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Abstract

Motivated by the natural representation of stimuli in sensory systems, we investigate the representation of a bandlimited signal by an

ensemble of Hodgkin–Huxley neurons with multiplicative coupling. We show that such a neuronal ensemble is I/O equivalent with an

ensemble of integrate-and-fire neurons with variable threshold. The value of the threshold sequence is explicitly given. We describe a

general algorithm for recovering the stimulus at the input of the neuronal ensemble.

r 2006 Published by Elsevier B.V.
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1. Introduction and overview

Neural population codes have been extensively investi-
gated in the literature. A review of information representa-
tion of neurons with Poisson statistics can be found in [7].
Whether or not interactions between neurons are relevant to
the neural code is reviewed in [2]. The interaction between
neuronal noise and population codes is discussed in [1].

In this paper we investigate a formal model of
information representation consisting of M sensory neu-
rons that are stimulated by the same bandlimited signal.
Such models arise in olfactory systems, vision and hearing
[3]. Each sensory neuron is modeled as a point neuron
whose spike generation mechanism is described by the
Hodgkin–Huxley equations [8].

C
dV

dt
¼ � gNam

3hðV � ENaÞ � gKn4ðV � EKÞ

� gLðV � ELÞ þ I ,

dm

dt
¼ amðV Þð1�mÞ � bmðV Þm,

dh

dt
¼ ahðV Þð1� hÞ � bhðV Þh,

dn

dt
¼ anðV Þð1� nÞ � bnðV Þn,
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where V is the membrane voltage of the neuron, m, h

and n are the gating variables and I is the injected current.
See [8] for the notation used and other pertinent model
details.
In order to simplify the mathematical language, the

equations above are rewritten in the standard form

dx

dt
¼ fðxÞ, (1)

where x and f are vectors of appropriate dimensions, and
xð0Þ ¼ x0 is the initial condition. These vectors can easily
be identified from the set of Hodgkin–Huxley equations. In
particular, x ¼ ðx1; x2; x3; x4Þ ¼ ðV ;m; h; nÞ. The expression
for f ¼ ðf 1; f 2; f 3; f 4Þ can also be easily derived from the
same set of equations. In what follows we shall assume
that, if the injected current I is in the appropriate range, the
essential dynamics of this set of equations are described by
a limit cycle [8].
A non-linear perturbation analysis shows that [6] the

system of differential equations describing the Hodgkin–
Huxley neuron with a small input signal (added to the
right-hand side of Eq. (1)) accepts a solution consisting of a
phase shift term and a small perturbation term. In this
paper we shall only focus on the phase shift based solution
as the solution space is in this case technically less
demanding.
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Let u ¼ uðtÞ be a function on R and b a positive constant
such that bþ uðtÞ40 for all t; t 2 R; uþ b models
the aggregate dendritic current entering the soma of the
sensory neuron. R and Z denote the real numbers and
the integers, respectively. In what follows we shall
assume that each of the M Hodgkin–Huxley neurons is
stimulated via multiplicative coupling. With multiplicative
coupling, the input to a single neuron appears as a
multiplicative term on the right hand-side of the equation
above, i.e.,

dy

dt
¼ ðbþ uðtÞÞfðyÞ, (2)

for some given initial condition yð0Þ. As we shall show in
the next section, in the multiplicative coupling model, the
stimulus introduces a signal-dependent phase shift (time
change). When the stimulus is absent (u ¼ 0), b modulates
the spontaneous activity of the neuron through a time
change. More generally, if x ¼ xðtÞ denotes the solution to
the Hodgkin–Huxley neuron, the general solution in the
multiplicative coupling case is y ¼ xðbtþ

R t

0 uðsÞdsÞ pro-
vided that yð0Þ ¼ xð0Þ. The time change is thus stimulus
driven.

The stimulus u encoded by a Hodgkin–Huxley neuron
is recovered in two simple steps. In the first step, we
show that a Hodgkin–Huxley neuron with multiplicative
coupling is I/O equivalent with an IAF neuron with a
variable threshold sequence. Two neurons are said to
be I/O equivalent if the sequence of trigger times
ðtkÞ; k 2 Z, that they generate are identical. The I/O
equivalence result allows us to reduce the problem
of stimulus representation with M Hodgkin–Huxley
neurons with multiplicative coupling to one consisting
of M integrate-and-fire neurons with common stimulus.
In the second step, we extend our recovery algorithm [4]
to M IAF neurons. In order to recover the signal
from the multichannel spike train ðt

j
kÞ; k 2 Z, and j ¼

1; 2; . . . ;M a frame formulation of the optimal solution
is employed.

This paper is organized as follows. In Section 2 we
show how to reduce a multiplicatively coupled Hodgkin–
Huxley neuron to an integrate-and-fire neuron. This
allows us to represent the stimulus u as a vector spike
train ðt

j
kÞ with j ¼ 1; . . . ;M and k 2 Z. The information

representation with M Hodgkin–Huxley neurons is
thereby reduced to a representation using M integrate-
and-fire neurons. An algorithm for recovering the
original stimulus u from the vector spike train is given in
Section 3.
2. Information representation and I/O equivalence

In Section 2.1 we shall show that the Hodgkin–Huxley
neuron with multiplicative coupling is I/O equivalent with
an integrate-and-fire neuron. This result is extended to an
ensemble of Hodgkin–Huxley neurons in Section 2.2.
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2.1. I/O equivalence for a single Hodgkin–Huxley neuron

In what follows we assume that the model neuron is
described by the Hodgkin–Huxley equations given by
(1). With multiplicative coupling and input uþ b, the
neuron is described by the systems of equations (2). We
have the following:

Lemma 1. Given the initial condition yð0Þ ¼ xð0Þ,

y ¼ x btþ

Z t

0

uðsÞds

� �
, (3)

for all t; t 2 Rþ, where x ¼ xðtÞ, t 2 Rþ, is the solution to (1)
starting at xð0Þ ¼ x0.

Proof. By differentiating the right-hand side of Eq. (3)
above, we have

dy

dt
¼

dxðvÞ

dv

����
v¼btþ

R t

0
uðsÞ ds

� ðbþ uðtÞÞ

¼ ðbþ uðtÞÞ � f x btþ

Z t

0

uðsÞds

 ! !

¼ ðbþ uðtÞÞ � fðyÞ.

The assertion immediately follows since yð0Þ ¼ xð0Þ. &

Remark 1. The solution to (2) is obtained from the
solution to Eq. (1) via the time change t! btþ

R t

0 uðsÞds.
The condition bþ uðtÞ40 is very natural in this light since
it ensures that the changed time remains strictly increasing.

In what follows we shall assume that the observable
output of the Hodgkin–Huxley neuron is the coordinate x1,
that is, the membrane voltage. The spike times of the
membrane voltage are defined here as the maxima of
x1. Note that other definitions can also be employed,
see Remark 2. Thus, the spike times are a subset of the
zeros of dx1=dt (the additional condition is that the second
derivative of x1 is negative). They are denoted by ðdkÞ,
k 2 Z. Therefore,

dx1

dt
ðdkÞ ¼ 0, (4)

for all k 2 Z. In what follows, the trigger times ðtkÞ; k 2 Z,
denote the spike times of y1.

Lemma 2 (t-transform). The sequence of trigger times

ðtkÞ; k 2 Z, and the sequence of zeros ðdkÞ; k 2 Z, verify the

set of recursive equationsZ tkþ1

tk

uðsÞds ¼ dkþ1 � dk � bðtkþ1 � tkÞ (5)

for all k; k 2 Z.

Proof. Since ðdkÞ; k 2 Z, is a subset of the zeros of the first
derivative of x1,

f 1ðxðdkÞÞ ¼ 0 (6)
an ensemble of Hodgkin–Huxley neurons, Neurocomputing (2007),
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and ðtkÞ; k 2 Z, is a subset of the zeros of the first derivative
of y1,

f 1 x btk þ

Z tk

0

uðsÞds

� �� �
¼ 0 (7)

and the two subsets are the same, the result follows. &

Eq. (5) above defines the t-transform; it maps the
amplitude information of ðuðtÞÞ; t 2 R, into the time
sequence ðtkÞ; k 2 Z. Thus, the information encoded by a
Hodgkin–Huxley neuron with multiplicative coupling is,
from a signal recovery standpoint, equivalent with the
information encoded by an integrate-and-fire neuron with
threshold dkþ1 � dk during the time interval ½tk; tkþ1� for all
k; k 2 Z. Formally,

Theorem 1 (I/O Equivalence). Assume that the variable

threshold sequence of an integrate-and-fire neuron is identical

to the interspike interval sequence ðdkþ1 � dkÞ; k 2 Z,
generated by a Hodgkin–Huxley neuron. Then the Hodg-

kin–Huxley neuron with multiplicative coupling and the

integrate-and-fire neuron generate the same trigger time

sequence ðtkÞ; k 2 Z, i.e., the two neurons are input/output

equivalent.

Fig. 1 shows the output of a Hodgkin–Huxley neuron
with multiplicative coupling and the output of the I/O
equivalent integrate-and-fire neuron. The spike times are
depicted with circles.

Remark 2. Note that the I/O equivalence definition
included in Theorem 1 above is contingent upon the
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definition of the trigger times. An example for the case
when the trigger times are defined to be the zeros of the
membrane voltage is shown in Fig. 2.

2.2. I/O equivalence for an ensemble of Hodgkin–Huxley

neurons

Let us now consider the case of an ensemble of M

Hodgkin–Huxley neurons with the same input u ¼ uðtÞ,
t 2 R. As before, the stimulus u, biased by bj, is multi-
plicatively coupled into neuron j. Each individual neuron is
described by the set of equations (1) with possibly different
parameter values. Based on the I/O equivalence of a single
Hodgkin–Huxley neuron derived in the previous section, it
is easy to see that the following result is valid.

Theorem 2 (Ensemble I/O equivalence). A single input/

multiple output ensemble of M Hodgkin–Huxley neurons is

I/O equivalent with a single input/multiple output ensemble

of M integrate-and-fire neurons with a variable threshold

sequence. The variable threshold sequence of each individual

integrate-and-fire neuron is identical to the interspike

interval sequence generated by exactly one of the Hodgkin–
Huxley neurons with unit input.

3. Stimulus recovery

Based on the above equivalence results we shall
demonstrate in this section that, if the stimulus is a
bandlimited function and the spikes are dense enough, u

can perfectly be recovered from the spike train generated
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by a subset of the M Hodgkin–Huxley neurons. The
treatment will be a bit more general as we shall consider an
ensemble of leaky integrate-and-fire neurons.
3.1. Single channel recovery

In this section we recall the algorithm for recovering the
stimulus at the input of an ideal integrate-and-fire neuron
from reading the spike times at its output [4]. The
algorithm perfectly recovers the stimulus u ¼ uðtÞ, t 2 R,
based on the knowledge of the spike times ðtkÞ, k 2 Z.
The structure of the stimulus recovery algorithm is
highly intuitive. Spikes are generated at times sk,
sk ¼ ðtkþ1 þ tkÞ=2, with weight ck, k 2 Z, and then passed
through an ideal low pass filter with unity gain for o 2
½�O;O� and zero otherwise, where O is the bandwidth
of stimulus u. Thus, the output of the low pass filter is
given by

uðtÞ ¼
X
k2Z

ckgðt� skÞ,

where gðtÞ ¼ sinðOtÞ=pt is the impulse response (or kernel)
of the low pass filter. The algorithm for evaluating the ck’s
is given by

c ¼ Gþq,

where c ¼ ½ck� and q ¼ ½dkþ1 � dk � bðtkþ1 � tkÞ� are vec-
tors and G ¼ ½Glk� ¼ ½

R tlþ1

tl
gðs� skÞds� is a matrix. Other

details and generalizations are worked out in [4,5].
Please cite this article as: A. A. Lazar, Information representation with
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3.2. Multichannel recovery

The above results are extended in this section to
ensemble encoding. Diversity among the Hodgkin–Huxley
neurons with multiplicative coupling is incorporated in the
model by allowing a spread of the time constant and bias of
the integrate-and-fire neuron.
The t-transform of the network of parallel neurons (see

Fig. 3) is given by [4]

Z ti
kþ1

ti
k

uðsÞ exp �
ti
kþ1 � s

RC

� �
ds ¼ Cðdi

� biRÞ

þ C½biR� viðt0Þ� exp �
ti
kþ1 � ti

k

RC

� �
, ð8Þ

for all k, k 2 Z and i; 1pipM, provided that
viðt0Þodioðbi

� ciÞR, where di is a constant neuron-
dependent threshold sequence. For simplicity of notation,
we also assumed here that the RC-filters have the same
parameters.
Let us define the vector

½qi�k ¼

Z ti
kþ1

ti
k

uðsÞ exp �
ti
kþ1 � s

RC

� �
ds,

for all k 2 Z and i ¼ 1; 2; . . . ;M.
We shall assume that

uðtÞ ¼
XM
j¼1

X
k2Z

c
j
kgðt� s

j
kÞ.
an ensemble of Hodgkin–Huxley neurons, Neurocomputing (2007),
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Informally, by evaluating ½qi�l we obtainZ ti
lþ1

ti
l

XM
j¼1

X
k2Z

c
j
kgðs� s

j
kÞ exp �

ti
lþ1 � s

RC

� �
ds ¼ ½qi�l

or

XM
j¼1

X
k2Z

c
j
k

Z ti
lþ1

ti
l

gðs� s
j
kÞ exp �

ti
lþ1 � s

RC

� �
ds ¼ ½qi�l .

With the notation ½Gij
�lk ¼

R ti
lþ1

ti
l

gðs� s
j
kÞ exp �

ti
lþ1
�s

RC

� �
ds,

we have

XM
j¼1

X
k2Z

½Gij
�lkc

j
k ¼ ½q

i�l

and therefore

XM
j¼1

Gijcj ¼ qi.

Finally, with G ¼ ½Gij
�, q ¼ ½qi� and c ¼ ½cj � we have

Gc ¼ q,

or

c ¼ Gþq,

where Gþ is the pseudo-inverse of G.

Remark 3. The basic structure of the recovery is based on
the system of equations

G11c1 þG12c2 þ � � � þG1McM ¼ q1;

G21c1 þG22c2 þ � � � þG2McM ¼ q2;

..

.

GM1c1 þGM2c2 þ � � � þGMMcM ¼ qM :
Please cite this article as: A. A. Lazar, Information representation with

doi:10.1016/j.neucom.2006.10.128
Note that the size of the matrices Gij depends on the
number of spikes.

Therefore, with the vector notation g ¼ ½gj�, where
gj ¼ ½gðt� s

j
kÞ�, we arrived at the following:

Theorem 3. The stimulus can be recovered using

uðtÞ ¼
XM
j¼1

X
k2Z

c
j
kgðt� s

j
kÞ,

or

uðtÞ ¼
XM
j¼1

ðgjÞ
T
� cj ¼ gTc ¼ gTGþq,

where Gþ is the pseudo-inverse of G.

Remark 4. From a subset J of M parallel neurons, the
stimulus can be recovered using

uðtÞ ¼
X
j2J

X
k2Z

c
j
kgðt� s

j
kÞ,

where the c
j
k’s are appropriately chosen.

Initial simulation results show that an increase in the
number of neurons leads to an increase in the precision of
stimulus recovery. Fig. 4 shows the spike trains generated
by each of three neurons ðM ¼ 3Þ. Figs. 5–7 depict the
original stimulus and the recovered waveform, respectively.

4. Conclusions

The complexity of the Hodgkin–Huxley formalism is
daunting both from the information representation and
from the stimulus recovery standpoint. This complexity
is compounded when information is encoded with an
an ensemble of Hodgkin–Huxley neurons, Neurocomputing (2007),
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ensemble of Hodgkin–Huxley neurons. We treated in this
paper the stimulus representation in the multiplicative
coupling case, an intermediate step towards addressing the
general problem.

In the multiplicative case, a Hodgkin–Huxley neuron is
I/O equivalent with an integrate-and-fire neuron with a
Please cite this article as: A. A. Lazar, Information representation with
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variable threshold sequence. This result was easily general-
ized to the case when the same stimulus is represented
with an ensemble of independent Hodgkin–Huxley
neurons. This allowed us to reduce the information
representation with M Hodgkin–Huxley neurons to one
with the same number of IAF neurons. We provided an
an ensemble of Hodgkin–Huxley neurons, Neurocomputing (2007),
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algorithm for stimulus recovery based on the spike train
generated by an arbitrary subset of Hodgkin–Huxley
neurons.
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