2. A
natural question here is whether, by assuming such a structure, the functional identification
of complex cell DSPs is tractable.
Remark 9. It is well known that a second-order Volterra kernel has infinite equivalent forms
but has a unique symmetric form [24].

We have shown that the low-rank structure of u2 leads to a reduction of complexity in
the reconstruction of temporal stimuli encoded by an ensemble of complex cells. We also
described the duality between decoding and functional identification. If we can show that the
functional identification formalism for complex cell DSP is the dual to decoding of low-rank
stimuli, it is straightforward to provide tractable algorithms for identifying h2(t1; t2) of the
form (46).

Since P1g
n
1 (t) ∈ H1, n = 1, · · · , N , there is a set of coefficients (gnlt), lt = −Lt, ..., Lt and

n = 1, 2, ..., N , such that

P1g
n
1 (t) =

Lt∑
lt=−Lt

gnltelt(t). (47)

In what follows wte denote coefficients in vector form as

gn =
[
gn−Lt

, · · · , gnLt

]T
. (48)
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Similarly, we denote the coefficients of P1h2(t1; t2) in (19) in matrix form as

H =

 h−Lt,Lt
. . . h−Lt,−Lt

...
. . .

...
hLt,Lt

. . . hLt,−Lt

 . (49)

Then

H =
N∑
n=1

gn(gn)H (50)

and thus H is a Hermitian positive semidefinite matrix with rank at most N .
Theorem 4. By presenting M trials of stimuli ui2(t1; t2) = ui1(t1)ui1(t2), i = 1, · · · ,M to a
complex cell, its coefficients satisfy the set of equations

Tr(Ψi
kH) = qik, k ∈ Ii, i = 1, · · · ,M, (51)

where ni+1, i = 1, · · · ,M , is the number of spikes generated by the complex cell in trial i, H
is a Hermitian positive semidefinite matrix with rank(H) ≤ N , given by H =

∑N
n=1 gn(gn)H ,

with gn =
[
gn−Lt

, · · · , gnLt

]T
, (Ψi

k), k ∈ Ii, i = 1, · · · ,M , are Hermitian matrices with entry
at
(
lt2 + Lt + 1

)
-th row and

(
lt1 + Lt + 1

)
-th column given by

[Ψi
k]lt2 ;lt1

=

∫ t
i
k+1

t
i
k

elt1−lt2
(t)dt

∫
D2
ui2(s1; s2)e−lt1

(s1)elt2
(s2)ds1ds2. (52)

Proof: From Lemma 2, we have

Lik(P2h2) = qik, k ∈ Ii, i = 1, · · · ,M, (53)

where

Lik(P2h2) =

∫ t
i
k+1

t
i
k

∫
D2
ui2(t− s1; t− s2)(P2h2)(s1; s2)ds1ds2dt. (54)

(51) can be obtained following the steps of the proof of Theorem 3. �

Remark 10. As in Section 3.2, we note that the similarity in (51) and (29) indicates the
duality between low-rank functional identification of complex cells and low-rank decoding of
stimuli encoded by a population of complex cells. The duality is illustrated in Figure 8.

3.2.2 Functional Identification Algorithms

To functionally identify the complex cell DSP, we again employ a rank minimization problem

minimize Rank(H)

s.t. Tr(Ψi
kH) = qik, k ∈ Ii, i = 1, · · · ,M

H < 0
, (55)
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Figure 8: Duality between low-rank decoding and low-rank functional identification. Duality
between low-rank decoding of a stimulus encoded by a population of complex cells and
low-rank functional identification of complex cells. (A) The low-rank decoding algorithm
assumes that the encoded stimulus can be written as u2(t1; t2) = u1(t1)u1(t2). (B) Functional
identification of a complex cell assumes that the structure of the DSP is low rank, i.e.,
P2h2(t1; t2) =

∑N
n=1P1g

n
1 (t1)P1g

n
1 (t2).

Algorithm 3 provides a solution to the above rank minimization problem. However, in this
case, the optimal solution shall have rank N . We relax the problem to a trace minimiza-
tion problem and consider the following algorithm for low-rank functional identification of
complex cells.
Algorithm 5. The functional identification of complex cell DSP from the spike times gen-
erated by the neuron in M stimulus trials is given by

P̂2h2(t1; t2) =

Lt∑
lt1

=−Lt

Lt∑
lt2

=−Lt

ĥlt1 lt2
elt1

(t1) · elt2 (t2), (56)

where

Ĥ =

 ĥ−Lt,Lt
. . . ĥ−Lt,−Lt

...
. . .

...

ĥLt,Lt
. . . ĥLt,−Lt

 . (57)

is the solution to the SDP problem

minimize Tr(H)

s.t. Tr(Ψi
kH) = qik, k ∈ Ii, i = 1, · · · ,M

H < 0
, (58)

Based on the results for decoding using Algorithm 3 and provided that h2 is of the form
(46), we intuitively inferred that the number of measurements for the perfect identification
of P2h2 is much smaller than O

(
dim(H1)2

)
. We demonstrate that this is the case for a

large number of identification examples in the subsequent sections.

This suggests that even if the dimension of the input space becomes large, the functional
identification of the DSP of complex cells is still tractable. This result has critical implica-
tion for performing neurobiological experiments to functionally identify complex cells. First,
it suggests that a much smaller number of stimulus trials is needed for perfect identifica-
tion. Second, the total number of spikes/measurements that needs to be recorded can be
significantly reduced. Both means the duration of experiment can be shortened.
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Remark 11. Note that only the projection of the DSP h2 onto the space of input stimuli
can be identified.
Remark 12. We can use the largest N eigenvalues and their respective eigenvectors of Ĥ

to obtain the projection of individual linear filter components P̂1g
n
1 , n = 1, · · · , N . However,

these components may not directly correspond to P1g
n
1 , n = 1, · · · , N , in that the original

projections may not be “orthogonal”, whereas the eigenvalue decomposition imposes orthog-
onality.

As in Algorithm 4 when applied for solving the decoding problem, the rank minimization
problem above can be solved using alternating minimization, as described in Algorithm 6
below. Here, we solve for the top N left and right singular vectors of H alternately, where N
is the rank of the second order Volterra DSP. We note that the initialization step is akin to
running an algorithm very similar to the spike-triggered covariance (STC) algorithm widely
used in neuroscience [36, 37, 38, 39, 40]. The subsequent steps then improve upon this initial
estimate.
Algorithm 6. 1. Initialize Ĥ1 and Ĥ2 to top N left and right singular vectors, respec-

tively, of
∑M

i=1

∑ni

k=1 q
i
kΨ

i
k with the nth singular vector normalized to 1

N

√
1
σn

∑M
i=1

∑ni

k=1(qik)
2,

where σn is the top nth singular value of
∑M

i=1

∑ni

k=1 q
i
kΨ

i
k.

2. Solve the following two minimization problems

(a) solve for Ĥ1 by fixing Ĥ2

Ĥ1 = min
H1∈C

dim(H1)×N

M∑
i=1

∑
k∈Ii

(Tr(Ψi
kH1Ĥ

H
2 )− qik)2 (59)

(b) solve for Ĥ2 by fixing Ĥ1

Ĥ2 = min
H2∈C

dim(H1)×N

M∑
i=1

∑
k∈Ii

(Tr(Ψi
kĤ1H

H
2 )− qik)2 (60)

until
∑M

i=1

∑
∈Ii(Tr(Ψi

kĤ1Ĥ
H
2 )− qik)2 ≤ ε, where ε > 0 is the error tolerance level.

3. compute Ĥ = 1
2

(
Ĥ1Ĥ

H
2 + Ĥ2Ĥ

H
1

)
.

3.2.3 Example - Identification of Complex Cell DSPs from Spike Times

In this example, we consider identifying a single complex cell having the following Volterra
DSP

h2(t1, t2) = g1
1(t1)g1

1(t1) + g2
1(t1)g2

1(t2), (61)

where

g1
1(t) = 50 exp

(
−(t− 0.3)2

0.002

)
cos (40πt) , (62)

g2
1(t) = 50 exp

(
−(t− 0.3)2

0.002

)
sin (40πt) . (63)
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In repeated trials we presented to the complex cell 1-second long stimuli chosen from the
input space. The domain of the input space H1

1 is D = [0, 1] (sec) and Lt = 20,Ωt = 20 · 2π
(rad/sec) and thus, dim(H1

1) = 41. The stimuli were generated by independently choosing
their basis coefficients from the same Gaussian distribution. We presented a total of 16, 600
different stimuli in the repeated trials. We then randomly selected between 30-80 trial subsets
such that the total number of spikes in each subset was between 60 and 160. We performed
the identification process on each subset using Algorithm 5. The optimization problem was
solved using SDPT3.

For each instantiation of the identification algorithm, we recorded whether the optimization
process resulted in a rank-2 solution and also the SNR of the identified DSP with respect to
the original one. For the purpose of demonstration, we binned these results based on number
of spikes used into bins of width 10. The percentage of rank-2 solutions is shown in Figure 9A
as a function of number of measurements. The mean SNR is shown in Figure 9B.
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Figure 9: Example of low-rank functional identification. (A) Percentage of successful rank-2
recovery in identification. (B) Mean SNR of identified second order DSP kernel.

It can be seen from Figure 9B that the identification algorithm presented here is able to
recover the underlying DSP with exceptional accuracy using a reasonable and tractable
number of measurements.

3.3 Evaluation of Functional Identification of a Neural Circuit of
Complex Cells by Decoding

In Section 3.1, we have shown that the sparse decoding algorithm requires much less number
of neurons and measurements (spikes) in the reconstruction of stimuli encoded by a neural
circuit of complex cells. We have also demonstrated in Section 3.2 that the proposed sparse
functional identification algorithm enables the identification of complex cells with a tractable
number of measurements. Together, the two algorithms afford us tractable functional identi-
fication of an entire neural circuit of complex cells that is capable of fully representing stimuli
information, in that i) the size of the neural circuit is tractable, and ii) the requirement for
functional identification is tractable.

Decoding of visual stimuli by identified linear filters has previously been considered in [41].
In [17], it was shown that the evaluation of functional identification of an entire neural circuit
can be more intuitively performed in the input space by decoding the stimuli with identified
circuit parameters. Here, we extend the previous results and apply such evaluation procedure
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on the sparse decoding and sparse functional identification algorithms. The procedure is
described as follows. First, each complex cell is functionally identified using Algorithm 5
or Algorithm 6. Second, novel stimuli are presented to the neural circuit. Third, the spike
trains observed are used to reconstruct the encoded novel stimuli by the sparse decoding
algorithm, assuming that the circuit parameters take the identified values. Finally, SNR
of the reconstruction can be obtained. A high SNR indicates a well identified circuit while
a low number implies that the functional identification of the neural circuit is not of good
quality. The latter can be caused by a lack of number of measurements used in functional
identification, or by a lack of complex cells in the neural circuit.

We performed the functional identification of all 19 complex cells in the neural circuit given
in the example in Section 3.1.3. We first identified all complex cells by presenting to the
neural circuit M temporal stimuli. We repeated the identification of the entire circuit using
8 different values of M . We then presented to the same circuit (with the original DSPs as
in Section 3.1.3), 100 novel stimuli drawn from the input space and used the spike times
generated by the neural circuit to decode the stimuli. In the decoding process however, we
assumed that the DSPs of the set of complex cells are as identified, for all 8 values of M . The
mean reconstruction SNR of the 100 stimuli is shown in Figure 10. As shown, the quality
of reconstruction is low until enough trials were used in identification. When more than 19
trials were performed, perfect reconstruction of the entire neural circuit was achieved. The
dimension of the stimulus space was 41 and the average number of spikes per neuron used
for identification varied from 44 for 6 trials to 202 for 28 trials.
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Figure 10: Evaluating identification quality in the input space by plotting the average SNR
of reconstruction of novel stimuli assumed to be encoded with the identified DSPs.

4 Low-Rank Decoding and Functional Identification of

Complex Cells with Spatio-Temporal Stimuli

The framework introduced in Section 3 can be extended to the sparse decoding of spatio-
temporal stimuli and the sparse identification of spatio-temporal DSPs of complex cells.
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Details of the extension to the spatio-temporal case are provided in Appendix B-D. In what
follows, we present spatio-temporal examples of sparse decoding and identification.

4.1 Low-Rank Decoding of Spatio-Temporal Visual Stimuli

The stimuli u1 considered here have p spatial dimensions and a single temporal dimension,
i.e., u1 = u1(x1, x2, · · · , xp, t). For simplicity of notation, we use a compact, vector notation
and denote the spatial variables as x = (x1, x2, · · · , xp). When p = 2, u1 is the usual 2-D
visual stimulus. The definition of the space of input stimuli is provided in Appendix B.

The encoding of spatiotemporal stimuli by a population of complex cells, and the sparse
decoding of spatiotemporal stimuli are formally described in Appendix C. Note that the
output of the DSP of each neuron i = 1, 2, · · · ,M , can be expressed as

vi(t) =

∫
D2
hi2(x1, t− s1; x2, t− s2)u1(x1, s1)u1(x2, s2)dx1dx2ds1ds2, (64)

Here
hi2(x1, t1; x2, t2) = gi11 (x1, t1)gi11 (x2, t2) + gi21 (x1, t1)gi21 (x2, t2) (65)

has low-rank [18].

In this section we provide examples that demonstrate the tractability of sparse decoding of
spatio-temporal stimuli encoded with complex cells using a small number of spikes.

4.1.1 Example - Decoding of 2D Spatio-Temporal Stimuli

We first present an example in which x is one-dimensional, i.e., x = x1. In this example,
our main focus is to illustrate how the number of spikes affects the reconstruction of stimuli
encoded by complex cells.

The neural circuit we consider here consists of 62 direction selective complex cells. The
low-rank DSPs of the complex cells are of the form

hi2(x1, t1; x2, t2) = gi11 (x1, t1)gi11 (x2, t2) + gi21 (x1, t1)gi21 (x2, t2), (66)

where gi11 (x, t) and gi21 (x, t) are quadrature pairs of spatio-temporal Gabor filters and i =
1, · · · ,M . The Gabor filters are constructed from dilations and translations of the mother
wavelets on a dyadic grid, where the mother functions can expressed as

g1
1(x, t) = exp

(
−
(
x2

1

8
+

t2

0.001

))
cos (1.5x1 + 20πt) (67)

and

g2
1(x, t) = exp

(
−
(
x2

1

8
+

t2

0.001

))
sin (1.5x1 + 20πt) . (68)

The BSG of the complex cells are IAF neurons with bias bi = 10 and integration constant
κ = 1, for i = 1, · · · ,M . These two parameters are kept the same for all stimuli. Different
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threshold values are chosen for the IAF neurons in order to vary the total number of spikes in
a larger range to evaluate how many measurements are required for a perfect reconstruction
of input stimuli.

The domain of the input space H1
1 is D = [0, 32]× [0, 0.4] ([a.u.] and [sec], respectively) and

Lx1 = 6, Lt = 4,Ωx1
= 0.1875 · 2π,Ωt = 10 · 2π [rad/sec]. Thus, dim(H1

1) = 117. Stimuli
were randomly generated by choosing the basis coefficients to be i.i.d. Gaussian random
variables.

We tested the encoding of 1, 416 stimuli. Each time, a different number of spikes was
generated. The reconstruction of stimuli was performed in MATLAB using the extended
Algorithm 3, and the SDPs were solved using SDPT3 [34].
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Figure 11: Example of low-rank decoding of spatio-temporal stimuli. (A) Effect of number of
measurements (spikes) on reconstruction quality. (B) Percentage of rank 1 reconstructions.

The SNR of all reconstructions is depicted in the scatter plot of Figure 11A. Here solid dots
represent exact rank 1 solutions (largest eigenvalue is at least 100 times larger than the sum
of the rest of the eigenvalues), and crosses indicate that the trace minimization found a
higher rank solution with a smaller trace. The percentage of exact rank 1 solutions is shown
in Figure 11B. Similar to phase transition phenomena in other sparse recovery algorithms
[35], a relatively sharp transition (around 50 spikes) from very low probability of recovery
to very high probability of perfect reconstruction can be seen. It can also be seen that the
number of measurements that are needed for perfect recovery is substantially lower than the
6, 965 spikes required by Algorithm 1.

4.1.2 Example - Decoding of 3D Spatio-Temporal Stimuli

Next, we present two examples of decoding of spatio-temporal visual stimuli encoded by a
population of complex cells. Here, x = (x1, x2) and the Volterra DSPs of the complex cells
are of the form

hi2(x1, t1; x2, t2) = gi11 (x1, t1)gi11 (x2, t2) + gi21 (x1, t1)gi21 (x2, t2), (69)

where gi11 (x, t) and gi21 (x, t) are, for simplicity, quadrature pairs of spatial-only Gabor filters
and i = 1, · · · ,M . The Gabor filters are constructed using a dyadic grid of dilations,
translations and rotations of the following pair of mother wavelets [15],

g1
1(x, t) = exp

(
−1

8

(
4x2

1 + 2x2
2

))
cos (2.5x1) (70)

27



and

g2
1(x, t) = exp

(
−1

8

(
4x2

1 + 2x2
2

))
sin (2.5x1) . (71)

The ensemble of Gabor filters forms a frame in the spatial domain of the input space
[42].

For the first example, a 0.4-second-long synthetically generated video sequence is encoded
by the neural circuit. The order of the input space was chosen to be Lx1 = Lx2 = 3, Lt = 4.
Thus, the dimension of the input space is 441. The input stimulus was created by choosing
its basis coefficients to be i.i.d. Gaussian random variables. The stimulus was encoded by a
neural circuit consists of 318 complex cells. A total of 1, 374 spikes were generated by the
encoding circuit. The stimulus was decoded using the extended Algorithm 3. As shown in
Figure 12, the video sequence can be perfectly reconstructed with a fairly small number of
spikes (A snapshot of the video is shown, see also Supplementary Video S1 for full video). The
SNR of the reconstructed video was 92.8 [dB], thereby reaching almost perfect reconstruction
with machine precision. Note that without the reconstruction algorithm employed here,
97, 461 measurements would be required from at least 5, 733 complex cells to achieve perfect
reconstruction.

Figure 12: Example of reconstruction of synthesized visual stimuli. A synthetically generated
visual stimulus was encoded by 318 Complex Cells that generated some 1, 374 spikes. A
snapshot of the original video is shown on the left. The reconstruction is shown in middle
and the error on the right. SNR 92.8 [dB]. (See also Supplementary Video S1)

We then performed encoding and subsequent reconstructions of 2-second long natural video
sequences that had a resolution of 72 × 128 pixels. The videos had temporal bandwidth of
10[Hz] and spatial bandwidth of 0.375 cycles per pixel. Additionally, the spatial bandwidth
was restricted to a circular area to make it isotropically bandlimited. The videos were
encoded by a neural circuit consisting of 21, 776 complex cells, whose DSPs were modeled
as spatial-only quadrature pair of Gabor filters. The Gabor filters formed a frame in the
spatial dimension of the space.

The decoding was performed using 6 NVIDIA P100 GPUs on a single computer node. Despite
of their computational power, the amount of memory required by the algorithm for decoding
the whole video sequence exceeded the memory capacity of the 6 GPUs. Therefore, the
reconstruction of the entire video was performed by decoding 0.2 second long segments of the
video independently and then stitching them together [16]. The overlap between consecutive
segments was 0.1 second. We chose the order of the space to be Lx1 = 27, Lx2 = 48, Lt = 3,
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and the bandwidth of the space to be Ωx1
= Ωx2

= 0.75π[rads/pixel] and Ωt = 20π[rads/s].
We also restricted the spectral lines in the spatial dimension to be inside a circular area
instead of a square area as defined in (73), i.e., we considered only lx1 and lx2 that are in

the set {(lx1 , lx2)|l
2
x1
L2
x2

+ l2x2L
2
x1
≤ L2

x1
L2
x2
}. This allowed the bandwidth of the stimuli to be

covered with minimal number of spectral lines [16]. Note that, by the construction of input
space, the decoded video must be periodic in time. However, an arbitrary 0.2-second video
may not be periodic. Therefore, we chose the decoding space to have a temporal period of
0.3 seconds and retained only the middle 0.2 seconds of the reconstructed segments. The
total dimension of the decoding space was 28, 413. The extended Algorithm 4 was used in
decoding.

For the example depicted in Figure 13A, a total of 980, 730 spikes were generated by the
neural circuit. About 76, 000 to 86, 500 measurements were used in reconstructing the video
in each time segment. This is approximately 2.67 to 3.04 times of the dimension of the space.
In contrast, a total of 403, 663, 491 measurements would have been required by Algorithm 1
to reconstruct the same video. In Figure 13A, a snapshot of the original, reconstructed
video sequence and the error are shown (see also Supplementary Video S2) The SNR of the
reconstructed video was 48.85 [dB] (the first and last 20 milliseconds were removed from the
SNR calculation due to boundary conditions).

Additional examples of reconstructed natural video encoded by the same neural circuit are
shown in Figure 13B-E (see also Supplementary Video S3-S6).

4.2 Low-Rank Functional Identification of Spatio-Temporal Com-
plex Cells

The low-rank functional identification described in Section 3.2 can be extended to identify
DSPs of spatio-temporal complex cells. The functional identification for the spatio-temporal
case is formally described in Appendix D.

In this section we first provide an example of identification of spatio-temporal DSPs of
complex cells. We then evaluate the identified low-rank spatio-temoporal DSPs by decoding
novel stimuli encoded with the original neural circuit. The decoding uses the identified filters.
Finally, we compare the performance of the low-rank identification methodology with other
identification algorithms.

4.2.1 Example - Low-Rank Functional Identification of Complex Cell DSP from
Spike Times in Response to Spatio-Temporal Stimuli

In this example, we first consider identifying the DSP of a single complex cell in the neural
circuit used in Section 4.1.1. As a reminder, the neural circuit used in the example in
Section 4.1.1 encodes spatio-temporal stimuli of the form u1(x1, t).

We presented to the population of M complex cells 0.4-second stimuli, where M varied
from 40 to 80. The stimuli were generated by choosing their basis coefficients as i.i.d.
Gaussian random variables. For each M , we repeated the functional identification process
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Figure 13: Examples of reconstruction of natural visual stimuli. Snapshots of the original
videos encoded by a neural circuit with complex cells are shown on the left. The recon-
structions from the spike times are shown in the middle and the error on the right. Note
that the color bar indicating the magnitude of the error was set to 10% of the input range.
SNR: (A) 48.85 [dB]. (B) 46.92 [dB]. (C) 48.61 [dB]. (D) 50.76 [dB]. (E) 48.11 [dB]. (See
also Supplementary Videos S2-S6)

30



for 200 times, each with different stimuli. Identification was essentially based on the extended
Algorithm 3, where the SDPs were again solved by SDPT3.

The percentage of rank 2 solutions is shown in Figure 14A as a function of number of
experimental trials. The mean SNR is shown in Figure 14B. Figure 14A suggests that, if the
number of trials is larger than 70, the solution to the trace minimization coincides with high
probability with the rank minimization problem. In contrast, identification of the complex
cell DSP using Algorithm 2 would have required at least 407 trials.

40 50 60 70 80
0

50

100

Number of Trials

P
er

ce
n

ta
g
e 

o
f

R
a
n

k
 2

 R
ec

o
v
er

y
 (

%
)

40 50 60 70 80
0

50

100

150

Number of Trials

S
N

R
 o

f 
Id

en
ti

fi
ed

2
n

d
 O

rd
er

 K
er

n
el

 [
d

B
]A B

Figure 14: Example of low-rank functional identification of spatio-temporal complex cells.
(A) Percentage of successful rank 2 recovery in identification. (B) Mean SNR of identified
second order DSP kernel.

It can be easily seen that the identification process does not require a large number of trials to
achieve perfect identification, thereby enabling the identification of non-linear dendritic pro-
cessing of cells similar in structure to complex cells with a tractable amount of physiological
recordings.

4.2.2 Example - Evaluation of Functional Identification of Neural Circuit of
Complex Cells Using Decoding

We then performed the functional identification of all 62 complex cells in the neural circuit
used of the example in Section 4.1.1. Here, our goal is to evaluate the identification quality
using decoding.

We first identified all complex cells by presenting to the neural circuit M spatio-temporal
stimuli. We also performed the identification of the entire circuit using 8 different values of
M . We then presented to the same circuit 100 novel stimuli drawn from the input space and
used the spike times generated by the neural circuit to decode the stimuli. In the decoding
process, we assumed that the DSPs of the set of complex cells are as identified, for all 8 values
of M . The mean reconstruction SNR of the 100 stimuli is shown in Figure 15. As shown, the
quality of reconstruction was kept at low SNR until enough trials were used in identification.
When more than 70 trials were performed, perfect reconstruction was achieved, and thereby
the entire neural circuit has been identified with a very high quality.

4.2.3 Comparison with STC, GQM and NIM

We compared the performance of the low-rank functional identification algorithm intro-
duced here with the widely used Spike-Triggered Covariance (STC) algorithm [38]. As in
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Figure 15: Evaluating identification quality in the input space. SNR of reconstruction of
novel stimuli assumed to be encoded with the identified DSPs.

Section 4.2.1, a complex cell with a pair of orthogonal Gabor filters was chosen for identifi-
cation. However, the filters had different norms.

Figure 16A shows the quality of identification (SNR) as the number of spikes used in identi-
fication increases. Note that the low-rank functional identification algorithm reached perfect
identification using only 746 spikes, whereas the performance of the STC algorithm satu-
rated at ∼ 17 [dB] after almost 40, 000 spikes were used. Figure 16B shows the identified
individual Gabor filters of the complex cells using both algorithms. The number of spikes
used are indicated at the top of each column.

We also evaluated the identification performance of the generalized quadratic model (GQM)
[44] and the non-linear input model (NIM) [45] with quadratic upstream filters to the same
example above. The results (not shown) were similar to those obtained with the STC
algorithm.

We note that while the low-rank functional identification algorithm is formulated as non-
linear sampling using TEMs and solved using recent advances in low-rank matrix sensing,
the other algorithms tested here rely on moment based or likelihood based methods that
require a large number of samples to converge.

5 Conclusions

In this paper, we presented sparse algorithms for the reconstruction of temporal as well as
spatio-temporal stimuli from spike times generated by neural circuits consisting of complex
cells. We formulated the encoding as generalized sampling in a tensor space and exploited
the low-rank structure of the stimulus in this space, leading to tractable reconstruction
algorithms. For neural circuits consisting of complex cells, this suggests that, in addition to
each complex cell extracting visual features, a biologically plausible number of complex cells
are capable of faithfully representing visual stimuli. In particular, the examples with natural
video sequences provided in this paper, demonstrate that neural circuits with non-linear
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Figure 16: Comparison of the low-rank functional identification with STC. (A) SNR of
identified quadrature pairs of Gabor filters in a complex cell, as a function of number of spikes
used in identification. Low-rank functional identification reaches nearly machine precision
with about 746 spikes, which corresponds to about 70 stimulus trials (see also Figure 14).
STC reaches about 17 [dB] SNR with ∼ 30, 000 spikes. (B) Quadrature pair Gabor filters
(1st column) identified with low-rank functional identification algorithm with 746 spikes (2nd
column, SNR: 128.48 [dB], 130.84 [dB]), and with STC using 39, 769 spikes (3rd column,
SNR: 16.79 [dB], 17.88 [dB]) and using 746 spikes (4th column, SNR: 0.20 [dB], 0.60 [dB]).
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receptive fields and highly non-linear spike generating mechanisms, are able to faithfully
represent natural visual stimuli. The number of spikes that increases just quasi-linearly with
the bandwidth or resolution of the stimuli.

Based on duality between sparse decoding and functional identification, we showed that
functional identification of complex cells DSPs can be efficiently achieved by exploiting their
low-rank structure, using similar algorithms as used in decoding. These algorithms make the
functional identification of complex cells tractable, allowing guaranteed high quality identi-
fication using a much smaller set of testing stimuli as well as of shorter time duration.

The mathematical treatment presented here, however, is not limited to the complex cells
in V1. It can be applied to other neural circuits of interest. For example, early olfactory
coding in fruit flies [46] and auditory encoding in grasshoppers [47] have also been shown to
have the structure of low-rank DSP kernels. Moreover, the Hassenstein-Reichardt detector
[48], a popular model for elementary motion detectors in fruit flies, is also I/O equivalent to
low-rank DSP kernels.
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A Proof of Lemma 2

Proof: With (18) the t-transform for the ith stimulus is given by∫ t
i
k+1

t
i
k

∫
D2
h2(t− s1; t− s2)ui2(s1; s2)ds1ds2dt = qik.

Since P2u
i
2 = ui2, we have∫ t

i
k+1

t
i
k

∫
D2
h2(t− s1; t− s2)(P2u

i
2)(s1; s2)ds1ds2dt = qik or∫ t

i
k+1

t
i
k

∫
D2

∫
D2
h2(t− s1; t− s2)K2(s1, s2; s′1, s

′
2)ui2(s′1; s′2)ds′1ds

′
2ds1ds2dt = qik or∫ t

i
k+1

t
i
k

∫
D2

∫
D2
h2(t− s1; t− s2)K2(t− s1, t− s2; t− s′1, t− s′2)ds1ds2u

i
2(s′1; s′2)ds′1ds

′
2dt = qik or∫ t

i
k+1

t
i
k

∫
D2

(P2h2)(t− s1; t− s2)ui2(s1; s2)ds1ds2dt = qik.

Finally, with (17), we obtain

Lik(P2h2) = qik, k ∈ Ii, i = 1, · · · ,M. (72)

�

B Modeling of Spatio-Temporal Stimuli

Definition 4. The space of trigonometric polynomials Hp
1 is the Hilbert space of complex-

valued functions

u1(x, t) =
∑
lx

∑
lt

clxltelxlt(x, t), (73)
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where

lx ∈ {(lx1 , lx2 , · · · , lxp) ∈ Zp| − Lx1 ≤ lx1 ≤ Lx1 ,−Lx2 ≤ lx2 ≤ Lx2 , · · · ,−Lxp ≤ lxp ≤ Lxp},

lt ∈ {k ∈ Z| − Lt ≤ k ≤ Lt}

over the domain D, where, by abuse of notation, D = [0, Sx1 ]×[0, Sx2 ]×· · · [0, Sxp ]×[0, St] and

St = 2πLt

Ωt
, Sx1 =

2πLx1

Ωx1

, Sx2 =
2πLx2

Ωx2

, · · · , Sxp =
2πLxp

Ωxp

. In addition, elxlt(x, t) = elx(x)elt(t)

where

elx(x) =
1√∏p
i=1 Si

exp
(
j ωx

Tx
)

; ωx =

(
lx1Ωx1

Lx1
,
lx2Ωx2

Lx2
, · · · ,

lxpΩxp

Lxp

)

and

elt(t) =
1√
St

exp

(
jltΩt

Lt
t

)
.

Here Ωt denotes the bandwidth, and Lt the order of the space in the temporal domain while
Ωxi

and Lxi denote the bandwidth and order of the space in the ith spatial variable. Stimuli
u1 ∈ Hp

1 are periodic with periods St, Sx1 , · · · , Sxp.

We denote the temporal dimension of Hp
1 by dimt(Hp

1) = 2Lt + 1 and the total dimension
by dim(Hp

1) = (2Lt + 1)
∏p

i=1(2Lxi + 1).
Definition 5. The tensor product space Hp

2 = Hp
1 ⊗H

p
1 is a Hilbert space of complex-valued

functions

u2(x1, t1; x2, t2) =
∑
lx1

∑
lt1

∑
lx2

∑
lt2

dlx1 lt1 lx2 lt2
elx1

(x1) elt1
(t1) elx2

(x2) elt2
(t2) (74)

over the domain D2.

Note that dim(Hp
2) = (dim(Hp

1))2.

C Encoding of Spatiotemporal Stimuli with a Popula-

tion of Complex Cells

We consider again a neural circuit consisting of a population of M neurons modeling a
population of complex cells as illustrated in Figure 1. The input to the neural circuit is
spatiotemporal stimulus as defined in Section B.

The input stimulus u1(x, t) to neuron i is first processed by two spatio-temporal linear
filters whose impulse responses are denoted, by abuse of notation, as gi11 (x, t) and gi21 (x, t),
respectively. The output of the linear filters are squared and summed. The sum vi(t), as the
output of the DSP, is then fed into the BSG of neuron i. The BSG encodes the DSP output
into the spike train (tik)k∈Ii . Here Ii is the spike train index set of neuron i.
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Figure 17: Duality between low-rank decoding and low-rank functional identification for
spatio-temporal complex cells. (A) decoding of spatio-temporal stimuli encoded by a neural
circuit of M complex cells and (B) functional identification of spatio-temporal complex cells
by presenting M trials of stimuli.

Similar to the temporal case, the neural circuit is equivalent to that shown in Figure 17A.
Here, the output of the DSP for each neuron i = 1, 2, · · · ,M , can be expressed as

vi(t) =

∫
D2
hi2(x1, t− s1; x2, t− s2)u1(x1, s1)u1(x2, s2)dx1dx2ds1ds2. (75)

Here
hi2(x1, t1; x2, t2) = gi11 (x1, t1)gi11 (x2, t2) + gi21 (x1, t1)gi21 (x2, t2) (76)

is the low-rank DSP [18]. The encoding of stimulus by the neural circuit with complex cells
is a special case of the low-rank DSP of the form given in (76). When using IAF point
neurons as models of the BSGs, we have the following theorem describing the encoding of
stimuli.
Lemma 3. The encoding of stimulus u1 ∈ Hp

1 into the spike train sequence (tik), k ∈ Ii, i =
1, 2, ...,M, by a neural circuit of spatio-temporal complex cells is given in functional form by

T ik u2 = qik, k ∈ Ii, i = 1, · · · ,M, (77)

where T ik : Hp
2 → R, are bounded linear functionals defined by

T ik u2 =

∫ t
i
k+1

t
i
k

∫
D2
hi2(x1, t− s1; x2, t− s2)u2(x1, s1; x2, s2)dx1dx2ds1ds2dt, (78)

with u2(x1, t1; x2, t2) = u1(x1, t1)u1(x2, t2). Finally, qik = κiδi − bi(tik+1 − tik).

Proof: As in Lemma 1, the t-transform of the i-th IAF neuron is given by (6).

The relationship (77) follows after replacing vi(t) given in (75) in equation (6). �

Similar to Remark 2, equation (77) shows that the encoding of a stimuli by the neural circuit
with low-rank DSPs can be viewed as generalized sampling.

By abuse of notation, we denote by c the vector representing the coefficients of u1 in (73),
and D as the matrix representing the coefficients of u2 in (74). We skip here the detailed
entries of c and D due to the complexity of the indices, but their construction follows closely
with (28) and (26), respectively, and D = ccH .
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Theorem 5. Encoding the stimulus u1 ∈ Hp
1 with the neural circuit with complex cells given

in (75) into the spike train sequence (tik), k ∈ Ii, i = 1, 2, ...,M , satisfies the set of equations

Tr(Φi
kD) = qik, k ∈ Ii, i = 1, · · · ,M, (79)

where D = ccH is a rank-1 Hermitian matrix and (Φi
k), k ∈ Ii, i = 1, · · · ,M , are Hermitian

matrices. [Φi
k]lx2 lt2 ;lx1

lt1
denotes the entry at the(

(lt2 + Lt2 + 1)
∏p

i=1(Lxi2 + 1) +
∑p

j=1(lxj2 + Lxj2 + 1)
∏j−1

i=1 (2Lxi2 + 1)
)

-th row and the(
(lt1 + Lt1 + 1)

∏p
i=1(Lxi1 + 1) +

∑p
j=1(lxj1 + Lxj1 + 1)

∏j−1
i=1 (2Lxi1 + 1)

)
-th column, and

[Φi
k]lx2 lt2 ;lx1

lt1
=∫ t

i
k+1

t
i
k

elt1−lt2
(t)dt

∫
D2
hi2(x1, s1; x2, s2)elx1 ,−lt1

(x1, s1)e−lx2 ,lt2
(x2, s2)dx1ds1dx2ds2,

(80)

where lxi
= (lx1i , lx2i , · · · , lxpi), i = 1, 2.

Proof: Plugging in the general form of u2 in (74) into (78), the left hand side of (77)
amounts to∑
lx1

∑
lt1

∑
lx2

∑
lt2

dlx1 ,lt1 ,−lx2 ,−lt2

∫ t
i
k+1

t
i
k

elt1−lt2
(t)dt·

·
∫
D2
hi2(x1, s1;x2, s2)elx1 ,−lt1

(x1, s1)e−lx2 ,lt2
(x2, s2)dx1dx2ds1ds2.

It is easy to verify that the expression above can be written as∑
lx1

∑
lt1

∑
lx2

∑
lt2

dlx1 ,lt1 ,−lx2 ,−lt2
[Φi

k]lx2 lt2 ;lx1
lt1

= Tr(Φi
kD), (81)

where the(
(lt1 + Lt1 + 1)

∏p
i=1(Lxi1 + 1) +

∑p
j=1(lxj1 + Lxj1 + 1)

∏j−1
i=1 (2Lxi1 + 1)

)
-th row(

(lt2 + Lt2 + 1)
∏p

i=1(Lxi2 + 1) +
∑p

j=1(lxj2 + Lxj2 + 1)
∏j−1

i=1 (2Lxi2 + 1)
)

-th column entry of

D amounts to [D]lx1 lt1 ;lx2
lt2

= dlx1 ,lt1 ,−lx2 ,−lt2
.

Since u2(x1, t1; x2, t2) = u1(x1, t1)u1(x2, t2) and dlx1 ,lt1 ,−lx2 ,−lt2
= clx1 ,lt1

cHlx2 ,lt2
, thereby D =

ccH . We also note that since hi2, i = 1, · · · ,M , are assumed to be real valued, (Φi
k), k ∈

Ii, i = 1, · · · ,M , are Hermitian. �

Low-Rank Decoding of Spatio-Temporal Visual Stimuli

When using an algorithm similar to Algorithm 1 to reconstruct spatio-temporal stimuli
encoded by a neural circuit with complex cells, at least dim(Hp

1) (dim(Hp
1) + 1) /2 measure-

ments are required. In addition, at least dim(Hp
1) (dim(Hp

1) + 1) /(4Lt + 1) neurons are
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required, a number that can become unrealistically high with an increasing dimension of the
input space.

With the observation that D = ccH is a rank-one matrix, we can apply algorithms similar to
those described in Section 3.1.2 to recover spatio-temporal stimuli encoded by a population
of spiking neurons with low-rank DSPs.

D Low-Rank Functional Identification of

Spatio-Temporal Complex Cells

Similar to Section 3.2, we consider here the identification of low-rank DSP of complex cells
from spike times generated when multiple stimulus trials are presented. We first define the
projection operators in Hp

1. Then, based on (75), we show that the duality between decoding
and functional identification also holds in the spatio-temporal case.
Definition 6. Let hn ∈ L1(Dn), n = 1, 2, where L1 denotes the space of Lebesgue integrable
functions. The operator Pp1 : L1(D)→ Hp

1 given by

(Pp1h1)(x, t) =

∫
D
h1(x′, t′)Kp

1 (x, t; x′, t′)dx′dt′ (82)

is called the projection operator from L1(D) to Hp
1. Similarly, the operator Pp2 : L1(D2)→ H2

given by

(Pp2h2)(x1, t1; x2, t2) =

∫
D2
h2(x′1, t

′
1; x′2, t

′
2)Kp

2 (x1,x2, t1, t2; x′1,x
′
2, t
′
1, t
′
2)dx′1dx′2dt

′
1dt
′
2 (83)

is called the projection operator from L1(D2) to H2.

We consider here complex cells whose low-rank DSP can be expressed more generally as

h2(x1, t1; x2, t2) =
N∑
n=1

gn1 (x1, t1)gn1 (x2, t2), (84)

where, by abuse of notation, gn1 (x, t), n = 1, · · · , N are impulse responses of spatio-temporal
linear filters, and N � dim(Hp

1). Similar to the approach we take in Section 3.2, this
particular structure can be exploited to identify the projection of h2 using tractable algo-
rithms.

By abuse of notation, we denote gn as the vector representing the coefficients of Pp1g
n
1 ,

and H as the matrix representing the coefficients of Pp2h2. The detailed entries of gn

and H are constructed similarly to (48) and (49), respectively. In addition, we have H =∑N
n=1 gn(gn)H .

Theorem 6. By presenting M trials with stimuli ui2(x1, t1; x2, t2) = ui1(x1, t1)ui1(x2, t2), i =
1, · · · ,M , to a complex cell and observing the spike trains tik, k ∈ Ii, i = 1, 2, · · · ,M , the
coefficients of the projections Pp2h2 of the DSP of the complex cell, satisfy the set of equations

Tr(Ψi
kH) = qik, k ∈ Ii, i = 1, · · · ,M, (85)
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where H is a rank-N positive semidefinite Hermitian matrix and (Ψi
k), k ∈ Ii, i = 1, · · · ,M ,

are Hermitian matrices with the entry at the(
(lt2 + Lt2 + 1)

∏p
i=1(Lxi2 + 1) +

∑p
j=1(lxj2 + Lxj2 + 1)

∏j−1
i=1 (2Lxi2 + 1)

)
-th row and the(

(lt1 + Lt1 + 1)
∏p

i=1(Lxi1 + 1) +
∑p

j=1(lxj1 + Lxj1 + 1)
∏j−1

i=1 (2Lxi1 + 1)
)

-th column given by

[Ψi
k]lx2 lt2 ;lx1

lt1
=

∫ t
i
k+1

t
i
k

elt1 ,−lt2
(t)dt

∫
D2
ui2(x1, s1; x2, s2)elx1 ,−lt1

(x1, s1)e−lx2 ,lt2
(x2, s2)dx1ds1dx2ds2, (86)

where lxi
= (lx1i , lx2i , · · · , lxpi), i = 1, 2.

Proof: Essentially similar to the proof of Theorem 4.
Remark 13. Theorem 5 and Theorem 6 suggest that decoding of spatio-temporal stimuli
encoded by a population of complex cells is dual to the functional identification of the DSP of
complex cells presented with multiple stimulus trials. This is further illustrated in Figure 17.
Note that in identification, only the projection of the complex cell DSP onto the stimulus
space can be identified.

Based on Theorem 6, we can formulate functional identification algorithms for complex cell
DSPs of the form (84) with a significant reduction in the number of required trials and spikes.
The algorithms are similar to those presented in Section 3.2.2.
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