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Abstract Understanding neural encoding/decoding mechanisms is one of the most
fundamental problems in the field of sensory neuroscience. The Hodgkin-Huxley
equations provide an explicit description of an encoding mechanism. However, the
daunting complexity of the Hodgkin-Huxley equations makes the task of recov-
ery of stimuli encoded with a Hodgkin-Huxley neuron particularly challenging. A
highly effective strategy calls for reducing the Hodgkin-Huxley neuron to a project-
integrate-and-fire (PIF) neuron. Using the reduced PIF model, we present three dif-
ferent recovery algorithms for stimuli encoded with a Hodgkin-Huxley neuron. All
algorithms reconstruct the stimuli from the neuron’s output spike train. The first al-
gorithm is based on the assumption that the Hodgkin-Huxley neuron has a known
PRC. The second algorithm assumes that the PRC is conditionally known on each
inter-spike time interval. Finally, the third algorithm operates under the assumption
that the conditional PRC is unknown and has to be estimated. We establish an es-
timate of the conditional PRC based upon the readily observable inter-spike time
interval. We compare the performance of these algorithms for a wide range of input
stimuli.
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1 Introduction

Neural circuits in sensory systems encode continuous-time stimuli, such as the con-
centration of an odor, the intensity of an acoustic event or the brightness of a light
source. Information is represented in these circuits as a sequence of action poten-
tials, or a spike train. Yet information can be reliably transmitted and received be-
tween neurons. Thus, a spike train may faithfully encode information, and post-
synaptic neurons readily decode it.

Generation of an action potential across a cell membrane fascinated the earliest
neuroscientists and opened the dawn of electrophysiological studies in neuroscience
(Schuetze, 1983). Hodgkin and Huxley measured the change of ionic conductances
for different membrane potential values by employing the voltage-clamp method,
and their results led to a mathematical description of the action potential generation,
the so called Hodgkin-Huxley neuron (Hodgkin & Huxley, 1952). From an informa-
tion theory perspective, the Hodgkin-Huxley neuron provides an explicit description
of encoding a continuous-time stimulus into a discrete time sequence, or spike train.

The problem of reconstruction of continuous-time stimuli from a spike train has
been investigated in the literature primarily using phenomenological rather than
mechanistic models. For example, one of the most popular phenomenological en-
coding models is the linear-nonlinear-Poisson (LNP) model. In this model, the Pois-
son spike generation is preceded by linear or non-linear processing blocks. For these
models, a spike rate function is first recovered by constructing a Peri-Stimulus Time
Histogram (PSTH) or by Gaussian filtering (Dayan & Abbott, 2001; Perkel, Ger-
stein, & Moore, 1967). The stimulus reconstruction is completed by taking the in-
verse of the processing blocks acting on the spike rate function. (Bialek & Rieke,
1991; Arcas, Fairhall, & Bialek, 2003).

However, these methods generally require many repeated trials to achieve an ad-
equate temporal resolution and thereby average out the spike train variability across
trials (Medina & Lisberger, 2007). Moreover, the validity of the phenomenological
models is limited and often strongly dependent on statistical parameters of stimuli
(Naka, Chan, & Yasui, 1979; Kim, Lazar, & Slutskiy, 2010). Such phenomenologi-
cal model limitations call for the derivation of stimulus reconstruction algorithms
from mechanistic models of the stimulus encoding process. In this chapter, we
derive stimulus recovery algorithms using the explicit Hodgkin-Huxley encoding
model.

The dynamics of Hodgkin-Huxley neurons for simple injected current wave-
forms such as steps and ramps has been extensively investigated in the literature
(Izhikevich, 2007). A non-linear perturbation analysis showed that a Hodgkin-
Huxley neuron with deterministic gating variables is I/O-equivalent with a project-
integrate-and-fire (PIF) neuron with a variable threshold sequence (Lazar, 2007,
2010). The PIF neuron integrates a projection of the stimulus onto the phase re-
sponse curve that is, in turn, modulated by a phase shift process. The phase shift
process is described by a differential equation that is stimulus driven. In the absence
of the small perturbation term, the stimulus is tangentially coupled into the limit
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cycle of the Hodgkin-Huxley neuron and the PIF neuron reduces to an integrate-
and-fire neuron.

Based on the I/O-equivalent PIF neuron a stimulus recovery algorithm was given
in (Lazar, 2007, 2010). The recovery works well provided that the stimulus restricts
the PRC to a small parameter set. If, however, the Hodgkin-Huxley neuron sweeps
across a broad set of PRCs, different recovery algorithms are needed for improved
performance. The key limitation of the recovery algorithm in (Lazar, 2007, 2010) is
due to the static nature of the PRC. By introducing an adaptive sampling kernel, the
PIF can provide a more faithful I/O description of the Hodgkin-Huxley neuron.

In order to achieve an accurate I/O description, the PIF is endowed with a sam-
pling kernel conditioned on the stimulus on each inter-spike time interval. The ker-
nel is, in effect, a conditional PRC that is parameterized by the inter-spike time
interval. We shall also consider the case when the conditional sampling kernel is
unknown and devise a simple kernel estimator. The proposed recovery algorithms
are very flexible; they only require the inversion of a matrix. They can be used for
the recovery of stimuli encoded by a large class of neurons in the limit cycle re-
gion. It remains an open problem how the dendritic tree of a postsynaptic neuron is
capable of recovering the information from its incoming spike sequence.

This paper is organized as follows. In section 2, a Hodgkin-Huxley neuron is
shown to be I/O-equivalent with the Project-Integrate-and-Fire neuron. The recov-
ery of stimuli encoded with a Hodgkin-Huxley neuron is presented in section 3.
Three cases are considered. In section 3.1, the stimulus is assumed to consist of
a known base term and a weak bandlimited signal. In section 3.2, the problem is
extended to strong stimuli by exploiting the known base terms. In section 3.3, the
values of the base terms are unknown but, as shown, can be estimated. For all three
cases a recovery algorithm is presented. Examples are given in section 4 and a brief
discussion in section 5.

2 Reduction of the Hodgkin-Huxley Neuron to the
I/O-Equivalent Project-Integrate-and-Fire Neuron

Using a vector notation, the Hodgkin-Huxley neuron model (see also the Appendix)
is described by the system of differential equations (Hodgkin & Huxley, 1952)

dx
dt

= f(x)+
1
C
[Iext 0 0 0]T ,

where x and f are vectors of appropriate dimensions, and x(0) = x0 is the initial
condition. The state vectors can easily be identified from the set of Hodgkin-Huxley
equations as x = (x1,x2,x3,x4) = (V,m,h,n). The expression for f = ( f1, f2, f3, f4)
can also be easily derived from the same set of equations (see the Appendix).

In what follows we shall assume that, if the (step) injected current Iext is in
the appropriate range, the essential dynamics of this set of equations are de-
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scribed by a limit cycle (Izhikevich, 2007) (see Fig. 1(A)). In other words, when
Iext = b (µA/cm2), these equations have a periodic solution xo(t,b) (also called an
orbital solution) with period T = T (b) (see Fig. 1(B)).

The dynamics of the Hodgkin-Huxley neuron are rather complex. In order to de-
vise reconstruction algorithms, it is advantageous to find an I/O-equivalent model
of the Hodgkin-Huxley neuron that is mathematically tractable. For weak stimuli,
the I/O-equivalent model is the project-integrate-and-fire neuron. We shall first de-
rive the phase equation of the Hodgkin-Huxley neuron. Since the state of the phase
equation is not observable, we shall reduce it to the PIF neuron model whose spikes
are observable. The Hodgkin-Huxley and PIF neuron models have the property that
they are first order I/O equivalent. That means that, given the same stimulus, the
spike times of these neurons are, to the first order, the same.

Because of the periodicity of the orbital solution (see Fig. 1(A)), the behavior
of the Hodgkin-Huxley neuron can simply be described by its phase rather than the
four state variables of the Hodgkin-Huxley equations. In this chapter, the phase of
the system θ(t) ∈ [0,T (b)] is defined as

θ(t) = t− tk mod T (b),

where T (b) is the period of the oscillation, and tk is the last spike event (t ≥ tk).
Note that the phase is in units of time and thus it retains the dependency on the base
current b.

If a weak perturbation current u = u(t), t ∈ℜ, is injected in addition to the base
current b, the system deviates from the orbit and results in either an advancement or
a delay of its phase.

The phase shift in response to a current perturbation is determined by the vector
space in the neighborhood of the limit cycle. The mapping of the delta-pulse current
perturbation into the value of the phase shift of the orbital solution is known as the
infinitesimal Phase Response Curve (iPRC), or simply the PRC hereafter (Hastings
& Sweeney, 1958; Winfree, 1967; Kuramoto, 1984; Ermentrout, 1996; Izhikevich,
2007). Informally, the tangential component of the perturbation to the limit cycle
contributes to a phase shift, i.e., the value of the phase response curve. In contrast,
the normal component of the perturbation dies out over time and does not contribute
to the value of the phase of the orbital solution. This simple analysis is valid pro-
vided that the stimulus is weak.

The PRC, denoted by ψ(t,b) (see Figure 2), is parameterized by b since the
limit cycle xo(t,b) depends on the base current. It can be obtained via a simulations
method in which the change of the phase of the system is evaluated with a Dirac-
delta pulse as its input. Based on Malkin’s theorem (Hoppensteadt & Izhikevich,
1997), one can also obtain the PRC by solving the adjoint equation

ψ̇(t,b) = (J(f(xo(t,b)))T
ψ(t,b),

where (J(f(xo(t,b)))T is the transposed Jacobian of f, with the boundary condition
ψ(0,b)(f(xo(0,b))+[b 0 0 0]T ) = 1. When using the simulation method, the result-
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Fig. 1 The limit cycle and inter-spike time interval as a function of the base current. (A) The size of
the trajectory of the limit cycle depends on the base current; it shrinks as the base current increases
(step= 5 µA/cm2). (B) inter-spike time interval with respect to the base current.

ing PRC is normalized by the amplitude and width of the Dirac-delta pulse. In what
follows, all examples are based on PRCs evaluated by the direct simulation method.

When the dynamical system describing the Hodgkin-Huxley neuron runs along
a limit cycle, its phase is, by definition, moving at a fixed velocity of 1, i.e.,

θ̇(t) = 1. (1)

A weak perturbation u(t) introduces an additive term to the right hand side of the
equation above. This term consists of the perturbation weighted by the correspond-
ing PRC amplitude (Winfree, 1967; Izhikevich, 2007; Kuramoto, 1984; Yoshimura
& Arai, 2008), i.e.,

θ̇ = 1+ψ(θ ,b)u(t)+ ε(t). (2)

Here ε(t) represents the model reduction error due to the finite amplitude of u(t) that
renders the linear approximation of the local vector field inaccurate. Note, however,
that ε(t) becomes arbitrarily small if u(t) is arbitrarily small.

Equation (2), also called a phase equation, is the result of the reduction of a
multi-dimensional nonlinear dynamical system to a single-dimensional differential
equation. When ε(t) is small enough, the phase equation is approximated by

θ̇ = 1+ψ(θ ,b)u(t). (3)

The state of the phase equation is not observable. However, spike times are observ-
able. Integrating both sides of equation (3) on an inter-spike time interval [tk, tk+1]
yields

θ(tk+1)−θ(tk) =
∫ tk+1

tk
[1+ψ(θ(s),b)u(s)]ds.

Since, to a first order, θ(tk+1)−θ(tk) = T (b) (Lazar, 2007, 2010),
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Fig. 2 Phase response curves of the Hodgkin-Huxley neuron for different base currents (b ∈
[7.5,72.5]µA/cm2).) The shape of the phase response curve depends on the base current; its am-
plitude decreases as the base current increases (step= 2.5 µA/cm2). (A) PRCs depicted in 3D. (B)
Projection of the PRCs onto the b axis.

∫ tk+1

tk
[1+ψ(θ(s),b)u(s)]ds = T (b). (4)

This equation represents the t-transform of a project-integrate-and-fire neuron
(Lazar, 2007, 2010). The t-transform provides a measurement or sampling of the in-
put u= u(t) on the time interval between two consecutive spikes. The input stimulus
is multiplied with an encoding kernel ψ(θ ,b), and the next spike is generated when
the integration of these values reaches the threshold value T (b)− (tk+1− tk). The
project-integrate-and-fire neuron is input/output equivalent to the Hodgkin-Huxley
neuron under weak perturbation (Lazar, 2007, 2010). Since the evaluation of θ(t) is
mathematically intractable, the PIF neuron will be further simplified.

If u(t) is small enough, the phase shift θ(t)− t becomes negligibly small within
[tk, tk+1], and thus ψ(θ(t),b) can be replaced with ψ(t,b) (Lazar, 2007, 2010; Ota,
Omori, & Aonishi, 2009). Equation (4) can then be rewritten as

∫ tk+1

tk
ψ(s− tk,b)u(s)ds = T (b)− (tk+1− tk). (5)

A neuron model whose t-transform is given by equation (5) is called a reduced PIF
neuron.

Note that numerical solutions of equation (4) require the evaluation of θ(t). The
latter is often unstable due to the accumulation of numerical errors. In contrast, the
numerical computation of the reduced PIF model is a simple dot product of two
vectors and it is not prone to the accumulation of errors.

In order to assess the approximations introduced by the I/O-equivalent neurons
above, we ran numerical simulations of three neural encoders: the Hodgkin-Huxley
neuron, the PIF neuron, and the reduced PIF neuron. Assuming the same initial
condition, the occurrences of the first two spikes were recorded and the inter-spike
time intervals compared when the latter were generated by the PIF neurons and
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Fig. 3 Model reduction error of the project-integrate-and-fire neuron with respect to the Hodgkin-
Huxley neuron (A) Inter-spike time intervals (ISI) of the PIF models with respect to the ISI of
Hodgkin-Huxley neuron. (B) The model reduction error of the PIF models with respect to the
perturbation magnitude. The model reduction error is defined as the difference of ISIs between the
Hodgkin-Huxley neuron and the PIF models
(b = 10 µA/cm2, n = 50, and Ω = 2π50).

the Hodgkin-Huxley neuron, respectively. The perturbation signal is bandlimited
(Ω = 2π ·50 Hz) by construction

u(t) = c ∑
k∈Z

u(
kπ

Ω
)

sin(Ω t− kπ)

Ω t− kπ
, (6)

where (u(kπ/Ω))k∈Z is drawn randomly from a uniform distribution ranging be-
tween [−1,1], c represents the maximum magnitude of the perturbation.

Figure 3(A) depicts the inter-spike time intervals of the PIF models with respect
to Hodgkin-Huxley model with b = 10µA/cm2. The steady state inter-spike time
interval T (b) is 14.71 ms. The samples along the diagonal have zero model reduc-
tion error, and the vertically projected distance of each sample to the diagonal line is
the amount of error for a particular perturbation signal. 3(B) depicts the mean abso-
lute errors with respect to different perturbation magnitudes. In general, increasing
the magnitude of the perturbation increases the model reduction error; the reduced
PIF model exhibits lower errors than the (standard) PIF neuron.

3 Recovery of Stimuli Encoded with Hodgkin-Huxley Neurons

In this section we present algorithms for recovery of stimuli encoded with a
Hodgkin-Huxley neuron. All algorithms recover the stimuli from the neuron’s out-
put spike train. As shown in the previous section and following (Lazar, 2007, 2010),
the multi-dimensional nonlinear Hodgkin-Huxley neuron can be reduced to an I/O-
equivalent PIF neuron.
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In what follows we shall assume that the stimulus is a bandlimited signal of the
form u(t) = ∑k∈Z bk1[tk,tk+1]+ v(t), where bk is the mean stimulus amplitude during
the kth inter-spike time interval and v = v(t) is a weak perturbation signal with
zero average on each inter-spike time interval. We shall distinguish three cases: (i)
bk = b is known to take a constant value (section 3.1), (ii) bk is constant between two
consecutive spike times [tk, tk+1] and is known (section 3.2) and (iii) bk is unknown
(section 3.3). In all cases the range of values for bk leads to limit cycle oscillations
of the Hodgkin-Huxley neuron.

In section 3.1, we assume weak stimuli with known base current b. Since the
perturbation is weak, the encoding mechanism of the system can be described by
a known PRC. In section 3.2, we deal with stimuli with known base current bk on
[tk, tk+1]. Since the neuron oscillates on different limit cycles depending on the level
of the base current, the conditional PRC characterizes the operation of the neuron
on each inter-spike time interval. Finally in section 3.3, the bk’s are unknown and
have to be estimated on each inter-spike time interval.

3.1 Recovery of Stimuli Encoded with Known PRCs

Following the established decoding practice of stimuli encoded with the integrate-
and-fire neuron (Lazar, 2004; Lazar & Pnevmatikakis, 2008; Lazar & Tóth, 2004),
the derivation of the recovery algorithm begins with the formulation of the t-
transform that describes the mapping (or encoding) of the stimulus u into the spike
time sequence (tk).

As already mentioned, the t-transform of the reduced PIF is given by
∫ tk+1

tk
ψ(s− tk,b)u(s)ds = T (b)− (tk+1− tk). (7)

If the stimulus u = u(t), t ∈ ℜ, lives in the space of bandlimited functions with
frequency support [−Ω ,Ω ] then (Lazar, 2004),

û(t) = ∑
k∈Z

ckg(t− sk), (8)

where g(t) = sinΩ t
πt and sk =

tk+tk+1
2 . The above equality holds if the Nyquist-type

rate condition (Lazar & Tóth, 2004)

tk+1− tk ≤
π

Ω

is satisfied. Replacing u(t) in equation (7) with the representation in (8), we obtain

∑
l∈Z

cl

∫ tk+1

tk
ψ(s− tk,b)g(s− sl)ds = T (b)− (tk+1− tk). (9)
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Thus the coefficients [c]l = cl satisfy the matrix equation

Gc = q,

where [G]kl =
∫ tk+1

tk ψ(s− tk,b)g(s− sl)ds, and [q]k = T (b)− (tk+1− tk). Note that,
entries of the matrix G can be obtained from the PRC ψ(t,b) and the reconstruction
kernel g(t), t ∈ ℜ, and the vector q from the period T (b) of the oscillation and the
spike times (tk),k ∈ Z, of the neuron. Therefore, c can be computed by taking the
Moore-Penrose pseudo-inverse of the G matrix (Penrose, 1955), i.e.,

c = G+q.

Finally, the reconstruction of u(t) is completed by evaluating equation (8) with the
values of the vector c.

We arrived, therefore, at the following result (Lazar, 2007, 2010)

Theorem 1. Let (tk),k ∈ Z, be the sequence of spike times generated by a Hodgkin-
Huxley neuron with input b+u(t). If b is known, the stimulus can be reconstructed
using

û(t) = ∑
k∈Z

ckg(t− sk),

where g(t) = sin(Ω t)
πt , sk =

tk+tk+1
2 , and the coefficients [c]k = ck, k ∈ Z, are given by

c = G+q,

where [G]kl =
∫ tk+1

tk ψ(s− tk,b)g(s− sl)ds and [q]k = T (b)− (tk+1− tk).

An implementation of the encoding and decoding algorithms described in this sec-
tion is shown in block diagram form in Fig. 4.

Remark 1. While the input to the Hodgkin-Huxley neuron is b + u(t), we incor-
porated b into the PRC ψ(t,b). Consequently, we only had to recover the weak
perturbation signal u(t), t ∈ℜ.

3.2 Recovery of Stimuli Encoded with Known Conditional PRCs

In this section we consider the recovery of a bandlimited stimulus of the form u(t) =
∑k∈Z bk1[tk,tk+1]+v(t), where bk is the mean stimulus amplitude during the kth inter-
spike time interval and v(t) is the perturbation signal. Note that although u(t) is a
bandlimited stimulus, v(t) = u(t)−∑k∈Z bk1[tk,tk+1] is, in general, not bandlimited,
since ∑k∈Z bk1[tk,tk+1] typically has infinite bandwidth.

Since the mean stimulus value bk may take a distinct value on each inter-spike
time interval, the t-transform has to be established separately for every interval. This
can be achieved by using a formulation akin to the one in equation (7) and requires a
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u(t)
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T (b)− (tk+1 − tk)

ψ(t− tk, b)

∫ t
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(A)

c = G+q
Ω−Ω

Low-pass filter Pseudo-inverse

(ck)k∈Z

û(t)

Recovered

Stimulus

PRCDecoding Model ψ(t, b)

[G]kl =

∫ tk+1

tk

ψ(s− tk, b)g(s− sl)ds

(B)

Fig. 4 Model of stimulus encoding/decoding using the project-integrate-and-fire neuron with
known PRC. (A) The stimulus u(t) is multiplied by the PRC determined by the known base cur-
rent, and a spike is generated when the output of the integrator reaches the threshold value. (B) The
known PRC is used to construct the G matrix, which generates an irregular spikes train, (ck),k ∈Z,
whose amplitudes are the solution of a system of linear equations. The stimulus is finally recovered
by passing these spikes through a low-pass filter.

selection of the corresponding PRC for every inter-spike time interval. We formulate
the t-transform as

∫ tk+1

tk
ψ(s− tk,bk)v(s)ds = T (bk)− (tk+1− tk), (10)

where bk, is the mean stimulus amplitude for the kth inter-spike interval, k ∈ Z.
ψ(t,bk), t ∈ℜ, for a given k,k ∈ Z, is called the conditional PRC (see Figure 2).

As we shall require the recovered signal to live in a bandlimited space, we will
replace in equation (10) v(t) with u(t)−bk on each inter-spike time interval [tk, tk+1],
and thereby obtain the equivalent t-transform
∫ tk+1

tk
ψ(s− tk,bk)u(s)ds = T (bk)− (tk+1− tk)+bk

∫ tk+1

tk
ψ(s− tk,bk)ds. (11)

As in the known PRC case we have the following recovery algorithm.

Theorem 2. Let (tk),k ∈ Z, be the sequence of spike times generated by a Hodgkin-
Huxley neuron with bandlimited input u(t) = v(t) + ∑k∈Z bk1[tk,tk+1]. If the mean
stimulus amplitudes (bk)k∈Z are known, the stimulus can be reconstructed using

û(t) = ∑
k∈Z

ckg(t− sk),
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Fig. 5 Model of stimulus encoding/decoding using the project-integrate-and-fire neuron with
known conditional PRC. (A) The stimulus u(t) is weighted by the conditional PRC determined
by the base current. (B) The sampling kernel (the known conditional PRC) is used to construct the
G matrix. The stimulus is recovered as the response of a low-pass filter to the observed spike train.

where g(t) = sin(Ω t)
πt and sk =

tk+tk+1
2 , t ∈ℜ,k ∈ Z. The coefficients [c]k = ck, k ∈ Z,

are given by
c = G+q,

where [G]kl =
∫ tk+1

tk ψ(s− tk,bk)g(s− sl)ds and [q]k = qk = T (bk)− (tk+1− tk)+
bk
∫ tk+1

tk ψ(s− tk,bk)ds.

An implementation of the encoding and decoding algorithms described in this
section is shown in block diagram form in Fig. 5.

Remark 2. Note that in this section the recovered signal is the sum of a perturbation
v(t) and a variable base level current, whereas, in the previous section, the recovered
signal is only the perturbation signal.

3.3 Recovery of Stimuli Encoded with Unknown Conditional PRCs

As in the previous section we consider the recovery of a bandlimited stimulus of the
form u(t) = ∑k∈Z bk1[tk,tk+1]+ v(t), where bk is the mean stimulus amplitude during
the kth inter-spike time interval. However, we shall assume here that the bk’s are
unknown.

On each inter-spike time interval [tk, tk+1]
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∫ tk+1

tk
ψ(s− tk,bk)u(s)ds = T (bk)− (tk+1− tk)+bk

∫ tk+1

tk
ψ(s− tk,bk)ds. (12)

Since for large values of bk,

T (bk)− (tk+1− tk)� bk

∫ tk+1

tk
ψ(s− tk,bk)ds,

equation (12) becomes
∫ tk+1

tk
ψ(s− tk,bk)u(s)ds = bk

∫ tk+1

tk
ψ(s− tk,bk)ds.

Normalizing by the right hand side of the above equation,
∫ tk+1

tk
χ(s− tk,bk, tk+1− tk)u(s)ds = 1, (13)

where χ(t − tk,bk, tk+1 − tk) = ψ(t − tk,bk)/
(

bk
∫ tk+1

tk ψ(s− tk,bk)ds
)

. Since the
value of bk is unknown, we shall use on each inter-spike time interval [tk, tk+1] the
estimate b̂k = T−1(tk+1− tk) instead. Therefore, by abuse of notation,

χ(t− tk, tk+1− tk) = ψ(t− tk, b̂k)/

(
b̂k

∫ tk+1

tk
ψ(s− tk, b̂k)ds

)

with b̂k = T−1(tk+1− tk) for t ∈ [tk, tk+1] and zero, otherwise. Equation (13) is the t-
transform of the PIF neuron and χ(t−tk, tk+1−tk) is called the estimated conditional
sampling kernel (eCSK) (see Figure 6). For the recovery algorithm, the same matrix
formulation for the evaluation of the vector of coefficients c is used, i.e.,

c = G+q,

where [c]l = cl , [G]kl =
∫ tk+1

tk χ(s− tk, tk+1− tk)g(s− sl)ds, and [q]k = 1. Evaluation
of the right hand side of equation (8) with the resulting values for c completes the
recovery of u(t) (see also Figure 7(B)).

Theorem 3. Let (tk),k ∈ Z, be the sequence of spike times generated by a Hodgkin-
Huxley neuron with bandlimited input u(t) = v(t) + ∑k∈Z bk1[tk,tk+1]. If the mean
stimulus amplitudes bk,k ∈Z, are unknown, the stimulus can be reconstructed using

û(t) = ∑
k∈Z

ckg(t− sk),

where g(t) = sin(Ω t)
πt and the coefficients [c]k = ck, k ∈ Z, are given by

c = G+q,

where [G]kl =
∫ tk+1

tk χ(s− tk, tk+1− tk)g(s− sl)ds, and [q]k = 1. Finally,
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Fig. 6 The estimated conditional sampling kernels (eCSKs) for different inter-spike time intervals.
The amplitude of eCSKs are monotonically decreasing with shorter inter-spike time intervals. (A)
eCSKs in 3D space for varying inter-spike time intervals (ISIs). (B) 2D projection of (A) along the
ISI axis.

χ(t− tk, tk+1− tk) = ψ(t− tk, b̂k)/

(
b̂k

∫ tk+1

tk
ψ(s− tk, b̂k)ds

)

with b̂k = T−1(tk+1− tk) for t ∈ [tk, tk+1] and zero, otherwise.

eCSKs are plotted in Fig. 6 for different inter-spike time intervals. Each eCSK is
a scaled version of a conditional PRC with a variable scale factor, and this makes the
amplitude ratio of the lowest eCSK (b = 72.5µA/cm2 and T (b) = 7.55ms) to the
tallest eCSK (b = 7.5µA/cm2 and T (b) = 16.5ms) smaller than that of conditional
PRCs.

An implementation of the encoding and decoding algorithms described in this
section is shown in block diagram form in Fig. 7.

4 Examples

The recovery algorithms for stimuli encoded with a Hodgkin-Huxley neuron were
extensively tested. All three proposed algorithms were evaluated with the same set
of randomly generated stimuli by visually comparing the sample paths of - as well
as by measuring the root-mean-square error between - the recovered signal and the
original signal.

The input stimulus is a bandlimited signal generated using equation (6) with Ω =
2π ·20 Hz and b = 25µA/cm2. In order to test the recovery algorithms with various
waveform patterns, the samples (u(kπ/Ω)),k ∈ Z, were generated from a uniform
distribution between [−1,1]. Thus, the parameter c in equation (6) determines the
magnitude of the perturbation.

Our simulation results are depicted in Figure 8. In each plot in Figure 8 both the
original stimulus and the recovered stimulus as a function of time are shown. The
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Encoding Model

Stimulus Integrator Threshold

(tk)k∈Z

Spikes

eCSK
Reset

u(t)
v(t)

−bk
1

χ(t− tk, bk, tk+1 − tk)

∫ t

tk

ds

(A)

c = G+q
Ω−Ω

Low-pass filter Pseudo-inverse

(ck)k∈Z

û(t)

Recovered

Stimulus

Decoding Model
eCSK

tk+1 − tk

[G]kl =

∫ tk+1

tk

χ(s− tk, tk+1 − tk)g(s− sl)ds

χ(t− tk, tk+1 − tk)

(B)

Fig. 7 Model of stimulus encoding/decoding using the project-integrate-and-fire neuron with un-
known conditional PRC. (A) The stimulus u(t) is weighted by the estimated conditional sampling
kernel (eCSK) determined by an estimate of the base current. (B) The estimated conditional sam-
pling kernel (eCSK) is used to construct the G matrix. The stimulus is recovered as the response
of a low-pass filter to the weighted spike train.

three rows show the sample paths of the recovery results of the three algorithms,
i.e., for stimulus encoding with a known PRC, a known conditional PRC and an
unknown conditional PRC. In the left column a weak stimulus with c = 0.5µA/cm2

was employed. In the right column a strong stimulus was used with c = 15µA/cm2.
The three algorithms show different levels of error recovery for the weak and the

strong stimuli, respectively. Algorithm 1, based on Theorem 1, can recover a weak
perturbation with a low recovery error (Figure 8(A)). For strong perturbations, how-
ever, the error is markedly larger (Figure 8(B)). Algorithm 3, based on Theorem 3,
exhibits a low recovery error for strong stimuli (Figure 8(F)) but fails to recover
weak perturbations (Figure 8(E)). Finally Algorithm 2, based on Theorem 2, dis-
plays median performance for both stimuli.

The differences in performance of the three recovery algorithms can be traced
back to the assumptions about the three sampling kernels: known PRC, known con-
ditional PRC, and unknown conditional PRC, respectively. The three sampling ker-
nels encoding the strong stimuli in Figure 8(B)(D)(F) are shown in Figure 9. The
dashed vertical lines in Figure 9 designate the spike times of the Hodgkin-Huxley
neuron. Note that the sampling kernels act independently during each inter-spike
time interval. In Figure 9 they were stitched together at spike times and, conse-
quently, appear as continuous-time signals. The base current b = 25µA/cm2 was
chosen throughout. While the overall pattern is quite similar, minute differences are
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Fig. 8 Recovery of weak (left column) and strong (right column) stimuli. (A)(B) Recovery of a
weak stimulus (c = 0.5µA/cm2) and of a strong stimulus (c = 15µA/cm2), respectively, encoded
with a known PRC. (C)(D) Recovery of the weak and the strong stimulus, respectively, encoded
with known conditional PRC. (E)(F) Recovery of the weak and the strong stimulus, respectively,
encoded with an unknown conditional PRC.

observed in Figure 9(B)(C) (marked by arrows). The estimation of the base current
level for a weak and a strong stimulus is shown in Fig. 11 and 10, respectively.

An extensive simulation of the three recovery algorithms was carried out in re-
sponse to randomly generated signals of various magnitudes. Each stimulus was
generated as in Figure 8, and c was varied from 0.1µA/cm to 25µA/cm2 with
b = 25µA/cm2 and Ω = 2π · 20 Hz. 30 trials were run for each value of c. The
root-mean-square (RMS) error defined as
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Fig. 9 Train of sampling kernels for the Hodgkin-Huxley neuron. (A) Train of sampling kernels
for known PRC. (B) Train of sampling kernels for known conditional PRC. (C) Train of estimated
conditional sampling kernels for unknown conditional PRC. The envelope of the sampling kernels
in (B) and (C) are similar, but small differences are observed as well (arrows).

√
1
S

∫ S

0
[u(s)− û(s)]2 ds,

where û(t) is the recovered stimulus and S is the time interval of the simulation
(400 ms), was used to characterize the distance between the stimulus and its esti-
mate. In Figure 12, the recovery errors of three different algorithms are compared
with respect to the perturbation magnitude c. When the perturbation magnitude is
weak (Figure 12(B)), recovery Algorithm 1 and Algorithm 2 exhibit lower RMS
than Algorithm 3. In the derivation of the Algorithm 3 in section 3.3, we essen-
tially assumed that T (bk)− tk+1− tk = 0. This assumption does not hold for weak
perturbations (say, below 2µA/cm2 in Figure 12(B)).

The RMS of Algorithm 1 increases rapidly with the perturbation magnitude and
the associated changes of the phase portrait of the Hodgkin-Huxley neuron. The
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Fig. 10 The bandlimited stimulus and the base current for a weak stimulus. (A) The base current
and the stimulus u(t) are in a close range. The estimated base current does not faithfully esti-
mate the base current. (B) Characterization of the stimulus in the phase plane. A small number of
bundled limit cycles corresponds to a weak stimulus.
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Fig. 11 The bandlimited stimulus and the base current for a strong stimulus. (A) The base current,
the estimated base current and the stimulus u(t) are in a close range. (B) Characterization of the
stimulus in the phase plane. A large number of limit cycles corresponds to a strong stimulus.

performance of Algorithm 2 matches the one of Algorithm 1 for weak stimuli and
the one of Algorithm 3 for strong stimuli.

5 Discussion

We investigated the recovery of stimuli encoded with a Hodgkin-Huxley neuron.
The daunting complexity of the Hodgkin-Huxley equations makes this task particu-
larly challenging. A highly effective strategy pioneered in (Lazar, 2007, 2010) calls
for reducing the Hodgkin-Huxley neuron to a one-dimensional PIF neuron. The lat-
ter projects the input stimulus onto the phase response curve and compares the result
with a threshold value. The PIF model is I/O-equivalent with the Hodgkin-Huxley
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Fig. 12 Recovery errors of the three different algorithms. (B) zooms into the dashed box in (A).
Algorithm 1 rapidly increases its recovery error as the perturbation magnitude increases; it shows
the lowest level of error when the perturbation magnitude is below 1 µA/cm2. Algorithm 2 shows
the lowest level of errors on average across the weak/strong perturbation range. The recovery re-
sults with Algorithm 3 show the highest error level for weak perturbation levels; beyond 8 µA/cm2

the least level of error is recorded.

neuron; given the same input and the same initial condition, the two neurons gener-
ate, to the first order, the same spike trains.

Using the reduced PIF model, we presented three different recovery algorithms
for stimuli encoded with a Hodgkin-Huxley neuron. All algorithms reconstruct the
stimuli from the neuron’s output spike train.

The first algorithm is based on the assumption that the Hodgkin-Huxley neuron
has a known PRC. It performs well for weak stimuli. However, if the base level of
the stimulus changes, the recovery algorithm rapidly increases its error. The second
algorithm assumes that the PRC is known on each inter-spike time interval. Since
the base level is known, the sampling kernels of the t-transform that best describe
the Hodgkin-Huxley neuron are conditionally known on each inter-spike time in-
terval. The algorithm recovers both the strong drift of the base level and the weak
perturbation of the stimulus. Finally, the third algorithm operates under the assump-
tion that the conditional PRC is unknown and has to be estimated. We established
an estimate of the conditional PRC based upon the readily observable inter-spike
time interval. The third recovery algorithm shows excellent performance for strong
base level signals.

The proposed algorithms are easy to implement and are very flexible; they only
require the inversion of a matrix. These algorithms can also be used for the recovery
of stimuli encoded by a large class of spiking neuron models in the limit cycle
region. How the dendritic tree of a postsynaptic neuron recovers the information
contained in the incoming spike sequence remains an open problem.
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Appendix

The Hodgkin-Huxley Equations

The Hodgkin-Huxley equations are as follows. They differ from the original formu-
lation in that the membrane potential is shifted by -65mV.

C
dV
dt

= −
[
ḡNam3h(V −ENa)+ ḡKn4(V −EK)+ ḡL(V −EL)

]
+ Iext

dn
dt

= αn(V )(1−n)−βn(V )n

dh
dt

= αh(V )(1−h)−βh(V )h

dm
dt

= αm(V )(1−m)−βm(V )m,

where

αn(V ) = −0.01(V +55)/
(

e−(V+55)/10−1
)

βn(V ) = 0.125e−(V+65)/80

αh(V ) = 0.07e−(V+65)/20

βh(V ) = 1/
(

e−(V+35)/10)+1
)

αm(V ) = −0.1(V +40)/
(

e−(V+40)/10−1
)

βm(V ) = 4e−(V+65)/18

and

ḡNa = 120mS/cm2 ḡK = 36 mS/cm2 ḡL = 0.3 mS/cm2

ENa = 50 mV EK = -77 mV EL = -54.387 mV
C = 1 uF/cm2.

References

Arcas, B. A. y, Fairhall, A. L., & Bialek, W. (2003). Computation in a single neuron:
Hodgkin and Huxley revisited. Neural Computation, 15(8), 1715–49.

Bialek, W., & Rieke, F. (1991). Reading a neural code. Science, 252(5014), 1854–
1857.



20 Anmo J. Kim and Aurel A. Lazar

Dayan, P., & Abbott, L. (2001). Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. MIT Press.

Ermentrout, B. (1996). Type I membranes, phase resetting curves, and synchrony.
Neural Computation, 8(5), 979–1001.

Hastings, J., & Sweeney, B. (1958). A Persistent Diurnal Rhythm of Luminescence
in Gonyaulax Polyedra. The Biological Bulletin, 115(3), 440–458.

Hodgkin, A. L., & Huxley, A. F. (1952). A Quantitative Description of Membrane
Current and its Application to Conduction and Excitation. J. Physiol, 117,
500–557.

Hoppensteadt, F., & Izhikevich, E. (1997). Weakly Connected Neural Networks.
Springer.

Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience: The Geometry of
Excitability and Bursting. The MIT Press.

Kim, A. J., Lazar, A. A., & Slutskiy, Y. B. (2010, Aug). System identification
of drosophila olfactory sensory neurons. Journal of Computational Neuro-
science. (published online doi:10.1007/s10827-010- 0265-0)

Kuramoto, R. (1984). Chemical Oscillations, Waves, and Turbulence. Springer-
Verlag.

Lazar, A. A. (2004). Time Encoding with an Integrate-and-Fire Neuron with a
Refractory Period. Neurocomputing, 58–60.

Lazar, A. A. (2007). Recovery of Stimuli Encoded with Hodgkin-Huxley Neurons.
In Cosyne’07 (p. III-94).

Lazar, A. A. (2010). Population encoding with hodgkin-huxley neurons. IEEE
Transactions on Information Theory, 56(2), 821-837. Special Issue on Molec-
ular Biology and Neuroscience.

Lazar, A. A., & Pnevmatikakis, E. A. (2008). Faithful Representation of Stim-
uli with a Population of Integrate-and-Fire Neurons. Neural Computation,
20(11).
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