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Abstract

We investigate neural architectures for identity preserving transformations (IPTs)
on visual stimuli in the spike domain. The stimuli are encoded with a population of
spiking neurons; the resulting spikes are processed and finally decoded. A number
of IPTs are demonstrated including faithful stimulus recovery, as well as simple
transformations on the original visual stimulus such as translations, rotations and
zooming. We show that if the set of receptive fields satisfies certain symmetry
properties, then IPTs can easily be realized and additionally, the same basic stimu-
lus decoding algorithm can be employed to recover the transformed input stimulus.
Using group theoretic methods we advance two different neural encoding architec-
tures and discuss the realization of exact and approximate IPTs. These are realized
in the spike domain processing block by a “switching matrix” that regulates the
input/output connectivity between the stimulus encoding and decoding blocks. For
example, for a particular connectivity setting of the switching matrix, the origi-
nal stimulus is faithfully recovered. For other settings, translations, rotations and
dilations (or combinations of these operations) of the original video stream are ob-
tained. We evaluate our theoretical derivations through extensive simulations on
natural video scenes, and discuss implications of our results on the problem of
invariant object recognition in the spike domain.
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Spiking Neurons, Time Encoding Machines, Group Theory, Connectivity.

1. Introduction

The brain must be capable of forming object representations that are invariant with
respect to the large number of fluctuations occurring on the retina (DiCarlo & Cox,
2007). These include object position, scale, pose and illumination, and the pres-
ence of clutter. In a simple model of the visual system in primates, the incoming
visual stimulus is first represented in the responses of the retinal ganglion cells
(RGC). Subsequently, the stimulus is re-represented at each neural layer starting
with the first relay center (LGN) and followed by the visual cortex (V1, V2, V4
and IT cortex). Each of these representations can be modeled as an Identity Pre-
serving Transformation (IPT). At the final stage, the visual objects are represented
in a way that is amenable to an efficient comparison with an internal (memory)
representation of the object. Since spike trains are the language of the brain, the
latter representation is in the form of a neural population activity. Consequently,
the decision whether the object is present or absent takes place in the spike domain
(Logothetis & Sheinberg, 1996).

What are some plausible computational or neural mechanisms by which invariance
could be achieved? An early pioneering work (Olshausen et al., 1993) provides a
model mechanism for shifting and rescaling the representation of an object from
its retinal reference frame into an object-centered reference frame (see also An-
derson & Essen (1987)). In one class of models used in the invariant recognition
literature, transformations of the incoming visual signal are matched with an ex-
isting stored version of the image (Bülthoff & Edelman, 1992). More formally,
let I be a visual sensory object (stimulus). An IPT acting on I is modeled as an
invertible transformation T that, in turn, consists of a composition of a set of el-
ementary operators (e.g., rotation, dilation, translation, etc.). The set of all spike
trains produced by T (I) for all possible IPTs T defines the object-manifold. For
identifying the instantiation of a stored object in the incoming object-manifold, the
algorithm presented in Arathorn (2002) calls for the identification of the operator
T (and its inverse). More recent research focuses on routing/connectivity opera-
tors in support of information delivery (e.g., sensory information) to higher brain
centers (Wolfrum & von der Malsburg, 2007).

In this paper we focus on the realization of IPTs in the spike domain. The spike
domain is a non-linear, stimulus-dependent representation space. The non-linear
nature of the stimulus representation has proven to be a major challenge for spike
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domain computation. Our goal here is to put forth the first efficient rigorous com-
putational model that allows formal reasoning in the spike domain while at the
same time it is biologically relevant. Our model of computation can briefly be
summarized in block diagram form in Figure 1. The input visual stimulus is en-
coded in the time domain by an instantiation of a Video Time Encoding Machine
(Video TEM) (Lazar & Pnevmatikakis, 2011b). Video TEMs are spatio-temporal
models of neural encoding that are realized with receptive fields in cascade with
a population of spiking neurons (Lazar et al., 2010). The encoded stimulus (in
the form of spikes) is first processed in the Time Domain Processing (TDP) block
and then decoded by a Time Decoding Machine (TDM). The output of the TDM
is again an analog signal. Our time (spike) domain computation chain resembles
the traditional digital signal processing (Oppenheim et al., 1999) chain where an
analog signal is converted into a digital signal using an analog-to-digital converter,
then processed with a digital signal processor and finally converted back to an ana-
log signal with a digital-to-analog converter.

Time Encoding
Machine (TEM)

Time Decoding
Machine (TDM)

Time Domain 
Processing (TDP)

(u(t))t∈R

i = 1, 2, ...,M

(sil)l∈Z

j = 1, 2, ..., N

(tjk)k∈Z (v(t))t∈R

Figure 1: General Signal Processing Chain with a Time Domain Core.

An example of processing in the time domain appeared in Lazar (2006) where it
was demonstrated how an arbitrary linear filter can be implemented in the time
domain, using neural components. By building upon these results, any IPT acting
on the input stimulus can be realized in the time domain. However, the setup
of Lazar (2006) is rather complex as it requires a different TDM for any desired
transformation of the sensory stimulus.

There are two types of operators that are used for encoding of stimuli with TEMs:
linear operators (receptive fields) followed by non-linear operators (spiking neural
circuits). These operators are cascaded. The efficient realizability of IPTs pre-
sented here is primarily due to the structure of the receptive fields of the Video
TEM. These are required to form an overcomplete spatial (or spatiotemporal) fil-
terbank. Furthermore the set of receptive fields has to exhibit certain symmetry
properties (in group theoretic sense). If the receptive fields (linear filters) have a
group structure transformations on the stimulus can be realized via transformations
on the filters. However, these group operations cannot be, in general, “propagated”
through the neural encoding circuits (formally non-linear operators). Surprisingly,
however, under certain conditions described in the paper, rotations, scaling and
translations can be efficiently executed in the spike domain.
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We show that a large class of IPTs can be efficiently realized by making connec-
tivity changes in the TDP block while the TDM block remains the same. The TDP
block consists of a “switching matrix” that simply regulates the connectivity be-
tween the TEM and TDM blocks. We will show that different IPTs can be realized
with different connectivity settings of the switching matrix. For example, for a par-
ticular setting of the switching matrix, the original stimulus is faithfully recovered.
For other settings, translations, rotations and dilations (or combinations of these
transformations) of the original video stream are obtained. We will also show that
IPTs can be computed in parallel.

Our model can be viewed as a generalization of the shifting and rescaling mecha-
nisms proposed in Olshausen et al. (1993). We extend these operations to include
rotations and show how to efficiently implement them in the spike domain. We
also discuss the constraints that the finite size of the neural population imposes on
the set of achievable transformations. By starting from the continuous group on
the plane characterizing all the possible IPTs, we advance two different encoding
architectures whose receptive fields are defined on two different discrete grids. The
first is a log-polar grid, similar to the ones used in models of foveated vision (Nattel
& Yeshurun, 2000; Wohrer & Kornprobst, 2009; Weber & Triesch, 2009). On the
log-polar grid the switching matrix can realize combinations of rotations and dila-
tions in a lossless manner in the spike domain. The second is a Cartesian grid (Lee,
1996; Field & Chichilnisky, 2007). On the latter grid the switching matrix can
realize combinations of dilations and translations in a lossless manner in the spike
domain as well. Finally, we discuss how discrete approximations of the continuous
symmetry group can be used to perform arbitrary but approximate IPTs in the spike
domain. Examples are given that intuitively demonstrate our methodology.

2. Methods

2.1. The Architecture of the Model of Computation

An illustration of a general switching (“rewiring”) architecture for encoding, pro-
cessing and decoding video streams is shown in Figure 2. Our architecture follows
the general one depicted in Figure 1.

The input signal is an analog video stream and is encoded by a canonical Video
Time Encoding Machine (see Figure 2). A more formal overview of Video TEMs
is available in Appendix A.1. Briefly, the Video TEM consists of a bank of linear
filters/receptive fields Dj(x, y, t), j = 1 · · · , N , in cascade with nonlinear spiking
circuits (e.g., neural circuits realized with Integrate-and-Fire neurons). Hence, a
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Figure 2: General architecture of the video processing mechanism using spike
domain switching techniques.
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Video TEM maps an input visual stimulus into a vector of spike trains. The spiking
activity of the neural circuits can be interpreted as signal dependent sampling. This
sampling operation, defined as the t-transform, is expressed by the following set of
equations {

〈I, φjk〉 = qjk, k ∈ Z, j = 1, . . . , N
}
, (1)

where I = I(x, y, t) is the input visual stimulus that belongs to a Hilbert space, φjk
is the sampling function associated with k-th spike of neuron j and qjk is its mea-
surement (the projection of I onto the sampling function). The sampling functions
are determined by the linear receptive fields, the spike times and the parameters
of the neural circuits, whereas the outcomes of these projections depend on the
spike times and the parameters of the neural circuits. Although the left-hand-side
of equation (1) is an inner product, the sampling by the neural circuits is highly
nonlinear, and the sampling functions are, through the spike times, stimulus de-
pendent.

The TDM block implements decoding algorithms for the canonical Video TEM
(see Figure 2). A more formal overview of Video TDMs is available in Appendix
A.2. Under certain conditions the Video TEMs can faithfully encode the input
video stream as a multidimensional sequence of spike trains. The TDM archi-
tecture implements a perfect decoding algorithm of the input video stream (see
Appendix A.2). Briefly, the faithful representation condition ensures that (i) the
set of linear receptive fields does not filter out any spatial information contained in
the input stimulus (Lazar & Pnevmatikakis (2011a)) and (ii) the spiking frequency
of the neurons is high enough so that it can represent the temporal information of
the stimulus (Lazar & Pnevmatikakis (2011b)). (See also Appendix A.2). For the
rest of this paper we assume that the number and the parameters of the neurons are
such that the perfect stimulus recovery conditions are satisfied.

The architecture of the TDP block of Figure 2 is very simple. It consists of a switch-
ing matrix that regulates the connectivity between the TEM and TDM blocks. In
other words, the switching matrix, directs the incoming spikes from the layer of
neural circuits that represents the incoming video stimulus, to specific locations
of the next layer, i.e., the TDM block or other layers of read-out neurons. For
a finite number of N circuits, the switching matrix can have N ! different settings.
Each setting corresponds to a permutation σ of the numbers {1, 2, . . . , N}mapping
the spikes coming from the neural circuit j to the σ(j)-th entry of the next block
or layer. Clearly such a transformation, although non-linear in general, is iden-
tity preserving in the time domain because it is invertible through the permutation
σ−1. However not all of these transformations have a clear physical interpretation.
Moreover, as discussed in Section 1 the representations in the visual system have
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to be invariant with respect to certain transformations. These include rotation, di-
lation (scaling) and translation among others. In what follows we show how the
structure of the Video TEM together with the operation of the switching matrix can
give rise to such invariant representations.

2.2. Identity-Preserving Transformations of Visual Streams in the Spike Domain

In this section we present the general architecture for the realization of Identity-
Preserving Transformations (IPTs) in the spike domain by means of switching
mechanisms that regulate connectivity. We argue that IPTs naturally arise in the
time domain representation when using a Video TEM provided that the set of re-
ceptive fields has some special symmetry properties (sections 2.2.1 and 2.2.2). We
present two different sets of receptive fields that can realize various IPTs in an
exact form (sections 2.2.3 and 2.2.4) and also describe the realization of approx-
imate arbitrary IPTs by our architecture (section 2.2.5). Finally, we assume that
all spike generation model neurons have the same parameters (i.e., same threshold,
bias and time constants for the case of Integrate-And-Fire (IAF) neurons and the
same feedback loop if any).

2.2.1. The Structure of Receptive Fields

We consider receptive fields that are space-time separable, i.e., they satisfy

Dj(x, y, t) = Dj
s(x, y)Dτ (t) (2)

for all j, j = 1, 2, . . . , N . Moreover, we assume that the temporal component
Dτ is the same for all the receptive fields, and that its spectral support covers
the frequency band of interest [−Ω,Ω]. Thus, there is no information loss due to
temporal filtering.

To generate a set of spatial receptive fields, we pick a mother function η ∈ L2(R2),
similar to the mother wavelet in wavelet theory (Daubechies, 1992). Then, each
individual receptive field is obtained by applying to η the unitary operator

T ([x0, y0], α, θ)η(x, y) = τx0,y0DαRθη(x, y), (3)

where

1. τx0,y0 , (x0, y0) ∈ R2 with τ(x0,y0)η(x, y) = η(x− x0, y − y0) is the transla-
tion operator;

2. Dα, α > 0 with Dαη(x, y) = α−1η
(
x
α ,

y
α

)
is the dilation operator;
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3. Rθ, θ ∈ [0, 2π), with Rθη(x, y) = η(r−θ[x, y]), where rθ[x, y] = [x cos θ −
y sin θ, x sin θ + y cos θ] is the rotation operator.

We define the operator of (3) to be equal to

T ([x0, y0], α, θ)η(x, y) = α−1η(α−1r−θ(x− x0, y − y0)). (4)

In fact, the family of the operators T ([x0, y0], α, θ) is the unique (up to unitary
equivalence) unitary irreducible representation of a group called the similitude
group SIM(2) (Antoine et al., 2004) (see group law in Appendix B).

By denoting the receptive field ηg, g = ([x0, y0], α, θ), where

ηg(x, y) = T (g)η(x, y), (5)

we notice that the action of another operator T (g′) on ηg will result in

T (g′)ηg = ηg′◦g, (6)

where the subscript of the resulting receptive field is given by the group law. With
the above receptive field structure, we present next the generation of invariant trans-
formations that are based on a switching mechanism.

2.2.2. Generation of Invariant Transformations

Let us denote by S a subset of the SIM(2) group, and assume that a signal of
interestA(x, y) (for simplicity we assume a constant image, although this approach
is readily applicable to time-varying signals as well) can be represented as

A(x, y) =
∑
s∈S

csηs(x, y). (7)

To apply a transformation T (g), g ∈ H ⊆ SIM(2), to A, we have

T (g)A(x, y) =
∑
s∈S

csT (g)ηs(x, y)

=
∑
s∈S

csηg◦s(x, y)
(8)

If, in addition, g◦s ∈ S and g−1◦s ∈ S for all s ∈ S, then the subset S is invariant
under the action of T (g). Consequently, the transformation of A by T (g) can be
rewritten as

T (g)A(x, y) =
∑
s∈S

cg−1◦sηs(x, y) (9)
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Therefore, we see that the transformed image T (g)A takes the same representation
as A itself. The only changes are the coefficients cs, s ∈ S. As indicated in (9),
the coefficient of the receptive field ηs in T (g)A, should be the coefficient of the
receptive field ηg−1◦s in A, for all s ∈ S. This is what the switching architecture of
the spike domain process requires, i.e., any IPT on the set of receptive fields maps
to the same set of receptive fields. Once we know the representation of (7), the
transformation can be easily realized with a switching circuit.

The invariance of the set S under the action of any T (g), g ∈ H , is obvious ifH =
S = SIM(2). In essence, the closure property of the group operation guarantees
that the transformation of a receptive field by the unitary operator is another recep-
tive field in the group. It is certainly true that under the continuous group structure,
if there are uncountably many receptive fields η([x0,y0],α,θ)(x, y), for all [x0, y0] ∈
R2, α ∈ R∗+, θ ∈ [0, 2π), then all rotations, translations and dilations can be im-
plemented by a switching mechanism.

However, there is only a finite number of receptive fields since there is a finite
number of neurons. Theoretically, we can make this number countably infinite,
but it still requires the discretization of the SIM(2) group, and the restriction of
all possible operations to a discrete set. Unfortunately, discretization breaks the
nice properties of the continuous group and specific designs of the discretization
and switching mechanisms are necessary. We present here a discretization based
on a log-polar grid that is invariant under the action of a discrete set of rotations
and dilations, and discuss the transformations that it can realize. In section 2.2.4
we present an alternative discretization that is based on a Cartesian grid and is
invariant under the action of a discrete set of translations and dilations.

2.2.3. Exact IPTs Using a Log-Polar Grid

In the case of the log-polar grid, the centers of the receptive fields are placed in a
rotation-invariant grid. More specifically, the discretization of the SIM(2) group is
given by the subset (see also Figure S1 in the supplementary material)

Sp =

(αm0 rlθ0 [kb0, 0], αm0 , nω0 + lθ0)

∣∣∣∣∣
b0 > 0, k ∈ N,m ∈ Z, α0 > 1

ω0 = 2π/N,N ∈ N∗, n = 0, · · · , N − 1

θ0 = 2π/L,L ∈ N∗, l = 0, · · · , L− 1

 .

(10)
Having (4) in mind, we have that the general form of the receptive field constructed
according to Sp is given by

η(αm0 rlθ0 [kb0,0],α
m
0 ,nω0+lθ0) = α−m0 η(α−m0 r−(nω0+lθ0)([x, y]− αm0 rlθ0 [kb0, 0]))

(11)

10



We see that for each scale αm0 , this set contains receptive fields that are centered
in the points αm0 rlθ0 [kb0, 0], and have orientation nω0 + lθ0. Note that the term
nω0 corresponds to the local orientation of the receptive fields around their center
point. In the case where the receptive fields are isotropic, we can simply setN = 1.
On the contrary, the term lθ0 corresponds to the global orientation, i.e., the angle
between the line that connects the origin and the center of the receptive field and
the x-axis. Since elements of Sp are uniquely determined by the parameters k,m, n
and l, we use a more compact notation (k,m, n, l) to denote elements in Sp. We
would like that the subset is invariant under some rotations and dilations. From
the discretization of the SIM(2) group, it naturally arises that those rotations and
dilations are derived from the following subset of SIM(2)

Hp =
{

([0, 0], αm0 , lθ0)
∣∣m ∈ Z, α0 > 1, θ0 = 2π/L,L ∈ N∗, n = 0, · · · , L− 1

}
.

(12)
Proposition 2.1. For every choice of the parameters (b0, α0, ω0, θ0) with b0 >
0, α0 > 1, N, L ∈ N∗ of the log-polar grid, the set of all constructed receptive
fields, denoted by Sp, is invariant under any transformations in the subset Hp. In
addition, the action of each element of Hp induces a permutation of Sp.

Proof: The proposition is a direct consequence from the way the elements of
Sp and Hp are constructed. Indeed, for each h = ([0, 0], αm

′
0 , l′θ0) ∈ Hp and

x = (αm0 rlθ0 [kb0, 0], αm0 , nω0 + lθ0) ∈ Sp, we have

h ◦ x = (αm
′+m

0 r(l′+l)θ0 [kb0, 0], αm
′+m

0 , nω0 + (l′ + l)θ0) ∈ Sp. (13)

Note that Hp is a subgroup of SIM(2) under the same action, since the identity
element ([0, 0], 1, 0) ∈ Hp and for each h = ([0, 0], αm

′
0 , l′θ0) ∈ Hp we have

h−1 = ([0, 0], α−m
′

0 , (−l′ mod L)θ0) ∈ Hp. Therefore, it is easy to see that for
each x1, x2 ∈ Sp, if hx1 = hx2, then h−1hx1 = h−1hx2 and thus x1 = x2.
Therefore, the mapping of Sp to itself by h is one-to-one and h ∈ H induces a
permutation of Sp.

Before we present the main result for this section we need the following definitions.
Definition 2.2. A set τ :=

{
(tjk), k ∈ Z, j = 1, 2, . . . , N

}
of spike trains pro-

duced by the TEM of Figure 2 is said to represent the video stimulus I if the TDM
of Figure 2 with given input the set of spike trains (tjk), k ∈ Z, j = 1, 2, . . . , N
recovers the video stream.
Definition 2.3. Let I be an arbitrary input video stream and τ the set of spike
trains produced by the TEM of Figure 2. An IPT T is said to be realizable in the
time domain, if there is a connectivity setting σ of the switching matrix, such that
the set of spike trains τ represents the video stimulus T I .
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Theorem 2.4. For a Video TEM with receptive fields according to Sp the following
IPTs are realizable in the time domain:

• The set of rotationsRθ where θ = l 2πL , l = 0, 1, . . . , L− 1.

• The set of dilations Dα where α = αm0 ,m ∈ Z.

• Any synthesis of the above operators.

Proof: See Appendix C.
Definition 2.5. Let I denote the video stream that represents a certain object and
let τ be the set of spike trains obtained from the Video TEM upon presentation of
I . The set {T I : T ∈ H} is called the object manifold under H for the object that
is represented with I .
Corollary 2.6. The switching architecture of Figure 2 where the set of receptive
fields is characterized by Sp generates the whole object manifold under Hp in real
time.

Proof: Follows directly from the above proof of Theorem 2.4.
Remark 2.7. The theory presented above considers video streams with spatial sup-
port on R2. Moreover, an implicit requirement of Theorem 2.4 is that the number
of elements in the set of receptive fields (which equals the number of spiking neural
circuits) is infinite. In applications however, as well as in the visual system, the
number of neurons is finite. This means that the number of possible scalings as
well as the number of possible translations is finite. The finite number of possible
translations implies that the spatial domain over which the input video stream is
defined is of finite measure, that is clearly the case. The finite number of scal-
ings implies that the input stimuli have also finite spatial bandwidth which also
holds. These facts also restrict the set of possible IPTs that can be implemented
in the time domain, to those that are supported by the characteristics of the set of
receptive fields. Note however that the set of possible rotations remains unaffected.

2.2.4. Exact IPTs using a Cartesian Grid

From the presentation of the log-polar grid in section 2.2.3, we see that rotation and
dilation transformations can be realized in an exact fashion by the same switching
circuit. This is because these transformations commute with each other, and thus
it is possible to derive a discrete set that preserves the group structure. On the
contrary, the translation transformation does not commute neither with rotations
nor with dilations. As a result, it is impossible to derive a general discrete set that
will be closed under all the combined transformations of translation and rotation or
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dilation. However, we present here a discrete set that can realize a subset of these
transformations on the Cartesian grid, in an exact fashion.

In this case the centers of the receptive fields for each scale are placed on a Carte-
sian grid. Spatial filters of multiple scales are constructed, with the scales placed
logarithmically. The resulting discretization of the SIM(2) group is given by (see
also Figure S2 in the supplementary material)

Sc =

(α−m0 [kbx, lby], α
−m
0 , nω0)

∣∣∣∣∣
bx, by > 0, k, l ∈ Z
α0 ∈ N∗, α0 > 1,m ∈ N
ω0 = 2π/N,N ∈ N∗, n = 0, · · · , N − 1

 .

(14)
Again from (4), the general receptive field obtained from the above discretization
is given by

η(α−m0 [kbx,lby ],α
−m
0 ,nω0)

= αm0 η(αm0 r−nω0([x, y]− α−m0 [kbx, lby])). (15)

For each scale α−m0 the set includes the receptive fields centered at α−m0 [kbx, lby],
with orientation nω0. Note that this discretization resembles closely the one of the
discrete wavelet transform. We would like Sc to be invariant under some specific
translations and dilations. Based on the above discretization, this set of transfor-
mations is given by

Hc =
{

(α−m
′

0 [k′bx, l
′by], α

−m′
0 , 0)|m′ ∈ N, k′, l′ ∈ Z

}
. (16)

As in the case of the log-polar grid, consider an element h = (α−m
′

0 [k′bx, l
′by], α

−m′
0 , 0) ∈

Hc and an element x = (α−m0 [kbx, lby], α
−m
0 , nω0) ∈ Sc. Then we have

h ◦ x = (α−m
′

0 [k′bx, l
′by] + α−m

′−m
0 [kbx, lby], α

−(m+m′)
0 , nω0)

= (α
−(m+m′)
0 [(αm0 k

′ + k)bx, (α
m
0 l
′ + l)by], α

−(m+m′)
0 , nω0),

(17)

and since α0 is a positive integer, we have that αm0 k
′+k, αm0 l

′+l ∈ Z and therefore
h ◦ x ∈ Sp.

Based on the above discussion, we have the following theorem for the IPTs that
are implementable with a Cartesian grid.
Theorem 2.8. For a Video TEM with receptive fields according to Sc the following
IPTs are realizable in the time domain:

• The set of dilations Dα where α = α−m0 ,m ∈ N.

• The set of translations τ[x0,y0] where [x0, y0] = [kbx, lby], k, l ∈ Z.
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• Any synthesis of the above operators, i.e., simultaneous dilation Dα−m0
and

translation
τα−m0 [kbx,lby ]

,m ∈ N, k, l ∈ Z.

Proof: Similar to the one of Thm. 2.4. �

Remark 2.9. Note that the only dilations that the Cartesian grid can implement are
with a scale αm

′
0 , wherem′ is a strictly positive integer, and not a general integer as

in the log-polar grid case. This corresponds only to the zoom-out transformation.
The opposite zoom-in transformation cannot be performed in an exact way since
for m′ < 0, we also have m + m′ < 0 for m = 0, . . . ,−m′ − 1. However, note
that even when this condition is not satisfied, we can perform approximate zoom-in
transformations by keeping only the scales−m′,−m′+1, . . . and disregarding the
remaining ones. We present such an example in section 3.2.

2.2.5. Approximate IPTs Using Nearest Neighbor Mapping

As we discussed, the two different grids, presented in sections 2.2.3 and 2.2.4 cor-
respond to two different discretizations of the continuous SIM(2) group that con-
sists of all possible rotations, translations and dilations. Conceptually, the SIM(2)
group can generate all the possible IPTs and therefore has led in the past to the
development of group theoretic approaches for the problem of visual perception
(Hoffman, 1966; Dodwell, 1983). However, these ideas cannot lead to practical
applications since they require an uncountable number of elements and the general
group structure is not retained for arbitrary discretization schemes. Nevertheless,
both of the grids can approximate the continuous one as they become denser, i.e.,
the distance between neighboring elements becomes smaller. The polar grid be-
comes dense in the continuous group as N → ∞, α0 → 1+ and b0 → 0+. Sim-
ilarly, the Cartesian grid becomes dense in the continuous group as bx, by → 0,
α0 → 1+ and N → ∞. Therefore as the grids become denser, they also become
more similar to the continuous one.

Using this argument we can also use a Video TEM with a set of receptive fields
placed on a Cartesian grid to implement approximate rotations, of an arbitrary an-
gle θ. To do so we set the switching matrix as follows: Upon the application of a
rotation operator rθ the spikes of the neural circuit with receptive field that corre-
sponds to the point (α−m0 [kbx, lby], α

−m
0 , nω0) is mapped, to its nearest neighbor

with the same scale (α−m0 [k′bx, l
′by], α

−m
0 , n′ω0) where k′, l′, n′ are given by
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[k′, l′] = arg min
i,j∈Z

{
(kbx cos θ + lby sin θ − ibx)2 + (−kbx sin θ + lby cos θ − jby)2

}
= [nint(k cos θ + lby sin θ/bx), nint(−kbx sin θ/by + l cos θ)] ,

n′ = arg min
l∈Z/N

|nω0 + θ − lω0|

(18)

where nint(x) is the nearest integer to x. Note that the distance to the closest recep-

tive field is always bounded by
√
b2x + b2y/2 which ensures that as bx, by becomes

smaller, i.e., the grid becomes denser, the mapping becomes more accurate.

Using similar arguments, it is clear that using the log-polar grid we can also im-
plement approximate translations. These will become more accurate as the grid
becomes denser, i.e., b0 and θ0 become smaller.
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Figure 3: (A) Mapping of the translated receptive field of α = 0.5 to their ap-
proximations in the existing polar grid. The green markers indicate the translated
receptive fields, the red markers indicate the approximations, and the blue line
shows the mapping from green to red. (B) Mapping of the rotated receptive field
in dilation α = 0.5 to their approximations in the existing Cartesian grid. The
green markers indicate the translated receptive fields, the red markers indicate the
approximations, and the blue line shows the mapping from green to red.

In Figure 3A, we show the nearest neighbor mapping of shifted receptive fields in
one of the scales in the log-polar grid Sp. The green markers indicate the centers of
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the translated receptive fields. The latter are connected by the blue lines, to the red
markers that represent their nearest neighbor. As a comparison, we also show the
nearest neighbor mapping of rotated receptive fields in one scale in the Cartesian
grid Sc in Figure 3B.

3. Results

The theoretical tools developed in section 2 have been evaluated in a number of
directions. This pertains to separable and nonseparable visual streams, and to the
architecture of the video time encoders employed, including the choice of recep-
tive fields and spiking neuron models. It also pertains to exploring the sampling of
the IPT transformations, including dilations, rotations and translations. Finally, it
pertains to the recovery of the encoded visual streams, including exact and approx-
imate stimulus decoding algorithms.

We consider a space-time separable video stream of the form I(x, y, t) = A(x, y)u(t),
where A(x, y) is an 256 × 256 pixel image defined on the spatial domain of
D = [−8, 8]×[−8, 8], and u(t) is an one second long temporal signal of bandwidth
4 Hz. In the following examples, we show snapshots of the video stream I and the
various transformed videos at the time instant t|u(t)=1 for illustration purposes. The
spatial component of the input stimulus is visualized in Figure 4A. The Structural
Similarity (SSIM) index (Wang et al., 2004) of the shown snapshot is evaluated for
each of the examples. Bilinear interpolation is used to perform transformations on
the original signals to create references that the reconstructions are compared to.

In our evaluations we will also use a space-time nonseparable natural visual stream
with the same characteristics as the separable video stream described above, that
incidentally, exhibits a higher temporal bandwidth. The SSIM index is evaluated
for the entire visual stimulus.

3.1. Rotations and Dilations on the Log-Polar Grid

We start by constructing the receptive fields on the log-polar grid and by provid-
ing the parameters of the IAF neurons defining the Video TEM. Subsequently, we
describe how to achieve with the TDP block rotation and dilation transformations.

Center-surround receptive fields of RGCs and neurons in the LGN have been mod-
eled with the Difference of Gaussians (DoG) wavelet (Kuffler, 1953; Rodieck,
1965). Here the mother wavelet of the receptive fields is the DoG

η(x, y) =
1

2α2
1

exp

(
−x

2 + y2

2α2
1

)
− 1

2α2
2

exp

(
−x

2 + y2

2α2
2

)
, (19)
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A. Original B. Recovery C. Rotated D. Zoomed In and Rotated

Figure 4: Rotations and dilations (zoom-in) on the log-polar grid. (A) Spatial
component of the original stimulus. The reconstruction is performed only for the
region inside the solid black circle. The dashed circle indicates the region that
was zoomed into. (B) Recovery with a null connectivity setting switching matrix.
(C) Recovery with a switching matrix connectivity setting realizing a rotation of
69 degrees counter-clockwise. (D) Recovery with a switching matrix connectivity
setting realizing a rotation of 135 degree clockwise and a dilation factor of 2. The
region corresponds to the one inside the dashed circle in the original stimulus in
(A). The recovery was multiplied by 2 before being shown. The SSIM index for
(B-D) is, respectively, 0.90, 0.93, 0.94.

with parameters α1 = 0.5, α2 = 1.6α1.

The parameters for generating the filter bank are defined on the log-polar grid (see
section 2.2.3):

• α0 = 2,m ∈ {−3,−2,−1, 0, 1},

• θ0 = 2π/L,L = 120, l ∈ {0, 1, · · · , 119}, ω0 = 2π,N = 1,

• b0 = 0.8.

Each receptive field output was fed into an IAF neuron, with bias b = 0.4, threshold
δ = 0.03 and integration constant κ = 1. The total number of receptive fields, as
well as the total number of neurons was 18, 605; a total of 245, 690 spikes were
fired. We focussed on the reconstruction of the circular region x2 + y2 ≤ 42 as
indicated by the solid circle in Figure 4A. All the receptive fields centered in the
domain were taken into account, together with a small number of receptive fields
whose centers are immediate neighbors of the circular domain.

We present several examples showing the recovery of stimuli encoded with the
Video TEM described above. Two experiments are described. In the first, the
encoded stimulus is space-time separable. In the second, a natural video stream is
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used that is non-separable.

We first demonstrate the ability of the TDP block with various connectivity settings
to recover, rotate and dilate a separable visual stream. Perfect recovery was real-
ized by the TDP block with the null setting of the switching matrix performing an
identity transformation. Figure 4B shows the recovery of the visual stimulus within
the framed region. Since θ0 = 2π/120 in the log-polar grid, any rotations of mul-
tiples of 3 degrees can be realized. In this example, a rotation of 69 degrees in the
counter-clockwise direction is performed. The spike train coming from the neuron
whose spatial receptive field is the element (αm0 rlθ0 [kb0, 0], αm0 , lθ0) of the filter
bank is mapped into the reconstruction filter with parameter (αm0 r(l+23)θ0 [kb0, 0], αm0 , (l+
23)θ0). The resulting reconstruction is shown in Figure 4C.

We now present an example of a simultaneous rotation of 135 degrees clockwise
and a dilation by a factor of 2. This transformation can be achieved by rout-
ing the spikes fired by the neuron whose spatial receptive field is the element
(αm0 rlθ0 [kb0, 0], αm0 , lθ0) to the reconstruction filter (αm+1

0 r(l−45)θ0 [kb0, 0], αm+1
0 , (l−

45)θ0), m = −3,−2,−1, 0. The spikes of the encoding neurons at scale m = 1
were ignored since the scale m = 2, at which they were to be shifted, did not exist.
The result is shown in Figure 4D. Note that the reconstruction in the figure had
been multiplied by 2 for illustration purposes since the dilated version is scaled by
1
2 due to the unitary condition.

Second, we demonstrate rotation and dilation transformations executed by the
TDM on a space-time non-separable natural visual stream, the size of which is
the same as the separable video stream in the previous examples. Four snapshots
of the original visual stimulus are shown in Figure 5A. We used the same set of
receptive fields and neurons, except that the bias and threshold of each of the neu-
rons were respectively set to b = 1.2 and δ = 0.04. These parameters guarantee
the high quality recovery of the encoded video stimuli. The ensemble of neurons
fired 550, 722 spikes in the 1 second duration of the visual stream. We performed a
rotation of 63 degrees counter-clockwise and zooming out by a factor of 2. These
transformations are achieved by routing the spikes fired by the neuron whose spa-
tial receptive field is the element (αm0 rlθ0 [kb0, 0], αm0 , lθ0) to the reconstruction
filter (αm−10 r(l+21)θ0 [kb0, 0], αm−10 , (l + 21)θ0), m = −2,−1, 0, 1. The spikes of
the encoding neurons at scale m = −3 were ignored since the scale m = −4,
at which they were to be shifted, did not exist. The result is shown in Figure 5B.
Four snapshots of the transformed visual stimulus are shown, each corresponding
to theones in Figure 5A. Again, the zoomed out reconstruction was multiplied by
0.5 before being shown. The entire video of this transformation, together with the
videos of other rotation and dilation transformations can be found in the supple-
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mentary material (video1, video2).

A. Original

B. Zoomed Out and Rotated

Figure 5: Rotations and dilations (zoom-out) of non-separable natural scenes
on the log-polar grid. (A) 4 snapshots of the original visual stream. (B) The
recovered video is dilated by a factor of 0.5 and rotated counter-clockwise by 63
degrees. The recovery is performed only for the region inside the black circle
as indicated in the bottom panel. The recovery is multiplied by 0.5 before being
shown.

From the results obtained in this section, it is clear that IPTs such as rotations and
dilations can be performed in the spike domain with a simple switching mechanism
as we have described in Section 2.2.3.

3.2. Translations and Dilations on the Cartesian Grid

We start by presenting the architecture of the Video TEM. This is followed by the
TDP block connectivity settings to achieve translation and dilation transformations.

The mother wavelet that was chosen in this case was a Gabor wavelet of the form

η(x, y) =
1√
2π

exp

(
−x

2

2
− y2

8

)(
eiκx − e−κ2/2

)
, (20)
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where real and imaginary parts are separated into two real receptive fields. The
Gabor wavelet models well the linear transformations observed in the receptive
fields of simple cells in V1(Jones & Palmer, 1987).

The parameters for generating the filterbank are located on the Cartesian grid (see
also section 2.2.4):

• α0 = 2,m ∈ {0, 1, 2, 3}

• b0 = 2,

• ω0 = 2π/N,N = 8, n ∈ {0, 1, 2, 3, 4, 5, 6, 7},

leading to a total of 99,136 filters. Note that we also added 8 orientations for
the Gabor filter, which as discussed, does not affect the translation and dilation
transformations. Since the simulation can only be performed for a finite grid in-
stead of countably infinite one, we again only consider the reconstruction inside the
[−4, 4]× [−4, 4] region in the middle of the image, as highlighted by the rectangle
in Figure 6A. Receptive fields centered in this region and in its immediate neighbor-
hood were taken into account. All the IAF neurons had parameters κ = 1, δ = 0.02
and b = 0.3.

Perfect recovery can be implemented by the null setting switching matrix perform-
ing an identity transformation in the TDP building block. Figure 6B shows the
reconstruction of the visual stimulus within the framed region.

Translation by 2 units both to the right and upwards corresponds to the connectivity
setting of the switching matrix that maps the receptive field representing the ele-
ment (α−m0 [kbx, lby], α

−m
0 , nω0) to (α−m0 [(k+αm0 ·1)bx, (l+α

m
0 ·1)by], α

−m
0 , nω0).

The translation result is shown in Figure 6C, and the shift is indicated by the arrow.

We now demonstrate simultaneous dilation by a factor of 1
2 and translation up-

wards by 1 unit. This was be achieved by the switching matrix setting that wires
receptive fields representing the elements (α−m0 [kbx, lby], α

−m
0 , nω0) to the ele-

ments (α−m−1[kbx, (α
m
0 + l)by], α

−m−1, nω0), for m = 0, 1, 2. The spikes of the
neurons belonging to the dilation level m = 3 were ignored. The result of the
simultaneous translation and dilation transformations is shown in Figure 6D.

Several videos demonstrating the reconstruction of non-separable natural scenes
can be found in the supplementary material (video3, video4). Both recovery and
translations as well as, dilations and translations are, respectively, shown on the
Cartesian grid.

Concluding, if the spatial receptive fields are defined on a Cartesian grid as de-
scribed in Section 2.2.4, then admissible translation and dilation IPTs can be achieved
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A. Original B. Recovery C. Translated D. Zoomed In and Translated

Figure 6: Translations and dilations on the Cartesian grid. (A) Original stim-
ulus. The recovery is performed only for the region inside the black frame. (B)
Recovery with a switching matrix with null connectivity setting. (C) Recovery
with a switching matrix connectivity setting realizing a translation by 2 units to the
right and 2 units upwards, as indicated by the arrow. (D) Recovery with a switch-
ing matrix connectivity setting realizing a dilation of factor of 0.5 and a translation
by 1 unit upwards, as indicated by the arrow. The recovery was multiplied by 0.5
before being shown. The SSIM index for (B-D) is, respectively, 0.95, 0.95, 0.92.

using a simple switching mechanism.

3.3. Approximate Transformations

In the previous sections we have shown that the “natural” grid for constructing
the Video TEMs for rotations and dilations is the log-polar grid. We have also
demonstrated that the natural grid for translations and dilations is the Cartesian
grid.

In this section we explore the performance in recovery when the receptive fields of
the Video TEMs are built on the log-polar grid and translation and dilation trans-
formations are performed in the spike domain. Conversely, for receptive fields of
the Video TEMs defined on the Cartesian grid, rotations and translations are con-
sidered.

Throughout, we constructed the receptive fields of the Video TEM with the DoG
mother wavelet given in (19). The parameters of the IAF neurons are as described
in section 3.1.

In order to explore approximate rotation transformations, the receptive fields were
placed on a Cartesian grid with the following parameters:
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• α0 = 2,m ∈ {0, 1, 2, 3},

• ω0 = 2π,N = 1,

• b0 = 0.8.

We performed several clockwise rotations with successive multiples of 23◦. The
results are shown in Figure 7. Only the recovery shown in Figure 7A is exact. The
other rotations in Figure 7B-H were approximate. Nevertheless, the original image
can easily be identified with the desired rotations. Transformations of space-time
non-separable natural scenes have also been investigated. The reconstruction for
approximate rotation transformations can be found in the supplementary materials
(video5).

A. Recovery B. Rotated 23◦ C. Rotated 46◦ D. Rotated 69◦

E. Rotated 92◦ F. Rotated 115◦ G. Rotated 138◦ H. Rotated 161◦

Figure 7: Approximate arbitrary rotations on the Cartesian grid. Recovery
of a successive multiple of 23◦ clockwise rotations. Only the focused area of
the video is being shown. (A) Recovery. (B) Rotation by 23◦. (C) Rotation by
46◦. (D) Rotation by 69◦. (E) Rotation by 92◦. (F) Rotation by 115◦. (G) Rota-
tion by 138◦. (H) Rotation by 161◦. The SSIM index for (A-H) is, respectively,
0.94, 0.87, 0.88, 0.87, 0.88, 0.87, 0.88, 0.86.

To illustrate the effect of the density of the Cartesian grid on arbitrary rotations,
we performed three experiments with increasing grid density. By setting b0 =
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1.0, 0.8, 0.6 in each experiment, respectively, we rotated the video by 144◦ clock-
wise. The results are shown in Figure 8B-D. The rotations were performed cor-
rectly for all three b0’s. Moreover, as we decreased b0 from 1.0 in Figure 8D, to 0.8
in Figure 8C and finally to 0.6 in Figure 8B, the quality of the approximate transfor-
mation increasingly improved. We then examined the quality of stimulus recovery
using the grids mentioned above. The grid density has an effect on the quality of
reconstruction. Since the identity transformation can be exactly implemented, the
quality degradation of the approximate rotation of stimuli parametrized by differ-
ent grid densities can be further evaluated. The evaluation is based on comparing
for each stimulus the approximate rotation with the identity transform on the same
grid. For b0 = 0.6, the quality of recovery of the approximate rotation only differs
from the quality of the identity transform by 0.01 SSIM. For b0 = 0.8, the qual-
ity of recovery of the rotation is lower than that of the identity transformation by
0.07 SSIM, while for b0 = 1.0, the difference is 0.13 SSIM. Therefore, as the grid
becomes denser, the approximate transformation converges to a “faithful” one.

A. Original B. b0 = 0.6 C. b0 = 0.8 D. b0 = 1.0

Figure 8: Effect of grid density on rotations with nearest-neighbor mapping
on the Cartesian grid. (A) Original stimulus. (B-D) Recoveries of rotation by
144◦ with grid parameter (B) b0 = 0.6, (C) b0 = 0.8, (D) b0 = 1.0. As the grid
becomes denser (smaller b0) the quality of the approximate rotation improves. The
SSIM index for (B-D) is, respectively, 0.94, 0.88, 0.76. For comparison, the SSIM
indexes of the recovery are 0.95, 0.94, 0.89 for the grids in (B-D), respectively.

Remark 3.1. In practice approximate rotations of arbitrary degree can be per-
formed using the nearest neighbor mapping described in section 2.2.5. Note, how-
ever, that rotations of very similar degree, can potentially lead to the same mapping
and therefore become indiscriminable, a phenomenon that has been reported in the
psychophysics literature (Westheimer & Beard, 1998). The rotation angle resolu-
tion depends on the resolution of the filterbank, i.e., the parameters bx, by and α0.

In order to evaluate approximate translations on the log-polar grid we used the
same encoding architecture as in the examples in section 3.1. To perform a transla-
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A. Original B. Translation of 0.5 C. Translation of 1 D. Translation of 1.5

Figure 9: Approximate translations on a log-polar grid. (A) Original stimulus.
(B-D) Recovery of translations by 0.5 units in (B), by 1 unit in (C) , and by 1.5
units in (D). Smaller translations exhibit improved quality of recovery because
of the non-uniform tiling of the log-polar grid. The SSIM index for (B-D) is,
respectively, 0.81, 0.80, 0.79.

A. Original B. b0 = 0.6, θ0 = 2π/180 C. b0 = 0.6, θ0 = 2π/120 D. b0 = 1.0, θ0 = 2π/120

Figure 10: Effect of polar grid density on translations. (A) Original stimulus.
(B-D) Recovery of translations by 1 unit, the grid densities are: (B) (b0 = 0.6, θ0 =
2π/180), (C) (b0 = 0.6, θ0 = 2π/120), (D) (b0 = 1.0, θ0 = 2π/120). As the grid
becomes denser (smaller θ0) the quality of the approximate translation improves.
The SSIM index for (B-D) is, respectively, 0.85, 0.83, 0.75. For comparison, the
SSIM indexes are 0.90, 0.90, 0.89 for the grids in (B-D), respectively. Compare
also with Figure 9(C) where the grid density is (b0 = 0.8, θ0 = 2π/120).
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tion, the receptive fields are mapped to the nearest existing receptive field after the
translation. In Figure 9B-D we show, respectively, results obtained by translation
to the right by 0.5, 1 and 1.5 units. The same translations on the non-separable
natural scenes was also performed. The complete video for these three translations
can be found in supplementary material (video6).

We now investigate the effect of the density of the grid on the reconstruction. There
are two ways to increase the density of the grid. One is to use a smaller b0, the other
is to decrease θ0; we show their effects in Figure 10. Again, we can observe that
the denser the grid is, the better the reconstruction quality of image (or natural
scenes) translations. For b0 = 0.6, θ0 = 2π/180, the recovery is less noisy. As
before, since the reconstruction quality may also depend on the grid density itself,
we tested the identity transformation on the same grids. The difference between the
SSIM index of the identity transform and the approximate translations decreases
as the grid becomes denser. However, it should be noted that the recovery quality
of the approximate translation depends not only on the grid density, but also on the
value of the translation performed, since the grid is denser in the center and coarser
away from the center. These observations are consistent with several experimental
studies (Kravitz et al., 2008).

It can be seen that, translations on the polar grid are not performing nearly as
well for coarser grids, especially when compared with the reconstruction quality
of rotations on a Cartesian grid. Such an effect is expected, as the polar grid is not
uniformly tiling the space.

4. Discussion

In this paper we presented a general model for the realization of identity-preserving
transformations in the spike domain. Our model architecture consists of a spike do-
main switching circuit (Time Domain Processing) that channels the spikes from the
sensory neurons (Time Encoding Machine) into the higher brain areas (processed
with the Time Decoding Machine). Surprisingly, a simple rewiring strategy can
perform a class of identity-preserving transformations such as rotations, scalings
and translations, thereby giving rise to a family of invariant transformations in the
spike domain. We demonstrated that this class of transformations can easily be
realized with a neural circuit architecture using the same basic stimulus decoding
algorithm. What changes in the architecture are only the connectivity settings of
the switching matrix (i.e., the input/output “wiring”) of the TDP building block.
Each connectivity setting corresponds to a particular IPT.
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The t-transform formalism allows us to interpret neural spiking in the language
of inner product operations. This formalism also enables us to consider an ar-
chitecture that has provably high performance characteristics. We note that the
implementation of IPTs with a switching mechanism depends only on the structure
of the encoder (in our case filterbank models of receptive fields and IAF neurons
for the spiking mechanisms) and not on the precise timing of spike responses. As a
result, IPTs are also realizable using the same switching mechanism for any model
with the same encoding structure.

When dealing with exact IPTs, a key property we have implicitly utilized is that
the receptive field outputs are invariant to transformations performed on the grid.
However, a common pitfall of wavelet representation of signals is that the repre-
sentation is highly dependent on the relative alignment of the input signal with
the grid. For example, rotation invariance is guaranteed only for rotation that are
multiples of the grid size. Therefore, the invariance is discretized as well.

Shiftable and steerable filters have been introduced as an alternative approach to
these problems (Freeman & Adelson, 1991; Simoncelli et al., 1992). Shiftable and
steerable filters provide efficient implementations of arbitrarily translated or ori-
ented filters from a linear combination of a bank of basis filters. These linear trans-
formations can be viewed as coordinate transformations in the Hilbert space; a set
of coordinates correspond to a collection of filters. The coordinate transformation
is achieved via a linear operation (matrix multiplication). The matrix is typically
obtained by solving systems of equations. The steerable and shiftable filters are
carefully designed so that the matrix can be efficiently computed analytically or
expressed in closed form.

Can these desirable characteristics be translated to our setting? A critical assump-
tion for coordinate transformations, regardless of their efficiency, is that the sam-
pling is linear. However, temporal sampling with neural circuits is highly nonlinear
and signal dependent. While in our current setting linear interpolation is not readily
possible, the efficiency gain of the TDM realization is even more noteworthy.

The switching matrix of the TDP block provides a simple, yet powerful realization
of spike domain processing. Although the connectivity settings of the switching
matrices we presented are fixed and each corresponds to a single transformation,
the rewiring capability can dramatically increase the representational and process-
ing power of the neural assemblies.

A question that naturally arises is how can such a rewiring mechanism be imple-
mented with neural substrates and how the visual system decides which IPT to
perform. A model for dynamic regulation of the connectivity between two neural
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layers was proposed by Olshausen et al. (1993), where a set of control neurons was
used to dynamically modify the synaptic strengths of the inter-layer connections.
Testing this hypothesis, however, would require tracking the functional switching
of a large population of neurons at a very fast timescale. Given the current and
near term experimental capabilities, a testable prediction about the switching con-
nectivity matrix performed on large populations, while desirable, is out of reach.

The IPTs implemented with the switching mechanism can play an important role in
view-dependent invariant recognition. In the class of invariant recognition models
where transformations of the incoming visual signal are matched with an existing
stored version of the image, object representations are stored as originally viewed
(Bülthoff & Edelman, 1992). Recognition is achieved by transforming the input
to match the view specification of the stored representation. These transformations
can be achieved by interpolation (Poggio & Edelman, 1990), mental transformation
(Tarr & Pinker, 1989) or alignment (Ullman, 1989). In our setting, these transforms
can be readily achieved by multiple parallel readouts corresponding to multiple
transforms executed in parallel.

A way of determining the transformation between the input and the stored object
has been proposed by Arathorn (2002). Called the map seeking circuit (MSC), this
algorithm identifies a discretely parametrized linear transformation (based on rota-
tions, translations, dilations, etc.) that minimizes an appropriate cost functional. To
do the MSC algorithm iteratively, three classes of operations have to be specified:
(i) a set of linear transformations, (ii) evaluation of the similarity between a stored
version of an image and the transformed input image, and (iii) arithmetic compu-
tations such as addition, and appropriate updates of the coefficients of the linear
transformations. Although not specifically focussing on the implementation of the
MSC algorithm, our formalism provides a methodology for the parallel construc-
tion of the set of linear transformations as required by one of the key operations
of the algorithm, in the context of our spiking architecture. Efficient spike domain
algorithms that evaluate the similarity between transformations of the incoming
stimulus and stored in memory patterns will be pursued in future work.

The set of all possible IPTs and the corresponding invariant representations that
can be realized with our architecture originate from the spatial structure of the neu-
ron receptive fields. The latter form an overcomplete spatial filterbank and also
exhibit specific symmetry properties that enable the implementation of IPTs with
a simple switching mechanism. By employing a similar group structure for the
temporal receptive fields, one can devise a space-time overcomplete filterbank at
the receptive field level, similar to the ones used in space-time wavelets (Antoine
et al., 2004). The use of space-time non-separable receptive fields (Lazar & Pnev-
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matikakis, 2011a,b) is also possible provided the group structure is kept. Such an
organization of receptive fields can facilitate a richer set of IPTs that can be realized
with the same switching matrix architecture, including space-time transformations.
Consequently, new forms of invariant transformations can arise such as velocity in-
variance. The latter suggests investigating attention models for tracking.

Our focus on invertible transformations and their implementation (and the charac-
terization of implementable IPTs) provides a solid foundation for the theoretical
capabilities of our model. In addition, some classes of IPTs, such as the ones creat-
ing the mirroring effect, are also realizable under this architecture. The switching
mechanism can also be used for non-invertible transformations. For example by
combining the operations of scaling and translation one can zoom into a partic-
ular region of the incoming video stream, and thereby select a particular spatial
region to be propagated to the next layer. This suggests a methodology for the im-
plementation of attention-selective mechanisms. Such properties also address the
correspondence problem of identifying equivalent stimuli while constantly chang-
ing visual fixations. A further example of non-invertible transformations arises
when the encoder is noisy. In the latter case, the mathematical formalism for signal
recovery is based on regularization (Lazar et al., 2010; Lazar & Zhou, 2012) and
can be directly adapted to our setting. However, other IPTs that frequently arise in
visual recognition tasks that facilitate invariance to, for example, occlusion, clutter
and illumination will require additional mechanisms.

In our architecture IPTs are realized by processing spikes, the natural language of
the brain. Spike processing in the TDP block is based on a key symmetry assump-
tion on the receptive fields. It is also based on the assumption that the spiking
mechanisms of the encoding neurons are identical. Consequently, IPTs can be
implemented without modifying the decoding block. To overcome the latter limi-
tation, employing further spike processing in addition to connectivity changes may
be necessary, and will be investigated elsewhere.
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Appendix A. The Architecture of Video Time Encoding Machines and Video
Time Decoding Machines

In this section we provide a brief overview of the machinery of Video TEMs and
Video TDMs. Full treatments can be found in the cited references.

Appendix A.1. The Architecture of Video Time Encoding Machines

Time encoding is a formal method of mapping analog signals into a time sequence
(Lazar & Tóth, 2004). Formal spiking neuron models are instantiations of TEMs
and encode information in the time domain. Assuming that the input signal is ban-
dlimited and the bandwidth is known, a perfect recovery of the stimulus based upon
spike times can be achieved provided that the spike density is above the Nyquist
rate (Lazar & Tóth, 2004). These results hold for a wide variety of sensory stimuli,
including audio and video, encoded with a population of spiking neural circuits
with various spiking mechanisms such as IAF (Lazar & Pnevmatikakis, 2008), or
Threshold-and-Fire (TAF) (Lazar & Pnevmatikakis, 2011b). However, even when
the bandlimited assumption is dropped and noise is present, information encoded
in the time domain by spiking neurons can be recovered (Lazar & Pnevmatikakis,
2009; Lazar et al., 2010), thus enhancing the representational power of spiking
neural circuits.

The general architecture of a Video TEM is shown in Figure 2. The video stimulus
I is sensed by a population of N neural circuits. Each circuit consists of a spatio-
temporal receptive field (STRF)Dj , j = 1, . . . , N, in cascade with a neural circuit.
This mechanism could be either a simple abstract spiking neuron model such as
IAF, TAF or a biophysical neuron model (e.g., Hodgkin-Huxley) (Kim & Lazar,
2011). Populations of M pulse-coupled neurons (e.g., On-Off neuron pairs) have
also been considered (Lazar & Pnevmatikakis, 2011b).

To analyze the operation of a Video TEM we need to embed the visual stimuli
into an appropriate Hilbert space. Let H denote the space of (real) analog video
streams I = I(x, y, t), (x, y, t) ∈ R3, that are bandlimited in time, continuous
in space, and have finite energy. By bandlimited in time, we mean that for every
(x0, y0) ∈ R2, I(x0, y0, t) ∈ Ξ, where Ξ is the space of finite energy bandlimited
functions with cutoff frequency Ω. Formally

H =
{
I = I(x, y, t)|I(x0, y0, t) ∈ Ξ, ∀(x0, y0) ∈ R2 and I(x, y, t0) ∈ L2(R2), ∀t0 ∈ R

}
.

It is clear that the space H, endowed with the standard L2 inner product is a well
defined Hilbert space. We assume that the filters describing the spatiotemporal re-
ceptive fields are Bounded-Input Bounded-Output (BIBO) stable. In full generality
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we assume that each neural circuit j, j = 1, 2, . . . , N , has a spatiotemporal recep-
tive field described by the function Dj = Dj(x, y, t), (x, y, t) ∈ R3. Filtering the
video stream with the receptive field of the neural circuit j gives the receptive field
output vj(t). The latter serves as the main input to neural circuit j and amounts to

vj(t) =

∫
R

(∫
R2

Dj(x, y, s)I(x, y, t− s) dxdy
)
ds. (A.1)

Note that since the filters Dj , j = 1, . . . , N , are BIBO stable, the outputs vj , j =
1, . . . , N , are bounded.

The resulting output of the receptive field vj is then mapped by the spiking neural
circuit into a multidimensional sequence of spike trains tjik , i = 1, . . . ,M, k ∈
Z. Here M denotes the number of spiking components of the neural circuit. For
example, in the case of an On-Off neural pair M = 2. Without loss of generality
we assume M = 1 throughout the paper. This mapping can be characterized by
the t-transform of the neuron which relies on the observation that for many formal
spiking neuron models, spiking is equivalent to taking a generalized measurement
on the input stimulus. These measurements can be expressed in the form of the
inner product operations{

〈vj , χjk〉 = qjk, k ∈ Z, j = 1, . . . , N
}
, (A.2)

between the receptive field output vj and some temporal functions χjk that de-
pend on the spike times (that are in turn stimulus dependent) and the parameters
of the neuron. The resulting output of this operation can be written as qjk, k ∈
Z, j = 1, . . . , N . For example, in the case of a TAF neuron, the functions χjk are
the pointwise evaluation functions of the dendritic output vj at the spike times tjk,
whereas for the IAF case they evaluate the integral of vj between two consecutive
spike times. Biophysical neuron models also have such a compact inner prod-
uct form description (Lazar (2010)). Neural circuits with arbitrary connectivity
and feedback can also be described in the same manner (Lazar & Pnevmatikakis
(2011b,a)). Note that although in inner product form, the representation (sam-
pling) of the stimulus given in equation (A.2) is non-linear and the spike times
(tjk), k ∈ Z, j = 1, . . . , N, are its solution.

Equivalently, the inner product in (A.2) can be written as the inner product between
the input stimulus I and a sampling function φjk. Thus the t-transform can be
written as the following set of equations{

〈I, φjk〉 = qjk, k ∈ Z, j = 1, . . . , N
}
. (A.3)
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Both the sampling functions and the outcome of these projections is determined
by the spike times and the parameters of the neural circuits. Derivation of these
results and more information can be found in (Lazar & Pnevmatikakis (2011b);
Lazar et al. (2010); Lazar & Zhou (2012)).

Appendix A.2. The Architecture of the Video Time Decoding Machines

In this section we assume that the Time Domain Processing block of Figure 2
faithfully transmits the incoming spike trains to the TDM block for the recovery of
the encoded video stream. This will help understanding the operational power of
the TDP block that will be presented in section 2.1 and in more detail in section
2.2.

A question that arises naturally is under what conditions these projections capture
all the information about the input stimulus I . The key condition of perfect recov-
ery is that the set of sampling functions φ = (φjk), j = 1, 2, . . . , N, k ∈ Z, forms a
frame for the space of interest H (Christensen, 2003). Intuitively, the frame prop-
erty is met when two conditions are satisfied: First, the set of receptive fields spans
the whole visual space and, thereby, no information is lost during the filtering of I .
Second, the spike density of the neural circuits has to be above a certain threshold
so that the temporal encoding of the dendritic tree outputs vj retains all the infor-
mation about I . Necessary conditions for the receptive field property were first
given in (Lazar & Pnevmatikakis (2011b)). A general tight condition that involves
the spiking densities as well was derived in (Lazar & Pnevmatikakis (2011a)).

Provided that the frame condition is satisfied, there are a number of algorithms that
can be used to recover the stimulus. In (Lazar et al., 2010) the recovered signal
was represented by an orthogonal basis of H. The coefficients of this orthogonal
basis were determined by solving a (in general overcomplete) system of linear
equations, such that the recovered stimulus satisfies the measurements provided
by the t-transform. This algorithm which relies on a matrix inversion can also be
realized with neural components (Lazar & Zhou, 2012). Here we use the algorithm
of (Lazar & Pnevmatikakis (2011b)) which enables the fast realization (decoding)
of the identity preserving transformations. The algorithm is summarized below and
is schematically depicted in Figure 2.
Algorithm Appendix A.1. If the frame condition holds, then the video stream I ,
encoded with a Video TEM (Figure 2), can be recovered as

I(x, y, t) =
N∑
j=1

∑
k∈Z

cjkψ
j
k(x, y, t), (A.4)
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where ψjk(x, y, t) is a set of suitable recovery functions that span H and cjk, j =

1, 2, . . . , N, k ∈ Z, are suitable coefficients. Let [cj ]k = cjkand c = [c1, c2, . . . , cN ]T .
The coefficients c can be computed as

c = G+q, (A.5)

where T denotes the transpose, q = [q1,q2, . . . ,qN ]T , [qj ]k = qjk and G+ de-
notes the pseudoinverse of G. The entries of the block-matrix G are given by
G = [Gij ] where [Gij ]kl = 〈φik, ψ

j
l 〉, k, l ∈ Z, i, j = 1, 2, . . . , N .

Intuitively, the recovered stimulus is expanded upon by the set of recovery func-
tions ψjk, k ∈ Z, j = 1, . . . , N . This representation is feasible because the frame
condition holds (Lazar & Pnevmatikakis, 2011b) and the set or recovery functions
is an overcomplete basis for H. The vector of coefficients c can be evaluated by
solving the system of linear equations (A.5).

Appendix B. The SIM(2) Group

Adapting the group notation, we define an element of SIM(2) g = ([x0, y0], α, θ),
where x0, y0 ∈ R, α ∈ R+ and θ ∈ [0, 2π). Each of g ∈ SIM(2) is an elementary
transformations (translations, dilations and rotations) on the R2 plane, where the
transformation is given by

[x′, y′] = ([x0, y0], α, θ)[x, y] = αrθ[x, y] + [x0, y0].

The group law (which consists by the action ◦ of an element of the group on another
element, the identity element, and the inverse element) is given by

g′ ◦ g = ([x′0, y
′
0], α

′, θ′) ◦ ([x0, y0], α, θ) = ([x′0, y
′
0] + α′rθ′ [x0, y0], α

′α, θ′ + θ),

e = ([0, 0], 1, 0),

g−1 = ([x0, y0], α, θ)
−1 = (−α−1r−θ[x0, y0], α−1,−θ),

(B.1)

and the associativity can be easily verified.

Appendix C. Proof of Theorem 2.4

Proof of Theorem 2.4:
Since the filterbank is structured, we will use the compact notation in Section 2.2.3
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as (k,m, n, l) with k ∈ N,m ∈ Z, n ∈ Z/N, l ∈ Z/L. Moreover, since the
discretized subset is countable, the elements of the filterbank can be ordered in
one dimension with an injective mapping y : N × Z × Z/N × Z/L 7→ Z, where
Z/N and Z/L denote the set of integers modulo N and L, respectively. The above
transformations correspond to a connectivity setting of the switching matrix such
that

y−1(σ(y(k,m, n, l)))− (k,m, n, l) = const. (C.1)

The interpretation of (C.1) is that for any operator T described above, i.e., T ∈ Hp,
acting on the input video I , it is sufficient to channel the spikes coming from the
neural circuit j to the l-th entry of the next level, i.e., σ(j) = l, where l satisfies
Dj = T Dl. Since the set of spatial receptive fields is invariant under any T ∈ Hp,
such an l always exists and is given by (13) and (C.1) depending on the transfor-
mation. Moreover each l is unique, i.e., the permutation σ is injective and σ−1

exists.

It remains to prove that the set of “switched” spike trains

σ(τ ) =
{

(t
σ−1(j)
k ), k ∈ Z, j = 1, 2, . . . , N

}
represents the video input T I . From the t-transform representation of (A.2) we see
that the receptive field output vj produces the spike train (tjk). Similarly to (A.1)
let us define vjT (t) as

vjT (t) =

∫
R

(∫
R2

Dj
s(x, y)Dτ (t)(T I)(x, y, t− s) dxdy

)
ds, (C.2)

i.e., the output of the j-th receptive field when the input is T I (here we also used
the space-time separability of the receptive fields). Since T is a unitary operator
we have that

vjT (t) =

∫
R

(∫
R2

(T −1Dj
s(x, y))Dτ (s)I(x, y, t− s) dxdy

)
ds = vσ

−1(j)(t).

(C.3)
In other words, the input T I at the j-th spiking circuit produces the spike train
(t
σ−1(j)
k ) and therefore the set σ(τ ) represents the video input T I . �
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