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Abstract

The massively parallel nature of Video Time Encoding Maeki(T EMs) calls for scal-
able, massively parallel decoders that are implementdud métiral components. The
current generation of decoding algorithms is based on ctingpthe pseudo-inverse
of a matrix and does not satisfy these requirements.

Here we consider Video TEMs with an architecture built usi®apor receptive
fields and a population of Integrate-and-Fire neurons. Vdsvdtow to build a scal-
able architecture for Video Time Decoding Machines usimayireent neural networks.
Furthermore, we extend our architecture to handle the stngetion of visual stimuli
encoded with massively parallel Video TEMs having neuroitls vandom thresholds.
Finally, we discuss in detail our algorithms and demonsttilaeir scalability and per-
formance on a large scale GPU cluster.

Keywords: neural encoding of visual stimuli, spiking neural modelassively
parallel reconstruction of visual stimuli, recurrent reduretworks, neural circuits
with random thresholds, receptive fields.

1. Introduction

The increasing availability of multi-electrode recordénand functional imaging
methods has led to the application of neural decoding teciesi to the recovery of
complex stimuli such as natural video scenes. An optimakirdecoding algorithm
was applied by (Stanley et al., 1999) to the reconstructioratural video scenes from
recordings of a neural population of the cat’s Lateral Gelaite Nucleus (LGN) result-
ing in recognizable moving objects. Visual image recorctton from fMRI data was
examined in (Miyawaki et al., 2008), whereas in (Kay et @108) fMRI data was used
to identify natural images.

A formal model based approach for encoding and reconstrugtithe early visual
system was advanced in (Lazar & Pnevmatikakis, 2011) andaflLet al., 2010). In
this approach Time Encoding Machines (TEMs) model the mepr&@tion (encoding)
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of stimuli by sensory systems with neural circuits that camioate via spikes (ac-
tion potentials). Single-input single-output TEMs asyrciously encode time-varying
analog stimuli into a time sequence (Lazar & Toth, 2004)déd Time Encoding
Machines (Video TEMSs) encode space-time-varying signattuding visual stimuli
(movies, animation) into a multidimensional time sequefi@ar & Pnevmatikakis,
2011). Different models of neural encoding circuits haverbmvestigated including
circuits with random parameters (Lazar et al., 2010).

Hardware implementations of TEMs are also available. Fangde Asynchronous
Sigma-Delta Modulators (ASDMSs), that have been shown torbiastance of single-
input single-output TEMs, can be robustly implemented v fwower analog VLSI
(Kinget et al., 2005). With the ever decreasing voltage adeiasing clock rate, am-
plitude domain high precision quantizers are more and miffieudt to implement. In
the nanoworld, it is more cost effective to measure “time’bpposed to measuring
“space” (signal amplitude). Thus, information represtatain time domain matches
up with the miniaturization trends of nanotechnology. Tk&trgeneration silicon en-
coders are expected to operate in the time domain (Lazar, 20Qi8).

Given Nyquist-type rate conditions, a time encoded bant#unsignal can be re-
covered with arbitrary accuracy by Time Decoding Machirid3Nls) (Lazar & T6th,
2004). For stimuli encoded with single-input single-outp&EMs several real-time
reconstruction algorithms have been demonstrated in thte(bazar et al., 2008; Har-
ris et al., 2008). Although the encoding mechanism can beieffily implemented,
the reconstruction algorithms call for the pseudo-inwmrsif a matrix. The massively
parallel nature of Video TEMs calls for scalable, massiymyallel decoders that are
(preferably) implemented with neural components. Theantrgeneration of decoding
algorithms is based on computing the pseudo-inverse of exvaatd does not satisfy
these requirements.

Here we consider Video TEMs built using Gabor receptive §ieldd a population
of Integrate-and-Fire neurons. We seek a solution for therrstruction of time en-
coded signals using neural hardware components (Laza6)2@early, a decoding
circuit built using neural components has to minimize theesa&ost function that leads
to a solution via a matrix pseudo-inverse.

We show how to build a scalable architecture for Video TDMsgisecurrent neu-
ral networks (Cichocki & Unbehauen, 1993). The recurrentrakenetwork decoding
method has two main advantages: (i) it is intrinsically fjatand therebyscalable
for real-time decoding, and (ii) it can be implemented ussilgple neural hardware
components. Furthermore, we extend our architecture tdleahe reconstruction of
visual stimuli encoded with massively parallel Video TEMa/img neurons with ran-
dom thresholds. Finally, we discuss in detail our algorghamd demonstrate their
scalability and performance on a GPU cluster. Briefly, tiheusation results show that
the proposed method provides high quality reconstructioasare comparable to the
ones obtained by applying the matrix pseudo-inverse method

This paper is organized as follows. In section 2 the vectacspf visual stimuli is
introduced. In section 3 the massively parallel architextf Video TEMs consisting
of receptive fields in cascade with neural circuits is désati The massively parallel
architecture of Video TDMs using recursive neural netwaskpresented in section
4. The complexity of the massively parallel encoding ancbdéwy algorithms is dis-



cussed in section 5. In section 6 two examples of encodingafVstimuli with TEMs
with deterministic/random thresholds are given. Sectitnigfly concludes the paper.

2. Modeling the Visual Stimuli

In this paper visual stimuli are modeled as elements of thwovespace of tri-
variable trigonometric polynomials denotedy Each element € # is of the form

M, My,

I(x,y,t) = Z Z Z Crmg,my,my Cmg,my, ,my (z,y,1), (2)

Mg=—Myz my=—M, m=—M;
where thec,,, m, .m, € R are constants and
ema:-,my-,mt (.I,y,t)
= Cm, (x)emy (y)emt (t)
exp( jmae + jmy By 4 jm 2y
= My——T Moy —— my——
plJ sz J yMyy J tMt )
My = _va avamy = _My7 7My7
my = _Mtv"' 7Mt7

constitute a basis ¢ and(z, y, t) € R3. (Q, Q,, Q) and(M,,, M,,, M;) are, respec-
tively, the bandwidth and the order of the trigonometricyp@mials in each variable.
An element/ € H is also, respectively, periodic in each variable with perio

2w M, B 2 M, B 21 M,

Q, S = Q,

By defining the inner product i& as

Si/2 Sa/2 S. /2
e / / (2,9, )T (2 9, D) dadydt,
(i 2) = Ssst S S (@9,7)

the space of trigonometric polynomials is a Hilbert spadec&H is finite dimensional
it is also a Reproducing Kernel Hilbert Space (RKHS). Theadpcing kernel (RK)
is given by

K(:v y, b, y’ t) =

e

Z Z Z emmamyamt _‘Tlvy_y/at_t/)'

Me=—Mz my=—M, mi=—M;

Using the above Hilbert space as a model of visual stimukiseresively discussed
and justified in (Lazar et al., 2010).



3. Massively Parallel Video Time Encoding

In this section we describe the architecture of space-tinded/Time Encoding
Machines. For a detailed and highly intuitive treatmenthaf bne-dimensional case
we refer the reader to (Lazar & Zhou, 2011).

3.1. Video Encoding with IAF Neurons

The architecture of the video TEM is shown in Fig. 1. It is a sy parallel
architecture, with each parallel branch consisting of twarloies in cascade: a visual
receptive field and a neural circuit consisting of an IAF roeur

DY(x,y,1)

Neural

Circuit 1

Neural

Circuit 2

()

Neural

Circuit N

Figure 1:Diagram of Video Time Encoding Machine.

Visual receptive fields are often used to model the prefer@fi@ neuron to the
spatio-temporal pattern of stimuli. More formally, the eptive fields considered here
are spatio-temporal linear filters that preprocess theaVsimuli and feed them to the
the IAF neurons. We denote the visual receptive field in tde®TEM asD? (z, y, t), j =
1,..., N, whereN is the number of branches. In the case of spatio-temporatable
receptive fields, thgth receptive field can be separated into

D’ (x,y,t) = D¥(x,y) Dp(1),

whereD’é(:z:, y) is the spatial and)%(t) is the temporal component of the receptive
field.

Often, the spatial component of the receptive field of singals in the primary
visual cortex (V1) can be mathematically generated by theoGmother wavelet

exp (—#) (ei’” — e_"“2/2) . (2

1
Y(z,y) = Ner

From the Gabor mother wavelet, we can derive a family of Gditters that repre-

sents the spatial component of the receptive fields of d@iffeneurons. The set of
all receptive fields can be obtained by performing the follmmhree operations or
combinations thereof:



e Dilation Dy, € Ryt Doy(z,y) = a7 1y(£, L),

a’ o

e RotationRy,0 € [0,27): Roy(z,y) = y(xcosh + ysinb, —xsinf + y cosb),
e Translationl\,, ..y, (zo, yo) € R%: Tzoy0)V (@, y) = v(x — 20,y — o).

In this paper we will primarily focus on the case of spaceetiseparable receptive
fields and use spatial Gabor filters. However, the formutatieveloped here can be
applied to more general settings.

In order to reconstruct the video signal, we require thatstiteof receptive fields
forms a frame and covers the entire spatial field (Lazar & Rratikakis, 2011). For a
finite aperture (“stimulus size”), such a condition impaoaésver bound on the number
of neuronsN. As the examples in section 6 demonstrate, even for smaltuagsr a
large number of neurons is required to faithfully repregbatvisual stimuli. Due to
the parallelism of the encoding architecture one can redeial with a massively large
number of neurons.

Mathematically, the filtering operation of the visual retvepfield at thejth branch
Di(z,y,t) is given by the operatdrL’ : H — H, by

Frir= /R ( . DI (xz,y,s)(z,y,t — s)da:dy) ds = v (), 3)

whereD? is the aperture” L7 maps the visual stimulus from the 3-D spdg¢énto the
1-D spaceH,, the space of univariable trigonometric polynomials wigmbdwidth(2,
and order\;.

After filtering by the receptive field, the output in each hrfaris fed into an IAF
neuron that encodes the continuous sigrat , into a spike train. Let us denote the
output of thejth neuron ast) ),k = 1,2,--- ,n;. The encoding is described by the
t-transform: _

tiﬂ»l . .. . . .
/j v (t)ds = K767 — VY (L‘f€+1 — 1),
tk
for all k € Z, wherex?, 67 andb’ are, respectively, the integration constant, threshold
and bias of thejth IAF neuron. We now define the bounded linear functiofid$ :
H: — R as

. . t‘l";:#»l . . . . . . .
"t = [ s = 05 v, - ) = o]
t%

with v/ € H,, forallj = 1,2, ..., N. _
Finally, we define the bounded linear functionals: H — R as the composition
of the two operators above describing receptive field filggand neuron encoding
L, =" (4)

Therefore . o . .
L1 =" = (1,6]) = d],



where the second equality is due to the Riesz representagonem and

9%(37, yvt) = <¢?€a Kﬂc,y,t> = LiKI,y,ta

with K, (2, y/, t') = K (z,y, t; 2",y t).

Formulation of time encoding of stimuli in inner product fioprovides a simple
yet very powerful insight into the encoding process itsBlhce the inner products are
merely projections of the visual stimulus onto the axes eeffiny theg; s, encoding
is interpreted as generalized sampling, and q.iE are the measurements given by
sampling the signal. Note however that unlike in traditioseempling, the sampling
functionals in time encoding are signal dependent.

3.2. Video Encoding with IAF Neurons with Random Thresholds

In this section we assume that all IAF neurons of the video Ti&Me thresholds
that are randomly distributed. Biological neurons in thevilsual system and in the
early visual system of the cat have been modeled as IAF newviith random thresh-
olds by (Gestri et al., 1980) and (Reich et al., 1997). Herassime that the thresh-
old value is distributed according to the Gaussian distigiou\/(67, (¢7)2). We also
assume here that the random value of the threshold is keptardrbetween two con-
secutive spikes. Therefore, the t-transform of the IAF nawith random threshold
can be expressed as (see also (Lazar et al., 2010))

/_ v (t)ds = K 6], =V (t] ., —t]) = qi, + €, (5)
t

where _ o o _
q. =K — bJ(t?H_1 — ),

ande] = 7 (8] — 67) are i.i.d. random variables with mean zero and varignée’ )
forall k =1,2,--- ,n;, j = 1,2,---,N. By defining the bounded linear operators

L] : 1 — R (see also (4)), the t-transform of the video TEM is given by
Lyl =(I,6}) = 4 + €.

forall k € Z.

4, Massively Parallel Video Time Decoding

In this section we describe the architecture of space-tinded/Time Decoding
Machines. For a detailed and highly intuitive treatmenthaf bne-dimensional case
we refer the reader to (Lazar & Zhou, 2011).



4.1. Video Time Decoding with Recurrent Neural Networks

We formulate the reconstruction of the encoded stimulus\asiational problem.
Given the spike times and the parameters (including thepteecfield) of the neuron,
the reconstruction is the spline interpolation problemziieev & Vasilenko, 2001)

1= argmin —— {[|7]5.} (6)
IGH"{L;“I:qfc}iill’,'_'_'_ ’,fj

Therefore, the goal of stimulus reconstruction is to find aimum norm solution
among all the elements in the RKHS that are consistent wéhmtbasurements made
in the encoding stage.

Theorem 1. The solution to the spline interpolation problg6) is
~ N nj . .
1= ddl, (7)
j=1k=1

where the;{;’s are the solution to the system of linear equations

Gc =q. (8)
. T
WIthCZ[C%,C%,"',C}ll,C%,C%,"',07212,"'70{\[,"',02]1\,} '
1.1 1,2 2 2 N N T
q:[q17q27"'7qn11q11q21"'aqnza"'aql7"'1qu} ,andG:[G”]|Sab|0Ck

matrix with block entries given by
(GY],, = (¢4, ¢]), foralli,j =1,2,--- Nandk=1,2,--+ ,n;,l =1,2--- ;.

Proof: The form of the solution (7) is given by the Representer TaeorSubstitut-
ing the solution into equation (6), the coefficiem{scan be obtained by solving the
constraint optimization problem

. 1.7
m|n_|m|ze 5¢ Gc ' )
subjectto Gc =q

It is easy to see that the above quadratic optimization prolé equivalent to solving
the system of linear equations (8). O
Note that

M, M, e

T [
¢k - E E ak,m,,my,mtemzymyamtv

Me=—My my=—M, m;=—DM;
where

; = (6 memyn) = Lie
kymg ,my my ks Cmg,my,my/ — HEC—mg,—my,—my

t’lic+l )
— / / < D'(z,y,8)e—m,,—m, (T, y)d:cdy) €—m,(t — s)dsdt.
th R \J/D?

8



Then, the entries dix can be more explicitly expressed as

M, M,

ij _
[G ]kl - Z Z Z ak M, My, Mt " lml‘7my;mt

Mg=—Myz my=—M, m=—M;

In the case where spatio-temporal separable receptive fie@dused in the encoding,
' can be further separated into

3
a
kammamy7mt

i i

kvmzvmyamt - mm;mypk7mt7

where

di / Diy(,y)e—m, —m, (@, y)dady,
]D)2

, tht ,
Phm, = / /DZT(s)e_mt (t — s)dsdt.
t R

Thus, the spatial and the temporal components can be cothgeparately.

SinceG is typically ill-conditioned, the Moore-Penrose pseudweirse (Penrose,
1955) is often used to obtain the solution far A popular albeit computationally
demanding algorithm for evaluating the pseudo-inversaget on singular value de-
composition (SVD). Recurrent neural networks have beesrnsitely studied to solve
linear equations and optimization problems (Cichocki & Ehlauen, 1993). These net-
works consist of neuron like operators that are simple tdémgnt. Moreover, they
provide an architecture that can be massively parallelthedeby providing a more
plausible solution to the reconstruction procedure. We describe a recurrent neural
network that leads to efficient video decoding.

Theorem 2. The solution to the spline interpolation probl€6) is
1=%"%"cdl, (10)

wherec is the stationary point of the system of differential ecquiadgi

de

- —ola- Go), (11)

with initial conditionc(0) = 0 anda > 0.

Proof: For the energy functio®’(c) = 1||Gc — q|* > 0, we have

OF dc; pdc T
fr— _ = — — _ <
E 301 = (VE) p (Ge—q)" G(Gec —q) <0,

wheren = Z;VZI n;. The lastinequality is due to the fact th@ts positive-semidefinite.
Therefore, the time derivative of the energy function is wtonically decreasing,



and the equalibrium conditiorﬁi—’;J = 0, is satisfied if and only iiGec —q = 0 or
GT(Gc — q) = 0. In other words, the solution to equation (11) is guaranteeubn-
verge to a stationary poietthat satisfies either exacyc = q, orc = (GT'G)*G%q =
G*q, whereG™ denotes the Moore-Penrose pseudo-inversg.of O

Equation (11) can easily be implemented by a circuit comgjsif neural compo-
nents such as integrators and adders; the video TDM can beeatas the diagram
shown in Fig. 2. Note that the above system of differentialagipns may converge
slowly. In such cases the circuit simulation can be stoppleitevetill guaranteeing a
high quality reconstruction of the visual stimuli (see adsation 6).

The recurrent neural circuit in Fig. 2 is massively parall@tl consists ofn =
Z;V:l n; parallel branches. This number can be very large sinceiiesents the total
number of spikes generated by the encoder. In each branlghtvamsimple compo-
nents are required - a multiply/add unit and an integratachSsimple circuits can be
effectively realized in analog VLSI or simulated on a highfpemance computer.

The original method of evaluating the pseudo-inverse, @nahe hand, is typi-
cally based on an elegant mathematical treatment using $\equires additional
workspace in memory that limits the problem size that candbees, and although
scaling the algorithm to multiple computing devices is jlassit is highly nontrivial.
The recurrent neural network approach, on the other hamdthsr straightforward to
both scale up and scale to multiple computing devices, ss@duster of GPUs. It
does not require extra workspace so that the entire memsoyuree can efficiently be
utilized. As we will show later in this section, only a smalbdification is needed in
the implementation of the recurrent neural networks in ptalscale the reconstruction
to a large number of GPU nodes.

1]

o | zdat

& S ciop

N gN
cn Dk Pk

Figure 2: Block diagram of the video TDM implemented using recurrestinal networks. The
recurrent neural network is shown in the square box.
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4.2. Extension to Encoding with Neurons with Random Thidsho

We can easily extend the existing recurrent neural netwatki@cture to decoding
of stimuli encoded with Video TEMs with random thresholdsdevising the decoding
algorithm, we again take a variational approach, by comsigehe reconstruction as
the solution to the smoothing spline problem

= argmln{z P Z ( Qi)Q + A5}, (12)

wheren = Z;V:l n;. The above formulation aims to minimize the error between
samples and measurements, and at the same time, it is riegdlay the norm of the
signal in the Hilbert space.

Theorem 3. The solution to the smoothing spline probléid) is

n

N

. 1 »

I: E H-jUj E C]]g ko (13)
Jj=1 k

=1

where the:i’s are given by the solution of the system of linear equations

GT (G +nM\)c=GTq. (14)
ithe = [e! ¢l 1.2 .2 2 N N 1T
Wi C_[01702"”7Cn17cl7027'”7cn27'”7017""0711\7}’
.1 1 1 1 11 1 2 1 2 12 1N 1 ~NT
q‘_'[ETEqu’ETETqZ""’ETEanlv2737q1’E737q2""7E?Efqn27"'7273ﬁ7q17"' e ra N

TIis then x n identity matrix andG = [G™] is a block matrix with block entries given
by

(0L, 01)

[GY] ,foralli,j=1,2,--- ,Nandk =1,2,--- ,n;,l =1,2,--- ,n,.

Proof: Again, due to the Representer Theorem, the solution of thbl@m is of the
form (13). Substituting the solution into (12), the coeffitisc), are the solution to the
unconstrained optimization problem

minimize E(c) = ||Gc — q||}, + nic” Ge. (15)

Since the problem is convex, the solution is give by settireggradient of the objective
function to zero. Hence, we have

VE(c) =2 (G"Gec+nA\Ge — G'q) =0, (16)

or
G (G +nM\)c=GTq. (17)
O

Using a general gradient approach we now have the following

11



Theorem 4. The solution to the smoothing spline problem is

N nj
. 1 o
_ E E J
j=1 k=1
wherec is the stationary point of the differential equations
dc
— = —uVE 19
o = ~hVE(e), (19)

with initial conditionc(0) = 0, where
E(c) = (|Ge - qu + n/\cTGc) , (20)

and u(c,t) is ann x n symmetric positive definite matrix, whose entries are ugual
dependent on the variablest) and timet.

Proof: The gradient of the energy functidhis guaranteed to vanish since

OF dc; _ rdc T
_ — _ <
Z de; dt VE) dt (VE) nVE <0,

and the system of differential equations reaches statyg@int if and only if VE = 0.
Therefore, (19) asymptotically approaches the global mizer of the optimization
problem (15). O

Consequently, we have

% = —uG? ((G+nX\)c—q).

The above set of differential equations can also be mappedaimecurrent neural
network, and thus the video TDM for visual stimuli encodethwieurons with random
thresholds can be realized by the diagram shown in Figur&i3.ig a three layer neural
network. In the first layer, consisting efmultiply/add units as shown in the left most
column, the vectofG + nAI) ¢ — q is computed. The multiplication factors are the
entries of the matrixz+nAI and the vectog. In the second layel E(c) is evaluated.
This layer also consists of multiply/add units, with multiplication factors provided
by the entries of the matri&. Note thatG is a symmetric matrix. The gradient is
weighted by the learning raje in the third layer, that also consists @fmultiply/add
units. The outputs of the third layer provide the time deneof the vectorke(t). The
time derivatives are then integrated and the outputs arbdel into the first layer.

The circuit described above (see Figure 3) may convergeséeaven slower than
the circuit described in section 4.1 (see also Figure 2). él@n note that the vector
of coefficientsc satisfying(G + nAI)c = q is also a solution to (17). The latter
set of equations is essentially of the same form as (8), abeaeen by replacinG
with G + nAL Therefore, the circuit that solves the spline interpolagroblem can
also be used to solve the smoothing spline problem, whileigirtg a faster speed of
convergence.

12



Figure 3:Block diagram of the video TDM implemented by recurrent méaetworks when the
visual stimulus is encoded by a video TEM with neurons witid@m threshold. The recurrent
neural network is shown in the square box.

5. Algorithmic Considerations

5.1. Encoding on a GPU cluster

Since the architecture of the video TEM is intrinsicallyqu#gl, it is straightforward
to implement on a GPU cluster. The encoding is implementexl smgment of the
stimulus at a time. Each segment consists of a certain nuailfieames of the digital
representation of the video. Therefore, encoding can Henpeed in real-time with a
delay approximately given by the duration of the segmené fWo cascaded encoding
modules, the visual receptive fields and the neural circaitstreated differently in the
implementation.

The double integration of the spatial filtering operatioapproximated by a double
finite sum. Then, filtering of multiple frames of a visual stilus by a set of receptive
fields is simply a matrix-matrix multiplication, where oné the matrices has each
vectorized filter as its columns, and the other matrix hat ®actorized visual stimu-
lus frame as its columns. Although the matrix-matrix mditigtion can be performed
efficiently on GPUSs, every receptive field has to be explicithmputed based on its
parameters and stored in memory. For large size visual btihisi requires storing a
large number of receptive fields. While computing the regegields is extremely ef-
ficient, the limited amount of memory on GPUs can create ddmwttk. By increasing
the number of GPUs that collectively encode the stimulus niemory limitation can
be relaxed. However, a more cost effective approach can\isedke

We noticed that the spatial filtering can be viewed as the @otion between the
image and the same filter centered at zero evaluated at #résfitanslation parameter
value. Hence, all translations with the same dilation artdtion parameters can be
computed simultaneously by a spatial convolution, eithyending the FFT method or,
for filters with impulse response that are Gabor functiogsjding the Fast Gabor Fil-
tering method of (Wang & Shi, 2010). In either case, only aeeptive field has to be
computed and stored per dilation and rotation, explicitiythe FFT and implicitly for
the Fast Gabor Filtering method. Memory usage can be theswstantially reduced
and the performance of the encoding algorithm vastly impdder a large number of
translations.

13



For the neural circuits module, we use one CUDA thread togperthe encoding
of a single neuron. That is, each CUDA thread reads in theesponding filtering
output, integrates it and determines the spike time. Toeaeha higher precision in
spike timing, we nominally perform a linear interpolatioatlveen two consecutive
video frames; the time of spike occurrence is exactly the tivhen the integrated filter
output hits the threshold. In other words, the spike timecisueate under the linear
interpolation assumption between two consecutive videmés. The spikes generated
during the duration of the video segment are then storecetaigk.

There are multiple ways to store spikes. One way is to st@splike time relative
to the beginning of the visual stimulus. However, such arr@ggh is vulnerable to
floating point overflow as the spike times become larger amgttaAn alternative way
is to store the spikes in the format of inter-spike intervaltis approach avoids the
overflow problem, but lacks a time reference. Decoding offzany of the video would
require to read and add up all the spikes from the beginnirthetncoding process
until the point of interest. The latter is not favorable wltlea time instance is large. In
our algorithm, we store the spike times relative to an evgtime line, e.g., the spike
times relative to the beginning of the second. This way, we aaid accumulation
operations of the spike times, since the stored time wilbgsbe in0, 1), and one can
read out spikes starting from any second.

The pseudo code of the encoding algorithm is provided in Aflgm 1.

Input: Visual stream or Video data
Output: Spike trains
Prepare Gabor filters;
while not reaching the end of the video
if head nodehen

| Read in nextV frames of video;
end
Broadcast video segment to all nodes;
Transfer video segment to GPU memory;
for i=1: N do

Convolve filter withith frame;
Extract filtered value at designed translation points;

end
foreach CUDA thread; do

| Computejth IAF neuron spike times;
end
Gather all spike times at head node;
if head nodehen

| Store spike time to file;
end

end

Algorithm 1: The video TEM algorithm.

14



Input: Spike trains

Output: Reconstructed video
foreach GPU nodek do
foreach Receptive field do

foreach Receptive fielg do
A{z 1\/‘{@/ . -
CompUte Z Z d:LHLI sMy dgnx My v

Mg =—Mzg mqy=—M,

end

end
foreach CUDA thread ¢,7) do

| Compute[Gy]ij;
end
foreach CUDA thread: do

| Computelqu]:;
end
end
All GPUs collectively simulate recurrent neural networlotatain [cy];
foreach GPU nodel on the diagonatio
Reconstruct partial su_,[c1]i di;
Gather all partial reconstructions at head node;

end
if head nodehen

| Sum up all parts of the reconstructions;
end

Algorithm 2: The video TDM algorithm using a recurrent neural network.

5.2. Decoding on a GPU cluster

One of the main advantages of using a recurrent neural nktfwordecoding is
that it is straightforward to scale the system to multiplenpaiting units. The GPU’s
intrinsically parallel architecture is a perfect fit. Heveg discuss how the decoding
is realized on multiple GPUs, whose hosts are connectedy asiswitch fabric and
peer-to-peer communication is accomplished through thesklge Passing Interface
(MPI).

The need for scaling up the size of the decoding algorithnriieed by the size
of G, since the entries df&x have to be stored in memory during the entire decoding
process. Since the memory requiremeni@bis large, we divideds into blocks. Each
block is mapped into a single GPU with enough memory to stbits&ntries (2.5 GB
for the current GPU hardware). Sin€eis symmetric, only the upper diagonal blocks
of G are used. Therefor&z is divided into blocks of size of abo@6, 000 x 25,000
(not necessarily square matrices) and is computed andstore distributed fashion
on all GPUs in the cluster.

G can be efficiently computed when the receptive fields arerabpe In this case,
the computation of each entry @ can be separated into a spatial and a temporal
component. The spatial component is completely indepdrafehe spike times, and
thus it can be computeal priori. The temporal component can be computed using
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one CUDA thread per entry. The spatial component can be d@&seveights and be
applied afterwards. The vectqris also straightforward to compute, using one CUDA
thread per entry.

After G andq are computed, the RNN system of differential equationsaduated
according to the forward Euler method. A critical step in @uting the differential
equations is the matrix vector multiplication 6f andc. This is done in two steps.
First, on each GPU, a local matrix-vector multiplicatiomperformed with a block of
G and the corresponding segmentoofSecond, the results of the local matrix vector
multiplication are gathered (using MPI) into the GPUs thatesthe diagonal blocks of
G, summed together, and the solution at the current time iatepd Then, the solution
is broadcasted to corresponding blocks, again through Bi#fgre the next iteration
is performed. The differential equations are simulatetegifor a fixed amount of
computation time or until the gradient of the cost functisrsmaller than a certain
threshold. In practice, we found that a fixed amount of timeksavell enough. The
approximate solution of the output of the circuit is then used to reconstruct tgeai
based on (7). The pseudocode of the decoding algorithm éngivAlgorithm 2.

5.3. Volume Stitching

Even if the stimulus reconstruction is performed on a laggesGPU cluster it is
still necessary, due to the massive number of neurons ansiveasumber of spikes
generated in encoding for a large aperture stimulus, taldithe stimulus into smaller
volumes and focus the reconstruction on each volume. Aftarolumes are recon-
structed, they can be stitched together using a stitchiggrigdhm following a proce-
dure similar to the one in (Lazar et al., 2008). We now deschibw each stimulus
segment is reconstructed and provide the stitching alyorfor the complete recovery
of the visual stimulus.

We first divide the stimulus into pieces of fixed size, ovepiag volumes, as il-
lustrated in Fig. 4. We denote the length of each volume,in and¢ direction as
Jz, Jy and Jy, respectively. The length of the overlapping part of twoaaét vol-
umes in thex, y andt directions is denoted by,, O, andO;, respectively, with
20, < Jg,204 < Jy,20¢ < Jp. We define by(Vy 1), k,1,m € Z, the volume
segment localized in

k(T — Ou), (k+1)(Ja — O0) + 0u] x (I(J, = Oy). (1 +1)(J, — O,) + O,
x (m(Jy — O¢), (m + 1)(Jr = Or) + Oy,

and byfk,hm(:c, y, t) the stimulus reconstruction based on spikes localizedarvi
ume segmenvy, ; . fk,z,m is obtained by the decoding procedure described in Sec-
tion 5.2 and only takes into account the spikes localizetiénvblumeV, ; .., that sat-
isfy the following conditions (i) they are generated by reng whose receptive fields
are centered inside the spatial domaii®f ., and (ii) the spike times are inside the
temporal domain o¥}, ; ,,, or are exactly the closest spikes before or after the temhpora
segment.

The stimulus reconstructions of the individual volume segta are stitched to-
gether with a simple shifting windows algorithm. We define tindows

W lm = W - W] w, (21)

m>
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Figure 4: (left) Space-time natural video sequence. (right) Divisad the space-time video se-
qguence into fixed sized, overlapping volume segments. Tigiter blue color indicates the
overlapping adjacent volume segments.

where
0, 2 ¢ (k(Jy — 02), k(Jy — O2) + Tu],
. e, € (k(Jy — 02), k(Jy — O4) + O],
YET Y, z € (k(Js — Ox) + Ou, (k+1)(Jy — O,)]. (22)
1= 0., we((k+1)(Js— 0n), (k+1)(Js — O) + O],

with 8 is an appropriately chosen function. An example is givenguagion (24) in
section 6.1. The functions; andw?, are similarly defined. Itis easy to see that the
defined window functions form a partition of unity.

The overall visual stimulus reconstruction is thereforegiby

Iy, t) = Y weimleim(@y,t). (23)
klmez,

Since a fixed sized volume is used for stitching, the shapéefiindow functions
are all the same and they can be pre-computed. Thus, thelloxistal stimulus re-
construction can be obtained by reconstructing the vigirmabtus in each volume seg-
ment, multiplying these with the stored window functionsgdhen stitching the latter
in an ‘overlap-add’ fashion. The pseudo-code for the voltitehing is provided in
Algorithm 3.
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Input: Reconstructions in each volunig; .,
Output: Complete reconstructioh
Compute the volume window function;
while not reaching the end of the video
Perform3_, ; ,.cz Wi t.mdr1.m(z,y,t) in ‘overlap-add’ fashion;
end

Algorithm 3; The volume stitching algorithm.

6. Examples

In this section we provide a complete example of a stimulesdimg with a video
TEM and decoding with a video TDM. The encoding with neuroiith\deterministic
thresholds and its decoding will be illustrated first. Thitwe, result of a noisy case will
be presented.

In our implementation we used the Python programming lagguéor the GPU
part of the implementation we employed PyCUDA (Klockneakt2009).

The visual stimulus of interest was an nHD form@t({ x 360 pixels) color video
sequence defined in the domdiid = [-18,22] x [-9.5,13]. We decomposed the
color video into RGB components, resulting in three monouoie sequences. Each
color component was preprocessed such that most of theyeindtte spatial spectrum
was within4Hz in both directions. Temporally, the video was 10 secomd land was
stored at 25 frames per second. Each pixel was filtered withtdzllowpass filter and
upsampled by a factor of 4, in order to improve the accuradhi@finalog integration.
The preprocessed video was viewed as the original visualsis that was encoded
by the video TEM.

6.1. Example of Video TEM with IAF Neurons

We now describe an example of a video TEM realized with Galtterdiand IAF
neurons with deterministic thresholds that encodes theeafentioned video. The fol-
lowing encoding procedure was repeated for all three calorponents of the video.

“The visual receptive fields used in the encoding act spabaly, i.e.,D? (z,y, t) =
D¥(z,y)d(t), whered(t) is the Dirac delta function. The spatial receptive fieldsenaer
family of Gabor filters, derived from (2). We usédiilations, witha = 2 (1) ,m =
0,1,2,3,4. Translation parameters were provided by a Cartesiarmcdattir each di-
lation, with spacing between two neighboring translatieris 1.625, 1, 11/16, 0.5,
respectively. In addition§ rotations were used, with = 16y,l = 0,1,--- ,7, where
0y = 7w /8. Finally, the real and imaginary parts are viewed as twopteefields.

Each receptive field output was then fed into an IAF neuroh wdrameters =
1.0,0 = 0.03,b = 0.8. The initial conditions of the membrane potential of the -neu
rons were uniformly drawn frorf0, ¢). In all, a total of112, 208 neurons with Gabor
receptive fields were used for each color component.

We first tested the encoding using the matrix-matrix muttagion method in sim-
ulating receptive field filtering. Encoding was performed awrluster of16 Tesla
M2050 GPUs. The total number of spikes generated in the idaraf the video were
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(30,329,137), (30,221, 717) and (30, 045, 454) for the R, G and B components, re-
spectively. It took approximatelyl 0 seconds to encode one color component of the 10
seconds video. This is abosf times slower than real-time for the whole color video.
A more detailed timing revealed that the filtering consurd&g of the total encoding
time, while the distribution of the video data among prooessnd the operation of
IAF neurons took abow.5% each. It can be seen that the encoding bottleneck was
due to the receptive field filtering.

Second, as mentioned in Section 5.1, we replaced the brrge foatrix-matrix
multiplication method in filtering with the Fast Gabor Filteg technique. In the pro-
cess we only usedl GPUs, each responsible for all the receptive fields with #mes
dilation. For dilation with parametex, however, we kept the matrix-matrix multipli-
cation method, since the Fast Gabor Filtering cannot ha@dleor filters with very
large support and the number of translations required ®tatgest dilation is small.
In general, a trade-off needs to be considered between theethods, in order to find
the most efficient approach for different visual stimuli. eTéncoding time using the
Fast Gabor Filtering method was also aroumé seconds. Therefore, we achieved the
same performance using less thHai of the GPUs in the first test.

In decoding, the RGB components were reconstructed sepaeatd then com-
bined together. For each component, the reconstructiohasdiollows. We performed
the volume stitching method described in Section 5.3. with= J, = 13, O, = 4,

O, = 3.5, J; = 0.35, O, = 0.05. The functiordy was given by

07 — sin? <g Lo On) Oz)) , (24)

and the function8;, 0%, were similarly defined. We chose the order of the visual space
as

M, =72, M, =72, M; =10,
Q, = 8m,Qy = 8w, O, = 207.

Therefore, the reconstruction of each block was embeddéteiglomainT x D? =
[0,1] x [-9,9] x [-9, 9], and thereby, the periodicity of the stimuli in RKHS does not
appear in the recovery.

Typically, there were aroung0, 000 to 240, 000 spikes within each segment in
the block. We employed 55 Tesla M2050 GPUs to reconstrudt sagment. This
corresponds to dividing th€& matrix into 10 x 10 blocks, of which the55 upper
diagonal blocks were explicitly computed. The recurrentrabnetwork described in
Section 4.1 was used, with= 20 and3, 000 time steps witi0~*s each. The run time
of reconstructing each segment was about 4 minutes, simgltte neural network
for 0.3 second. Therefore, for each spatial block, the output ohtheal circuit can
provide close to real-time reconstruction. The total rumetifor the reconstruction of
color video was aboui7 hours.

After stitching both spatially and temporally, we obtainedhigh quality recon-
struction for all three components. To evaluate the qualitthe reconstruction, we
only considered the centré20 x 340 region, where the boarder 0 pixels were not
taken into account due to boundary errors. The Signal-tséNRatio (SNR) for R, G,
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B components werg1.85 [dB], 30.59 [dB], 26.81 [dB], respectively. The mean SSIM
index (Wang et al., 2004) across all frames were also cordputbey were).9963,

for R, 0.9970 for G and0.9973 for B. RGB components were combined to visualize
the complete recovery. One of the frames of the originalalistimulus and the cor-
responding reconstruction frame is shown in Fig. 5. The detaideo can be found
in the supplemental material [supplementary video 1]. Tilgh Quality reconstruction
shows both the effectiveness of the massively parallel diegoalgorithm as well as
the faithful representation of the visual stimulus by thesgigely parallel video time
encoder.

original reconstruction

error 2D Spectrum of Error of R

Figure 5:Reconstruction of a visual stimulus encoded with a Video Tilh IAF neurons with
deterministic thresholds. Original frame (top left), gsonstruction (top right), the error (bottom
left) and the 2D spectrum of the error in R component (bottigfnt}.

Furthermore, both the video time encoding and video timedieg architectures
described in the example are highly scalable due to theismmparallelism. Given
more computing resources, one can either reduce the sionutane by distributing
computation to more nodes, or increase the aperture of te®vi

6.2. Example of a Video TEM with IAF Neurons with Random Tiules

We proceed to an example of a video TEM with neurons with ramttoesholds.

The parameters of the neurons and their Gabor receptives fieddte chosen to
be the same as in the previous example, except for the vafuiee dhresholds of
the neurons. The thresholds gth neuron were drawn from the Gaussian distribu-
tion V' (67, (¢7)?), whered’ = 0.03, ando? was drawn from a Gaussian distribution
N(107%,10719). The initial conditions of the membrane potential of thenoes were
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drawn from a uniform distribution on the intervial, %], whered? is the threshold of
the first spike of thgth neuron.

Again, encoding was performed on a cluster of 16 Tesla M20B0$(30, 330, 904),
(30,223,666) and (30,047, 093) spikes were fired in thé0 seconds for R, G and B
components, respectively.

Decoding followed the same spatial stitching procedure #sa previous example.
Again 55 GPUs were employed in the decoding. The smoothing paraswtne set
such that: A was fixed for each color components. They wehke= 0.05,0.01, 1.0 for
R, G, B, respectively. The recurrent neural network usedthagarameters were the
same as in Section 6.1.

We obtained the reconstructed visual stimulus after aboitours of simulation.
One of the frames of the original visual stimulus and theegponding reconstruction
frame are shown in Fig. 6. SNR for the R, G, B components wérgl [dB], 15.50
[dB], 9.18 [dB], respectively. The mean SSIM index weares51, 0.829 and 0.850
for R, G, B components, respectively. Note that the SNR ofttflae component re-
construction is much smaller. This is due to the fact thatilue component of the
visual stimulus has smaller overall intensity, but the anmad noise in the spikes were
the same for all the three components. As a comparison, wealformed the recon-
struction without regularizatiome., nA = 0. The resulting SNR of the reconstructions
were18.18 [dB], 15.45 [dB], 8.52 [dB], and the mean SSIM index webe844, 0.827
and0.793, respectively, for R, G and B components. The complete iscacted video
can be found in the supplemental material [supplementaiso/R].

original reconstruction

error 2D Spectrum of Error of R

Figure 6:Reconstruction of a visual stimulus encoded with a Video T&ith IAF neurons with
random thresholds. Original frame (top left), its recomstion (top right), the error (bottom left)
and the 2D spectrum of the error in the R component (bottoht)ig
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7. Discussion and Conclusions

In the present report, a massively parallel architecturdidéo TEMs and Video
TDMs was described. The massive parallelism of the Video TWA4 intrinsically
implemented by a population of IAF neurons. The requiredeegf parallelism of
the Video TDMs was achieved with the proposed massivelyllgaraighly scalable
and easy to implement analog VLSI recurrent neural netwinckiits. An extension of
the Video TDM to recover stimuli encoded with Video TEMs withural circuits with
random thresholds was also presented. We described thermeptation of the mas-
sively parallel Video TEM and Video TDM on a GPU cluster in fAgthon language,
and demonstrated their performance for large apertur@ahéimuli.

The reconstruction of stimuli encoded with Video TEMs wasrialated as an op-
timization problem. Consequently, a large variety of reeat neural networks can be
employed for devising recovery algorithms. The class ofrojzation problems can
also be extended to include reconstruction constraints.ekample, nonlinear opti-
mization problems with equality or inequality constraio# be efficiently dealt with
(Xia & Wang, 2005; Xia et al., 2008). Additional constraiman be imposed on the
reconstruction problem. As an example, a sparse solutiobeabtained by minimiz-
ing thel; norm. The associated optimization problem can be formdlatea linear
program and time domain linear programming circuits canrbpleyed for real-time
implementations (Cruz-Albrecht & Petre, 2010).

The complexity of encoding of visual stimuli is given by thember of neurons
used. As we have seen the size of the recurrent neural neisvgiken by the number
of spikes to be decoded rather than by the number of neurahgenerate these spikes.
Therefore, a massive number of neurons is required to pstleesnformation encoded
by a relatively small number of neurons. This observatiog mxplain why there is an
explosively larger number of spiking neurons in V1 than ia thtina.

The stitching algorithm presented here scales the origatainstruction method to
large aperture visual stimuli. Noteworthy is that the altjon employs window func-
tions acting as weights on each volume segment. While theG#iiers with the same
dilation and translation but with different orientationsyrform hypercolumns in the
visual cortex (Hubel & Wiesel, 1962), the spatial stitchimigdows can be interpreted
as modeling synaptic weights between the spatially orgaltigypercolumns. The tem-
poral stitching windows may be implemented by a feedbackhaeism whereby the
window functions are viewed as modeling synaptic weighthefneurons in the feed-
back loop.

The results presented here offer a number of interestingusgefor further re-
search. How to model the computation of the entries of theimét and the vectog
with processes native to dendritic trees will be descridselenere.
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