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Abstract

The massively parallel nature of Video Time Encoding Machines (TEMs) calls for scal-
able, massively parallel decoders that are implemented with neural components. The
current generation of decoding algorithms is based on computing the pseudo-inverse
of a matrix and does not satisfy these requirements.

Here we consider Video TEMs with an architecture built usingGabor receptive
fields and a population of Integrate-and-Fire neurons. We show how to build a scal-
able architecture for Video Time Decoding Machines using recurrent neural networks.
Furthermore, we extend our architecture to handle the reconstruction of visual stimuli
encoded with massively parallel Video TEMs having neurons with random thresholds.
Finally, we discuss in detail our algorithms and demonstrate their scalability and per-
formance on a large scale GPU cluster.

Keywords: neural encoding of visual stimuli, spiking neural models, massively
parallel reconstruction of visual stimuli, recurrent neural networks, neural circuits
with random thresholds, receptive fields.

1. Introduction

The increasing availability of multi-electrode recordings and functional imaging
methods has led to the application of neural decoding techniques to the recovery of
complex stimuli such as natural video scenes. An optimal linear decoding algorithm
was applied by (Stanley et al., 1999) to the reconstruction of natural video scenes from
recordings of a neural population of the cat’s Lateral Geniculate Nucleus (LGN) result-
ing in recognizable moving objects. Visual image reconstruction from fMRI data was
examined in (Miyawaki et al., 2008), whereas in (Kay et al., 2008) fMRI data was used
to identify natural images.

A formal model based approach for encoding and reconstruction in the early visual
system was advanced in (Lazar & Pnevmatikakis, 2011) and (Lazar et al., 2010). In
this approach Time Encoding Machines (TEMs) model the representation (encoding)
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of stimuli by sensory systems with neural circuits that communicate via spikes (ac-
tion potentials). Single-input single-output TEMs asynchronously encode time-varying
analog stimuli into a time sequence (Lazar & Tóth, 2004). Video Time Encoding
Machines (Video TEMs) encode space-time-varying signals including visual stimuli
(movies, animation) into a multidimensional time sequence(Lazar & Pnevmatikakis,
2011). Different models of neural encoding circuits have been investigated including
circuits with random parameters (Lazar et al., 2010).

Hardware implementations of TEMs are also available. For example Asynchronous
Sigma-Delta Modulators (ASDMs), that have been shown to be an instance of single-
input single-output TEMs, can be robustly implemented in low power analog VLSI
(Kinget et al., 2005). With the ever decreasing voltage and increasing clock rate, am-
plitude domain high precision quantizers are more and more difficult to implement. In
the nanoworld, it is more cost effective to measure “time” asopposed to measuring
“space” (signal amplitude). Thus, information representation in time domain matches
up with the miniaturization trends of nanotechnology. The next generation silicon en-
coders are expected to operate in the time domain (Lazar et al., 2008).

Given Nyquist-type rate conditions, a time encoded bandlimited signal can be re-
covered with arbitrary accuracy by Time Decoding Machines (TDMs) (Lazar & Tóth,
2004). For stimuli encoded with single-input single-output TEMs several real-time
reconstruction algorithms have been demonstrated in the past (Lazar et al., 2008; Har-
ris et al., 2008). Although the encoding mechanism can be efficiently implemented,
the reconstruction algorithms call for the pseudo-inversion of a matrix. The massively
parallel nature of Video TEMs calls for scalable, massivelyparallel decoders that are
(preferably) implemented with neural components. The current generation of decoding
algorithms is based on computing the pseudo-inverse of a matrix and does not satisfy
these requirements.

Here we consider Video TEMs built using Gabor receptive fields and a population
of Integrate-and-Fire neurons. We seek a solution for the reconstruction of time en-
coded signals using neural hardware components (Lazar, 2006). Clearly, a decoding
circuit built using neural components has to minimize the same cost function that leads
to a solution via a matrix pseudo-inverse.

We show how to build a scalable architecture for Video TDMs using recurrent neu-
ral networks (Cichocki & Unbehauen, 1993). The recurrent neural network decoding
method has two main advantages: (i) it is intrinsically parallel and therebyscalable
for real-time decoding, and (ii) it can be implemented usingsimple neural hardware
components. Furthermore, we extend our architecture to handle the reconstruction of
visual stimuli encoded with massively parallel Video TEMs having neurons with ran-
dom thresholds. Finally, we discuss in detail our algorithms and demonstrate their
scalability and performance on a GPU cluster. Briefly, the simulation results show that
the proposed method provides high quality reconstructionsthat are comparable to the
ones obtained by applying the matrix pseudo-inverse method.

This paper is organized as follows. In section 2 the vector space of visual stimuli is
introduced. In section 3 the massively parallel architecture of Video TEMs consisting
of receptive fields in cascade with neural circuits is described. The massively parallel
architecture of Video TDMs using recursive neural networksis presented in section
4. The complexity of the massively parallel encoding and decoding algorithms is dis-
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cussed in section 5. In section 6 two examples of encoding of visual stimuli with TEMs
with deterministic/random thresholds are given. Section 7briefly concludes the paper.

2. Modeling the Visual Stimuli

In this paper visual stimuli are modeled as elements of the vector space of tri-
variable trigonometric polynomials denoted byH. Each elementI ∈ H is of the form

I(x, y, t) =

Mx
∑

mx=−Mx

My
∑

my=−My

Mt
∑

mt=−Mt

cmx,my,mt
emx,my,mt

(x, y, t), (1)

where thecmx,my,mt
∈ R are constants and

emx,my,mt
(x, y, t)

= emx
(x)emy

(y)emt
(t)

= exp

(

jmx
Ωx

Mx
x+ jmy

Ωy

My
y + jmt

Ωt

Mt
t

)

,

mx = −Mx, · · · ,Mx,my = −My, · · · ,My,

mt = −Mt, · · · ,Mt,

constitute a basis ofH and(x, y, t) ∈ R
3. (Ωx,Ωy,Ωt) and(Mx,My,Mt) are, respec-

tively, the bandwidth and the order of the trigonometric polynomials in each variable.
An elementI ∈ H is also, respectively, periodic in each variable with period

Sx =
2πMx

Ωx
, Sy =

2πMy

Ωy
, St =

2πMt

Ωt
.

By defining the inner product inH as

〈I1, I2〉 =
1

SxSySt

∫ St/2

−St/2

∫ Sx/2

−Sx/2

∫ Sy/2

−Sy/2

I1(x, y, t)I2(x, y, t)dxdydt,

the space of trigonometric polynomials is a Hilbert space. SinceH is finite dimensional
it is also a Reproducing Kernel Hilbert Space (RKHS). The reproducing kernel (RK)
is given by

K(x, y, t;x′, y′, t′) =

Mx
∑

mx=−Mx

My
∑

my=−My

Mt
∑

mt=−Mt

emx,my,mt
(x − x′, y − y′, t− t′).

Using the above Hilbert space as a model of visual stimuli is extensively discussed
and justified in (Lazar et al., 2010).
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3. Massively Parallel Video Time Encoding

In this section we describe the architecture of space-time Video Time Encoding
Machines. For a detailed and highly intuitive treatment of the one-dimensional case
we refer the reader to (Lazar & Zhou, 2011).

3.1. Video Encoding with IAF Neurons

The architecture of the video TEM is shown in Fig. 1. It is a massively parallel
architecture, with each parallel branch consisting of two modules in cascade: a visual
receptive field and a neural circuit consisting of an IAF neuron.

 Neural

Circuit 1

 Neural

Circuit 2

 Neural

Circuit N

Figure 1:Diagram of Video Time Encoding Machine.

Visual receptive fields are often used to model the preference of a neuron to the
spatio-temporal pattern of stimuli. More formally, the receptive fields considered here
are spatio-temporal linear filters that preprocess the visual stimuli and feed them to the
the IAF neurons. We denote the visual receptive field in the video TEM asDj(x, y, t), j =
1, . . . , N , whereN is the number of branches. In the case of spatio-temporal separable
receptive fields, thejth receptive field can be separated into

Dj(x, y, t) = Dj
S(x, y)D

j
T (t),

whereDj
S(x, y) is the spatial andDj

T (t) is the temporal component of the receptive
field.

Often, the spatial component of the receptive field of simplecells in the primary
visual cortex (V1) can be mathematically generated by the Gabor mother wavelet

γ(x, y) =
1√
2π

exp

(

−4x2 + y2

8

)

(

eiκx − e−κ2/2
)

. (2)

From the Gabor mother wavelet, we can derive a family of Gaborfilters that repre-
sents the spatial component of the receptive fields of different neurons. The set of
all receptive fields can be obtained by performing the following three operations or
combinations thereof:
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• DilationDα, α ∈ R+: Dαγ(x, y) = |α|−1γ( xα ,
y
α ),

• RotationRθ, θ ∈ [0, 2π): Rθγ(x, y) = γ(x cos θ + y sin θ,−x sin θ + y cos θ),

• TranslationT(x0,y0), (x0, y0) ∈ R
2: T(x0,y0)γ(x, y) = γ(x− x0, y − y0).

In this paper we will primarily focus on the case of space-time separable receptive
fields and use spatial Gabor filters. However, the formulation developed here can be
applied to more general settings.

In order to reconstruct the video signal, we require that theset of receptive fields
forms a frame and covers the entire spatial field (Lazar & Pnevmatikakis, 2011). For a
finite aperture (“stimulus size”), such a condition imposesa lower bound on the number
of neuronsN. As the examples in section 6 demonstrate, even for small apertures, a
large number of neurons is required to faithfully representthe visual stimuli. Due to
the parallelism of the encoding architecture one can readily deal with a massively large
number of neurons.

Mathematically, the filtering operation of the visual receptive field at thejth branch
Dj(x, y, t) is given by the operatorFLj : H → Ht by

FLjI =

∫

R

(
∫

D2

Dj(x, y, s)I(x, y, t− s)dxdy

)

ds = vj(t), (3)

whereD2 is the aperture.FLj maps the visual stimulus from the 3-D spaceH into the
1-D spaceHt, the space of univariable trigonometric polynomials with bandwidthΩt

and orderMt.
After filtering by the receptive field, the output in each branch is fed into an IAF

neuron that encodes the continuous signalvj ∈ Ht into a spike train. Let us denote the
output of thejth neuron as(tjk), k = 1, 2, · · · , nj . The encoding is described by the
t-transform:

∫ tj
k+1

tj
k

vj(t)ds = κjδj − bj(tjk+1 − tjk),

for all k ∈ Z, whereκj , δj andbj are, respectively, the integration constant, threshold
and bias of thejth IAF neuron. We now define the bounded linear functionalsTLj

k :
Ht → R as

TLj
kv

j =

∫ tj
k+1

tj
k

vj(t)ds = κjδj − bj(tjk+1 − tjk) = qjk

with vj ∈ Ht, for all j = 1, 2, ..., N .
Finally, we define the bounded linear functionalsLj

k : H → R as the composition
of the two operators above describing receptive field filtering and neuron encoding

Lj
k = TLj

k
FLj. (4)

Therefore
Lj
kI = TLj

k
FLjI = 〈I, φj

k〉 = qjk,

6



where the second equality is due to the Riesz representationtheorem and

φj
k(x, y, t) = 〈φj

k,Kx,y,t〉 = Lj
kKx,y,t,

with Kx,y,t(x
′, y′, t′) = K(x, y, t;x′, y′, t′).

Formulation of time encoding of stimuli in inner product form provides a simple
yet very powerful insight into the encoding process itself.Since the inner products are
merely projections of the visual stimulus onto the axes defined by theφj

ks, encoding
is interpreted as generalized sampling, and theqjks are the measurements given by
sampling the signal. Note however that unlike in traditional sampling, the sampling
functionals in time encoding are signal dependent.

3.2. Video Encoding with IAF Neurons with Random Thresholds

In this section we assume that all IAF neurons of the video TEMhave thresholds
that are randomly distributed. Biological neurons in the flyvisual system and in the
early visual system of the cat have been modeled as IAF neurons with random thresh-
olds by (Gestri et al., 1980) and (Reich et al., 1997). Here weassume that the thresh-
old value is distributed according to the Gaussian distribution N (δj , (σj)2). We also
assume here that the random value of the threshold is kept constant between two con-
secutive spikes. Therefore, the t-transform of the IAF neuron with random threshold
can be expressed as (see also (Lazar et al., 2010))

∫ tj
k+1

tj
k

vj(t)ds = κjδjk − bj(tjk+1 − tjk) = qjk + ǫjk, (5)

where
qjk = κjδj − bj(tjk+1 − tjk),

andǫjk = κj(δjk − δj) are i.i.d. random variables with mean zero and variance(κjσj)2

for all k = 1, 2, · · · , nj, j = 1, 2, · · · , N . By defining the bounded linear operators
Lj
k : H → R (see also (4)), the t-transform of the video TEM is given by

Lj
kI = 〈I, φj

k〉 = qjk + ǫjk.

for all k ∈ Z.

4. Massively Parallel Video Time Decoding

In this section we describe the architecture of space-time Video Time Decoding
Machines. For a detailed and highly intuitive treatment of the one-dimensional case
we refer the reader to (Lazar & Zhou, 2011).
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4.1. Video Time Decoding with Recurrent Neural Networks

We formulate the reconstruction of the encoded stimulus as avariational problem.
Given the spike times and the parameters (including the receptive field) of the neuron,
the reconstruction is the spline interpolation problem (Bezhaev & Vasilenko, 2001)

Î = argmin
I∈H,{Lj

k
I=qj

k
}j=1,··· ,N

k=1,··· ,nj

{‖I‖2H}. (6)

Therefore, the goal of stimulus reconstruction is to find a minimum norm solution
among all the elements in the RKHS that are consistent with the measurements made
in the encoding stage.

Theorem 1. The solution to the spline interpolation problem(6) is

Î =

N
∑

j=1

nj
∑

k=1

cjkφ
j
k, (7)

where thecjk’s are the solution to the system of linear equations

Gc = q. (8)

with c =
[

c11, c
1
2, · · · , c1n1

, c21, c
2
2, · · · , c2n2

, · · · , cN1 , · · · , cNnN

]T
,

q =
[

q11 , q
1
2 , · · · , q1n1

, q21 , q
2
2 , · · · , q2n2

, · · · , qN1 , · · · , qNnN

]T
, andG = [Gij ] is a block

matrix with block entries given by
[

Gij
]

kl
= 〈φi

k, φ
j
l 〉, for all i, j = 1, 2, · · · , N andk = 1, 2, · · · , ni, l = 1, 2 · · · , nj .

Proof: The form of the solution (7) is given by the Representer Theorem. Substitut-
ing the solution into equation (6), the coefficientscjk can be obtained by solving the
constraint optimization problem

minimize 1
2c

TGc

subject to Gc = q
. (9)

It is easy to see that the above quadratic optimization problem is equivalent to solving
the system of linear equations (8). �

Note that

φi
k =

Mx
∑

mx=−Mx

My
∑

my=−My

Mt
∑

mt=−Mt

aik,mx,my,mt
emx,my,mt

,

where

aik,mx,my,mt
= 〈φi

k, emx,my,mt
〉 = Li

ke−mx,−my,−mt

=

∫ tik+1

ti
k

∫

R

(
∫

D2

Di(x, y, s)e−mx,−my
(x, y)dxdy

)

e−mt
(t− s)dsdt.
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Then, the entries ofG can be more explicitly expressed as

[

Gij
]

kl
=

Mx
∑

mx=−Mx

My
∑

my=−My

Mt
∑

mt=−Mt

aik,mx,my,mt
.ajl,mx,my,mt

.

In the case where spatio-temporal separable receptive fields are used in the encoding,
aik,mx,my,mt

can be further separated into

aik,mx,my,mt
= dimx,my

pik,mt
,

where

dimx,my
=

∫

D2

Di
S(x, y)e−mx,−my

(x, y)dxdy,

pik,mt
=

∫ tik+1

ti
k

∫

R

Di
T (s)e−mt

(t− s)dsdt.

Thus, the spatial and the temporal components can be computed separately.
SinceG is typically ill-conditioned, the Moore-Penrose pseudo-inverse (Penrose,

1955) is often used to obtain the solution forc. A popular albeit computationally
demanding algorithm for evaluating the pseudo-inverse is based on singular value de-
composition (SVD). Recurrent neural networks have been extensively studied to solve
linear equations and optimization problems (Cichocki & Unbehauen, 1993). These net-
works consist of neuron like operators that are simple to implement. Moreover, they
provide an architecture that can be massively parallelizedthereby providing a more
plausible solution to the reconstruction procedure. We nowdescribe a recurrent neural
network that leads to efficient video decoding.

Theorem 2. The solution to the spline interpolation problem(6) is

Î =

N
∑

j=1

nj
∑

k=1

cjkφ
j
k, (10)

wherec is the stationary point of the system of differential equations

dc

dt
= α (q−Gc) , (11)

with initial conditionc(0) = 0 andα > 0.

Proof: For the energy functionE(c) = 1
2‖Gc− q‖2 ≥ 0, we have

dE

dt
=

n
∑

i=1

∂E

∂ci

dci
dt

= (∇E)T
dc

dt
= −(Gc− q)TG(Gc − q) ≤ 0,

wheren =
∑N

j=1 nj . The last inequality is due to the fact thatG is positive-semidefinite.
Therefore, the time derivative of the energy function is monotonically decreasing,
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and the equalibrium condition,dEdt = 0, is satisfied if and only ifGc− q = 0 or
GT (Gc− q) = 0. In other words, the solution to equation (11) is guaranteedto con-
verge to a stationary pointc that satisfies either exactlyGc = q, orc = (GTG)+GTq =
G+q, whereG+ denotes the Moore-Penrose pseudo-inverse ofG. �

Equation (11) can easily be implemented by a circuit consisting of neural compo-
nents such as integrators and adders; the video TDM can be realized as the diagram
shown in Fig. 2. Note that the above system of differential equations may converge
slowly. In such cases the circuit simulation can be stopped while still guaranteeing a
high quality reconstruction of the visual stimuli (see alsosection 6).

The recurrent neural circuit in Fig. 2 is massively parallel. It consists ofn =
∑N

j=1 nj parallel branches. This number can be very large since it represents the total
number of spikes generated by the encoder. In each branch, only two simple compo-
nents are required - a multiply/add unit and an integrator. Such simple circuits can be
effectively realized in analog VLSI or simulated on a high performance computer.

The original method of evaluating the pseudo-inverse, on the one hand, is typi-
cally based on an elegant mathematical treatment using SVD.It requires additional
workspace in memory that limits the problem size that can be solved, and although
scaling the algorithm to multiple computing devices is possible, it is highly nontrivial.
The recurrent neural network approach, on the other hand, israther straightforward to
both scale up and scale to multiple computing devices, such as a cluster of GPUs. It
does not require extra workspace so that the entire memory resource can efficiently be
utilized. As we will show later in this section, only a small modification is needed in
the implementation of the recurrent neural networks in order to scale the reconstruction
to a large number of GPU nodes.

ΣΣ

Σ

ΣΣ +

Figure 2:Block diagram of the video TDM implemented using recurrent neural networks. The
recurrent neural network is shown in the square box.
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4.2. Extension to Encoding with Neurons with Random Threshold

We can easily extend the existing recurrent neural network architecture to decoding
of stimuli encoded with Video TEMs with random thresholds. In devising the decoding
algorithm, we again take a variational approach, by considering the reconstruction as
the solution to the smoothing spline problem

Î = argmin
I∈H

{
N
∑

j=1

1

(κjσj)2

nj
∑

k=1

(

〈I, φj
k〉 − qjk

)2

+ nλ‖I‖2H}, (12)

wheren =
∑N

j=1 nj. The above formulation aims to minimize the error between
samples and measurements, and at the same time, it is regularized by the norm of the
signal in the Hilbert space.

Theorem 3. The solution to the smoothing spline problem(12) is

Î =

N
∑

j=1

1

κjσj

nj
∑

k=1

cjkφ
j
k, (13)

where thecjk’s are given by the solution of the system of linear equations

GT (G+ nλI) c = GTq. (14)

with c =
[

c11, c
1
2, · · · , c1n1

, c21, c
2
2, · · · , c2n2

, · · · , cN1 , · · · , cNnN

]T
,

q =
[

1
κ1σ1 q

1
1 ,

1
κ1σ1 q

1
2 , · · · , 1

κ1σ1 q
1
n1
, 1
κ2σ2 q

2
1 ,

1
κ2σ2 q

2
2 , · · · , 1

κ2σ2 q
2
n2
, · · · , 1

κNσN qN1 , · · · , 1
κNσN qNnN

]T
,

I is then× n identity matrix andG = [Gij ] is a block matrix with block entries given
by

[

Gij
]

kl
=

〈φi
k, φ

j
l 〉

(κiσi)(κjσj)
, for all i, j = 1, 2, · · · , N andk = 1, 2, · · · , ni, l = 1, 2, · · · , nj.

Proof: Again, due to the Representer Theorem, the solution of the problem is of the
form (13). Substituting the solution into (12), the coefficientscjk are the solution to the
unconstrained optimization problem

minimizeE(c) = ‖Gc− q‖2l2 + nλcTGc. (15)

Since the problem is convex, the solution is give by setting the gradient of the objective
function to zero. Hence, we have

∇E(c) = 2
(

GTGc+ nλGc−GTq
)

= 0, (16)

or
GT (G+ nλI) c = GTq. (17)

�

Using a general gradient approach we now have the following
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Theorem 4. The solution to the smoothing spline problem is

Î =
N
∑

j=1

1

κjσj

nj
∑

k=1

cjkφ
j
k, (18)

wherec is the stationary point of the differential equations

dc

dt
= −µ∇E(c), (19)

with initial conditionc(0) = 0, where

E(c) =
(

‖Gc− q‖2l2 + nλcTGc
)

, (20)

andµ(c, t) is ann × n symmetric positive definite matrix, whose entries are usually
dependent on the variablesc(t) and timet.

Proof: The gradient of the energy functionE is guaranteed to vanish since

dE

dt
=

n
∑

i=1

∂E

∂ci

dci
dt

= (∇E)T
dc

dt
= −(∇E)Tµ∇E ≤ 0,

and the system of differential equations reaches stationary point if and only if∇E = 0.
Therefore, (19) asymptotically approaches the global minimizer of the optimization
problem (15). �

Consequently, we have

dc

dt
= −µGT ((G+ nλI)c− q) .

The above set of differential equations can also be mapped into a recurrent neural
network, and thus the video TDM for visual stimuli encoded with neurons with random
thresholds can be realized by the diagram shown in Figure 3. This is a three layer neural
network. In the first layer, consisting ofn multiply/add units as shown in the left most
column, the vector(G+ nλI) c − q is computed. The multiplication factors are the
entries of the matrixG+nλI and the vectorq. In the second layer,∇E(c) is evaluated.
This layer also consists ofn multiply/add units, with multiplication factors provided
by the entries of the matrixG. Note thatG is a symmetric matrix. The gradient is
weighted by the learning rateµ in the third layer, that also consists ofn multiply/add
units. The outputs of the third layer provide the time derivative of the vectorc(t). The
time derivatives are then integrated and the outputs are fedback into the first layer.

The circuit described above (see Figure 3) may converge at a rate even slower than
the circuit described in section 4.1 (see also Figure 2). However, note that the vector
of coefficientsc satisfying(G + nλI)c = q is also a solution to (17). The latter
set of equations is essentially of the same form as (8), as canbe seen by replacingG
with G + nλI. Therefore, the circuit that solves the spline interpolation problem can
also be used to solve the smoothing spline problem, while providing a faster speed of
convergence.
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+

Σ

Σ

Σ

Σ

Σ

Σ

ΣΣ

ΣΣ

ΣΣ

Figure 3:Block diagram of the video TDM implemented by recurrent neural networks when the
visual stimulus is encoded by a video TEM with neurons with random threshold. The recurrent
neural network is shown in the square box.

5. Algorithmic Considerations

5.1. Encoding on a GPU cluster
Since the architecture of the video TEM is intrinsically parallel, it is straightforward

to implement on a GPU cluster. The encoding is implemented one segment of the
stimulus at a time. Each segment consists of a certain numberof frames of the digital
representation of the video. Therefore, encoding can be performed in real-time with a
delay approximately given by the duration of the segment. The two cascaded encoding
modules, the visual receptive fields and the neural circuits, are treated differently in the
implementation.

The double integration of the spatial filtering operation isapproximated by a double
finite sum. Then, filtering of multiple frames of a visual stimulus by a set of receptive
fields is simply a matrix-matrix multiplication, where one of the matrices has each
vectorized filter as its columns, and the other matrix has each vectorized visual stimu-
lus frame as its columns. Although the matrix-matrix multiplication can be performed
efficiently on GPUs, every receptive field has to be explicitly computed based on its
parameters and stored in memory. For large size visual stimuli this requires storing a
large number of receptive fields. While computing the receptive fields is extremely ef-
ficient, the limited amount of memory on GPUs can create a bottleneck. By increasing
the number of GPUs that collectively encode the stimulus, the memory limitation can
be relaxed. However, a more cost effective approach can be devised.

We noticed that the spatial filtering can be viewed as the convolution between the
image and the same filter centered at zero evaluated at the filter’s translation parameter
value. Hence, all translations with the same dilation and rotation parameters can be
computed simultaneously by a spatial convolution, either by using the FFT method or,
for filters with impulse response that are Gabor functions, by using the Fast Gabor Fil-
tering method of (Wang & Shi, 2010). In either case, only one receptive field has to be
computed and stored per dilation and rotation, explicitly for the FFT and implicitly for
the Fast Gabor Filtering method. Memory usage can be therebysubstantially reduced
and the performance of the encoding algorithm vastly improved for a large number of
translations.
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For the neural circuits module, we use one CUDA thread to perform the encoding
of a single neuron. That is, each CUDA thread reads in the corresponding filtering
output, integrates it and determines the spike time. To achieve a higher precision in
spike timing, we nominally perform a linear interpolation between two consecutive
video frames; the time of spike occurrence is exactly the time when the integrated filter
output hits the threshold. In other words, the spike time is accurate under the linear
interpolation assumption between two consecutive video frames. The spikes generated
during the duration of the video segment are then stored to the disk.

There are multiple ways to store spikes. One way is to store the spike time relative
to the beginning of the visual stimulus. However, such an approach is vulnerable to
floating point overflow as the spike times become larger and larger. An alternative way
is to store the spikes in the format of inter-spike intervals. This approach avoids the
overflow problem, but lacks a time reference. Decoding of anypart of the video would
require to read and add up all the spikes from the beginning ofthe encoding process
until the point of interest. The latter is not favorable whenthe time instance is large. In
our algorithm, we store the spike times relative to an evolving time line, e.g., the spike
times relative to the beginning of the second. This way, we can avoid accumulation
operations of the spike times, since the stored time will always be in[0, 1), and one can
read out spikes starting from any second.

The pseudo code of the encoding algorithm is provided in Algorithm 1.

Input: Visual stream or Video data
Output: Spike trains
Prepare Gabor filters;
while not reaching the end of the videodo

if head nodethen
Read in nextN frames of video;

end
Broadcast video segment to all nodes;
Transfer video segment to GPU memory;
for i=1:N do

Convolve filter withith frame;
Extract filtered value at designed translation points;

end
foreach CUDA threadj do

Computejth IAF neuron spike times;
end
Gather all spike times at head node;
if head nodethen

Store spike time to file;
end

end

Algorithm 1: The video TEM algorithm.
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Input: Spike trains
Output: Reconstructed video
foreach GPU nodek do

foreach Receptive fieldi do
foreach Receptive fieldj do

Compute
Mx∑

mx=−Mx

My∑

my=−My

dimx,my
d
j
mx,my ;

end
end
foreach CUDA thread (i,j) do

Compute[Gk]ij ;
end
foreach CUDA threadi do

Compute[qk]i;
end

end
All GPUs collectively simulate recurrent neural network toobtain[ck];
foreach GPU nodel on the diagonaldo

Reconstruct partial sum
∑

i
[cl]iφi;

Gather all partial reconstructions at head node;
end
if head nodethen

Sum up all parts of the reconstructions;
end

Algorithm 2: The video TDM algorithm using a recurrent neural network.

5.2. Decoding on a GPU cluster

One of the main advantages of using a recurrent neural network for decoding is
that it is straightforward to scale the system to multiple computing units. The GPU’s
intrinsically parallel architecture is a perfect fit. Here,we discuss how the decoding
is realized on multiple GPUs, whose hosts are connected using a switch fabric and
peer-to-peer communication is accomplished through the Message Passing Interface
(MPI).

The need for scaling up the size of the decoding algorithm is driven by the size
of G, since the entries ofG have to be stored in memory during the entire decoding
process. Since the memory requirement forG is large, we dividedG into blocks. Each
block is mapped into a single GPU with enough memory to store all its entries (2.5 GB
for the current GPU hardware). SinceG is symmetric, only the upper diagonal blocks
of G are used. Therefore,G is divided into blocks of size of about25, 000× 25, 000
(not necessarily square matrices) and is computed and stored in a distributed fashion
on all GPUs in the cluster.

G can be efficiently computed when the receptive fields are separable. In this case,
the computation of each entry ofG can be separated into a spatial and a temporal
component. The spatial component is completely independent of the spike times, and
thus it can be computeda priori. The temporal component can be computed using
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one CUDA thread per entry. The spatial component can be viewed as weights and be
applied afterwards. The vectorq is also straightforward to compute, using one CUDA
thread per entry.

After G andq are computed, the RNN system of differential equations is evaluated
according to the forward Euler method. A critical step in computing the differential
equations is the matrix vector multiplication ofG andc. This is done in two steps.
First, on each GPU, a local matrix-vector multiplication isperformed with a block of
G and the corresponding segment ofc. Second, the results of the local matrix vector
multiplication are gathered (using MPI) into the GPUs that store the diagonal blocks of
G, summed together, and the solution at the current time is updated. Then, the solution
is broadcasted to corresponding blocks, again through MPI,before the next iteration
is performed. The differential equations are simulated either for a fixed amount of
computation time or until the gradient of the cost function is smaller than a certain
threshold. In practice, we found that a fixed amount of time works well enough. The
approximate solutionc of the output of the circuit is then used to reconstruct the signal
based on (7). The pseudocode of the decoding algorithm is given in Algorithm 2.

5.3. Volume Stitching
Even if the stimulus reconstruction is performed on a large scale GPU cluster it is

still necessary, due to the massive number of neurons and massive number of spikes
generated in encoding for a large aperture stimulus, to divide the stimulus into smaller
volumes and focus the reconstruction on each volume. After all volumes are recon-
structed, they can be stitched together using a stitching algorithm following a proce-
dure similar to the one in (Lazar et al., 2008). We now describe how each stimulus
segment is reconstructed and provide the stitching algorithm for the complete recovery
of the visual stimulus.

We first divide the stimulus into pieces of fixed size, overlapping volumes, as il-
lustrated in Fig. 4. We denote the length of each volume inx, y and t direction as
Jx, Jy andJt, respectively. The length of the overlapping part of two adjacent vol-
umes in thex, y and t directions is denoted byOx, Oy andOt, respectively, with
2Ox < Jx, 2Oy < Jy, 2Ot < Jt. We define by(Vk,l,m), k, l,m ∈ Z, the volume
segment localized in

(k(Jx −Ox), (k + 1)(Jx −Ox) +Ox]× (l(Jy −Oy), (l + 1)(Jy −Oy) +Oy]

× (m(Jt −Ot), (m+ 1)(Jt −Ot) +Ot],

and byÎk,l,m(x, y, t) the stimulus reconstruction based on spikes localized in the vol-
ume segmentVk,l,m. Îk,l,m is obtained by the decoding procedure described in Sec-
tion 5.2 and only takes into account the spikes localized in the volumeVk,l,m that sat-
isfy the following conditions (i) they are generated by neurons whose receptive fields
are centered inside the spatial domain ofVk,l,m and (ii) the spike times are inside the
temporal domain ofVk,l,m or are exactly the closest spikes before or after the temporal
segment.

The stimulus reconstructions of the individual volume segments are stitched to-
gether with a simple shifting windows algorithm. We define the windows

wk,l,m = wx
k · wy

l · wt
m, (21)
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Figure 4: (left) Space-time natural video sequence. (right) Division of the space-time video se-
quence into fixed sized, overlapping volume segments. The brighter blue color indicates the
overlapping adjacent volume segments.

where

wx
k =



















0, x /∈ (k(Jx −Ox), k(Jx −Ox) + Jx],

θxk , x ∈ (k(Jx −Ox), k(Jx −Ox) +Ox],

1, x ∈ (k(Jx −Ox) +Ox, (k + 1)(Jx −Ox)],

1− θxk+1, x ∈ ((k + 1)(Jx −Ox), (k + 1)(Jx −Ox) +Ox],

(22)

with θxk is an appropriately chosen function. An example is given in equation (24) in
section 6.1. The functionswy

l andwt
m are similarly defined. It is easy to see that the

defined window functions form a partition of unity.
The overall visual stimulus reconstruction is therefore given by

Î(x, y, t) =
∑

k,l,m∈Z

wk,l,mÎk,l,m(x, y, t). (23)

Since a fixed sized volume is used for stitching, the shape of the window functions
are all the same and they can be pre-computed. Thus, the overall visual stimulus re-
construction can be obtained by reconstructing the visual stimulus in each volume seg-
ment, multiplying these with the stored window functions, and then stitching the latter
in an ‘overlap-add’ fashion. The pseudo-code for the volumestitching is provided in
Algorithm 3.
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Input: Reconstructions in each volumêIk,l,m
Output: Complete reconstruction̂I
Compute the volume window function;
while not reaching the end of the videodo

Perform
∑

k,l,m∈Z
wk,l,mÎk,l,m(x, y, t) in ‘overlap-add’ fashion;

end

Algorithm 3: The volume stitching algorithm.

6. Examples

In this section we provide a complete example of a stimulus encoding with a video
TEM and decoding with a video TDM. The encoding with neurons with deterministic
thresholds and its decoding will be illustrated first. Then,the result of a noisy case will
be presented.

In our implementation we used the Python programming language; for the GPU
part of the implementation we employed PyCUDA (Klöckner etal., 2009).

The visual stimulus of interest was an nHD format (640× 360 pixels) color video
sequence defined in the domainD2 = [−18, 22] × [−9.5, 13]. We decomposed the
color video into RGB components, resulting in three monochrome sequences. Each
color component was preprocessed such that most of the energy in the spatial spectrum
was within4Hz in both directions. Temporally, the video was 10 second long and was
stored at 25 frames per second. Each pixel was filtered with a 10 Hz lowpass filter and
upsampled by a factor of 4, in order to improve the accuracy ofthe analog integration.
The preprocessed video was viewed as the original visual stimulus that was encoded
by the video TEM.

6.1. Example of Video TEM with IAF Neurons

We now describe an example of a video TEM realized with Gabor filters and IAF
neurons with deterministic thresholds that encodes the aforementioned video. The fol-
lowing encoding procedure was repeated for all three color components of the video.

The visual receptive fields used in the encoding act spatially only, i.e.,Dj(x, y, t) =
Dj

S(x, y)δ(t), whereδ(t) is the Dirac delta function. The spatial receptive fields were a
family of Gabor filters, derived from (2). We used5 dilations, withα = 2

(

1
2

)m
,m =

0, 1, 2, 3, 4. Translation parameters were provided by a Cartesian lattice for each di-
lation, with spacing between two neighboring translations2.5, 1.625, 1, 11/16, 0.5,
respectively. In addition,8 rotations were used, withθ = lθ0, l = 0, 1, · · · , 7, where
θ0 = 7π/8. Finally, the real and imaginary parts are viewed as two receptive fields.

Each receptive field output was then fed into an IAF neuron with parametersκ =
1.0, δ = 0.03, b = 0.8. The initial conditions of the membrane potential of the neu-
rons were uniformly drawn from[0, δ). In all, a total of112, 208 neurons with Gabor
receptive fields were used for each color component.

We first tested the encoding using the matrix-matrix multiplication method in sim-
ulating receptive field filtering. Encoding was performed ona cluster of16 Tesla
M2050 GPUs. The total number of spikes generated in the duration of the video were
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(30, 329, 137), (30, 221, 717) and(30, 045, 454) for the R, G and B components, re-
spectively. It took approximately110 seconds to encode one color component of the 10
seconds video. This is about33 times slower than real-time for the whole color video.
A more detailed timing revealed that the filtering consumed95% of the total encoding
time, while the distribution of the video data among processors and the operation of
IAF neurons took about2.5% each. It can be seen that the encoding bottleneck was
due to the receptive field filtering.

Second, as mentioned in Section 5.1, we replaced the brute force matrix-matrix
multiplication method in filtering with the Fast Gabor Filtering technique. In the pro-
cess we only used5 GPUs, each responsible for all the receptive fields with the same
dilation. For dilation with parameter2, however, we kept the matrix-matrix multipli-
cation method, since the Fast Gabor Filtering cannot handleGabor filters with very
large support and the number of translations required for the largest dilation is small.
In general, a trade-off needs to be considered between the two methods, in order to find
the most efficient approach for different visual stimuli. The encoding time using the
Fast Gabor Filtering method was also around110 seconds. Therefore, we achieved the
same performance using less than1/3 of the GPUs in the first test.

In decoding, the RGB components were reconstructed separately and then com-
bined together. For each component, the reconstruction went as follows. We performed
the volume stitching method described in Section 5.3. withJx = Jy = 13, Ox = 4,
Oy = 3.5, Jt = 0.35, Ot = 0.05. The functionθxk was given by

θxk = sin2
(

π

2
· x− k(Jx −Ox)

Ox

)

, (24)

and the functionsθyl , θ
t
m were similarly defined. We chose the order of the visual space

as

Mx = 72,My = 72,Mt = 10,

Ωx = 8π,Ωy = 8π,Ωt = 20π.

Therefore, the reconstruction of each block was embedded inthe domainT × D
2 =

[0, 1]× [−9, 9]× [−9, 9], and thereby, the periodicity of the stimuli in RKHS does not
appear in the recovery.

Typically, there were around220, 000 to 240, 000 spikes within each segment in
the block. We employed 55 Tesla M2050 GPUs to reconstruct each segment. This
corresponds to dividing theG matrix into 10 × 10 blocks, of which the55 upper
diagonal blocks were explicitly computed. The recurrent neural network described in
Section 4.1 was used, withα = 20 and3, 000 time steps with10−4s each. The run time
of reconstructing each segment was about 4 minutes, simulating the neural network
for 0.3 second. Therefore, for each spatial block, the output of theneural circuit can
provide close to real-time reconstruction. The total run time for the reconstruction of
color video was about57 hours.

After stitching both spatially and temporally, we obtaineda high quality recon-
struction for all three components. To evaluate the qualityof the reconstruction, we
only considered the central620× 340 region, where the boarder of10 pixels were not
taken into account due to boundary errors. The Signal-to-Noise Ratio (SNR) for R, G,
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B components were31.85 [dB], 30.59 [dB], 26.81 [dB], respectively. The mean SSIM
index (Wang et al., 2004) across all frames were also computed. They were0.9963,
for R, 0.9970 for G and0.9973 for B. RGB components were combined to visualize
the complete recovery. One of the frames of the original visual stimulus and the cor-
responding reconstruction frame is shown in Fig. 5. The complete video can be found
in the supplemental material [supplementary video 1]. The high quality reconstruction
shows both the effectiveness of the massively parallel decoding algorithm as well as
the faithful representation of the visual stimulus by the massively parallel video time
encoder.

Figure 5:Reconstruction of a visual stimulus encoded with a Video TEMwith IAF neurons with
deterministic thresholds. Original frame (top left), its reconstruction (top right), the error (bottom
left) and the 2D spectrum of the error in R component (bottom right).

Furthermore, both the video time encoding and video time decoding architectures
described in the example are highly scalable due to their massive parallelism. Given
more computing resources, one can either reduce the simulation time by distributing
computation to more nodes, or increase the aperture of the video.

6.2. Example of a Video TEM with IAF Neurons with Random Thresholds

We proceed to an example of a video TEM with neurons with random thresholds.
The parameters of the neurons and their Gabor receptive fields were chosen to

be the same as in the previous example, except for the values of the thresholds of
the neurons. The thresholds ofjth neuron were drawn from the Gaussian distribu-
tion N

(

δj , (σj)2
)

, whereδj = 0.03, andσj was drawn from a Gaussian distribution
N (10−4, 10−10). The initial conditions of the membrane potential of the neurons were
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drawn from a uniform distribution on the interval[0, δj0], whereδj0 is the threshold of
the first spike of thejth neuron.

Again, encoding was performed on a cluster of 16 Tesla M2050 GPUs.(30, 330, 904),
(30, 223, 666) and(30, 047, 093) spikes were fired in the10 seconds for R, G and B
components, respectively.

Decoding followed the same spatial stitching procedure as in the previous example.
Again 55 GPUs were employed in the decoding. The smoothing parameters were set
such thatnλ was fixed for each color components. They werenλ = 0.05, 0.01, 1.0 for
R, G, B, respectively. The recurrent neural network used andthe parameters were the
same as in Section 6.1.

We obtained the reconstructed visual stimulus after about57 hours of simulation.
One of the frames of the original visual stimulus and the corresponding reconstruction
frame are shown in Fig. 6. SNR for the R, G, B components were18.21 [dB], 15.50
[dB], 9.18 [dB], respectively. The mean SSIM index were0.851, 0.829 and0.850
for R, G, B components, respectively. Note that the SNR of theblue component re-
construction is much smaller. This is due to the fact that theblue component of the
visual stimulus has smaller overall intensity, but the amount of noise in the spikes were
the same for all the three components. As a comparison, we also performed the recon-
struction without regularization,i.e., nλ = 0. The resulting SNR of the reconstructions
were18.18 [dB], 15.45 [dB], 8.52 [dB], and the mean SSIM index were0.844, 0.827
and0.793, respectively, for R, G and B components. The complete reconstructed video
can be found in the supplemental material [supplementary video 2].

Figure 6:Reconstruction of a visual stimulus encoded with a Video TEMwith IAF neurons with
random thresholds. Original frame (top left), its reconstruction (top right), the error (bottom left)
and the 2D spectrum of the error in the R component (bottom right).
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7. Discussion and Conclusions

In the present report, a massively parallel architecture ofVideo TEMs and Video
TDMs was described. The massive parallelism of the Video TEMwas intrinsically
implemented by a population of IAF neurons. The required degree of parallelism of
the Video TDMs was achieved with the proposed massively parallel, highly scalable
and easy to implement analog VLSI recurrent neural network circuits. An extension of
the Video TDM to recover stimuli encoded with Video TEMs withneural circuits with
random thresholds was also presented. We described the implementation of the mas-
sively parallel Video TEM and Video TDM on a GPU cluster in thePython language,
and demonstrated their performance for large aperture visual stimuli.

The reconstruction of stimuli encoded with Video TEMs was formulated as an op-
timization problem. Consequently, a large variety of recurrent neural networks can be
employed for devising recovery algorithms. The class of optimization problems can
also be extended to include reconstruction constraints. For example, nonlinear opti-
mization problems with equality or inequality constraintscan be efficiently dealt with
(Xia & Wang, 2005; Xia et al., 2008). Additional constraintscan be imposed on the
reconstruction problem. As an example, a sparse solution can be obtained by minimiz-
ing the l1 norm. The associated optimization problem can be formulated as a linear
program and time domain linear programming circuits can be employed for real-time
implementations (Cruz-Albrecht & Petre, 2010).

The complexity of encoding of visual stimuli is given by the number of neurons
used. As we have seen the size of the recurrent neural networkis given by the number
of spikes to be decoded rather than by the number of neurons that generate these spikes.
Therefore, a massive number of neurons is required to process the information encoded
by a relatively small number of neurons. This observation may explain why there is an
explosively larger number of spiking neurons in V1 than in the retina.

The stitching algorithm presented here scales the originalreconstruction method to
large aperture visual stimuli. Noteworthy is that the algorithm employs window func-
tions acting as weights on each volume segment. While the Gabor filters with the same
dilation and translation but with different orientations may form hypercolumns in the
visual cortex (Hubel & Wiesel, 1962), the spatial stitchingwindows can be interpreted
as modeling synaptic weights between the spatially organized hypercolumns. The tem-
poral stitching windows may be implemented by a feedback mechanism whereby the
window functions are viewed as modeling synaptic weights ofthe neurons in the feed-
back loop.

The results presented here offer a number of interesting avenues for further re-
search. How to model the computation of the entries of the matrix G and the vectorq
with processes native to dendritic trees will be described elsewhere.
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