The Power of Connectivity: Identity Preserving Transformations on Visual Streams in the Spike Domain List of Supplementary Materials *

Aurel A. Lazar
Department of Electrical Engineering
Columbia University, New York, NY 10027
aurel@ee.columbia.edu
Eftychios A. Pnevmatikakis
Department of Statistics and Center for Theoretical Neuroscience
Columbia University, New York, NY 10027
eftychios@stat.columbia.edu
Yiyin Zhou
Department of Electrical Engineering
Columbia University, New York, NY 10027
yiyin@ee.columbia.edu

January 23, 2013

[^0]The supplementary materials consists of a total of six videos and two figures.

1. video1.mov:

Recovery and Rotations on the Log-Polar Grid. The video consists of 4 parts. Starting from left to right, they are: (A) Original visual stream. (B) Recovery with a null setting switching matrix. (C) Recovery with a switching matrix setting realizing a rotation of 45 degrees counter-clockwise. (D) Recovery with a switching matrix setting realizing a rotation of 171 degrees clockwise. SSIM index for (B-D) is, respectively, 0.97, 0.97, 0.97.

Difference of Gaussian receptive fields were used. The parameters of the Log-Polar grid are the same as in Section 3.1:

- $\alpha_{0}=2, m \in\{-3,-2,-1,0,1\}$,
- $\theta_{0}=2 \pi / L, L=120, l \in\{0,1, \cdots, 119\}, \omega_{0}=2 \pi, N=1$,
- $b_{0}=0.8$.

2. video2.mov:

Dilations and Rotations on the Log-Polar Grid. The video consists of 4 parts. Starting from left to right, they are: (A) Original visual stream. (B) Recovery with a switching matrix setting realizing a dilation by a factor of 2 . The result was multiplied by 2 before being displayed. The region of reconstruction corresponds to the region inside the dashed circle in the original visual stream. (C) Recovery with a switching matrix setting realizing a dilation by $1 / 2$. The result was multiplied by $1 / 2$ before being displayed. The region of reconstruction corresponds to the region inside the solid circle in the original visual stream. (D) Recovery with a switching matrix setting realizing a simultaneous dilation by $1 / 2$ and rotation by 63 degree counter-clockwise. The result was multiplied by $1 / 2$ before being displayed. The region of reconstruction corresponds to the region inside the solid circle in the original visual stream. SSIM index for (B-D) is, respectively, 0.97, 0.90, 0.91.

The same receptive fields and grid parameters as in video 1 above were used.
3. video3.mov:

Recovery and Translations on the Cartesian Grid. The video consists of 4 parts. Starting from left to right, they are: (A) Original visual stream. (B) Recovery with a null setting switching matrix. (C) Recovery with a switching matrix setting realizing a translation by 2 units to the left and by

2 units downwards. (D) Recovery with a switching matrix setting realizing a translation by 4 units upwards. SSIM index for (B-D) is, respectively, $0.97,0.96,0.96$.

Gabor receptive fields were used. The parameters of the Cartesian grid are the same as in Section 3.2:

- $\alpha_{0}=2, m \in\{0,1,2,3\}$
- $b_{0}=2$,
- $\omega_{0}=2 \pi / N, N=8, n \in\{0,1,2,3,4,5,6,7\}$,

4. video4.mov:

Dilations and Translations on the Cartesian Grid. The video consists of 4 parts. Starting from left to right, they are: (A) Original visual stream. (B) Recovery with a switching matrix setting realizing a dilation by a factor of 2 . The result was multiplied by 2 before being displayed. The region of reconstruction corresponds to the region inside the dashed rectangular frame in the original visual stream. (C) Recovery with a switching matrix setting realizing a dilation by a factor of $1 / 2$. The result was multiplied by $1 / 2$ before being displayed. The region of reconstruction corresponds to the region inside the solid rectangular frame of the original visual stream. (D) Recovery with a switching matrix setting realizing a simultaneous dilation by a factor of $1 / 2$ and a translation by 1 unit to the right. The result was multiplied by $1 / 2$ before being displayed. SSIM index for (B-D) is, respectively, 0.90, 0.90, 0.90.

The same receptive fields and grid parameters as in video2 above were used.
5. video5.mov:

Approximate Rotations on the Cartesian Grid. The video consists of 4 parts. Starting from left to right, they are: (A) Original visual stream. (B) Recovery with a switching matrix setting realizing an approximate rotation by 46 degrees clockwise. (C) Recovery with a switching matrix setting realizing an approximate rotation by 92 degrees clockwise. (D) Recovery with a switching matrix setting realizing an approximate rotation by 138 degrees clockwise. SSIM index for (B-D) is, respectively, 0.90, 0.90, 0.90.

Difference of Gaussian receptive fields were used. The parameters of the Cartesian grid are the same as in Section 3.3:

- $\alpha_{0}=2, m \in\{0,1,2,3\}$,
- $\omega_{0}=2 \pi, N=1$,
- $b_{0}=0.8$.

6. video6.mov:

Approximate Translations on the Log-Polar Grid. The video consists of 4 parts. Starting from left to right, they are: (A) Original visual stream. (B) Recovery with a switching matrix setting realizing an approximate translation by 0.5 units to the right. (C) Recovery with a switching matrix setting realizing an approximate translation by 1 unit to the right. (D) Recovery with a switching matrix setting realizing an approximate translation by 1.5 units to the right. SSIM index for (B-D) is, respectively, 0.97, 0.94, 0.94.

The same receptive fields and grid parameters as in videol above were used.

7. Figure S1:

Figure S1 illustrates an example of discretization of the $\operatorname{SIM}(2)$ group to Log-Polar Grid, as defined by (15) in Section 2.2.3, where $N=8, L=$ $30, \alpha_{0}=2, b_{0}=0.8$, and the spatial grid of three levels of $m \in\{0,-1,-2\}$ is depicted in each of the subfigures, corresponding to three different dilation levels (dilation parameter of the group elements). Each element in the grid is represented by a small oriented line segment. The spatial position of the center of a line segment corresponds to the translation parameter of group element, and the angle between a line segment and x axis corresponds to the rotation parameter of the group element. The color of each line segment corresponds to a particular value of n in (15) modulo 4, where blue, magenta, red and black correspond to $n=0,1,2,3$, respectively. Note that at the origin, only one of the L elements are shown for clarity.

8. Figure S2:

Figure S2 illustrates an example of discretization of the $\operatorname{SIM}(2)$ group to Cartesian Grid, as defined by (22) in Section 2.2.4, where $N=8, \alpha_{0}=$ $2, b_{0}=0.8$, and the spatial grid of three values of $m \in\{0,1,2\}$ is depicted in each of the subfigures, corresponding to three different dilation levels (dilation parameter of the group elements). Each element in the grid is represented by a small oriented line segment. The spatial position of the center of a line segment corresponds to the translation parameter of group element, and the angle between a line segment and x axis corresponds to the rotation parameter of the group element. The color of each line segment

Figure 1: An example of Log-Polar Grid.

corresponds to a particular value of $n(22)$ modulo 4 , where blue, magenta, red and black correspond to $n=0,1,2,3$, respectively.

[^0]: *The work presented here was supported by AFOSR under grant \# FA9550-09-1-0350 and, in part, by a grant of computer time from the City University of New York High Performance Computing Center under NSF Grants CNS-0855217 and CNS-0958379. The author names are listed alphabetically.

