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An Overcomplete Stitching Algorithm for Time
Decoding Machines

Aurel A. Lazar, Fellow, IEEE, Ernö K. Simonyi, and László T. Tóth

Abstract—We investigate a class of finite-dimensional time de-
coding algorithms that: 1) is insensitive with respect to the time-en-
coding parameters; 2) is highly efficient and stable; and 3) can be
implemented in real time. These algorithms are based on the ob-
servation that the recovery of time encoded signals given a finite
number of observations has the property that the quality of signal
recovery is very high in a reduced time range. We show how to ob-
tain a local representation of the time encoded signal in an efficient
and stable manner using a Vandermonde formulation of the re-
covery algorithm. Once the signal values are obtained from a finite
number of possibly overlapping observations, the reduced-range
segments are stitched together. The signal obtained by segment
stitching is subsequently filtered for improved performance in re-
covery. Finally, we evaluate the complexity of the algorithms and
their computational requirements for real-time implementation.

Index Terms—Asynchronous communications, frames, irregular
sampling, real-time stitching algorithms, time decoding machines
(TDMs), time encoding machines (TEMs).

I. INTRODUCTION

T IME encoding [12] is a real-time asynchronous mecha-
nism of mapping the amplitude of a bandlimited signal

, into a strictly increasing time sequence ,
where and denote the sets of real numbers and integers, re-
spectively. A time encoding machine (TEM) is the realization
of an asynchronous time encoding mechanism. A time decoding
machine (TDM) is the realization of an algorithm for signal re-
covery with arbitrary accuracy.

The interest in time encoding in signal processing is driven
by the expected paradigm shift in the design and implementa-
tion of future analog to digital converters from information rep-
resentation in the amplitude domain to information representa-
tion in the time domain. Due to the ever decreasing size of inte-
grated circuits and the attendant low-voltage, amplitude-domain
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Fig. 1. TEM with multiplicative coupling.

Fig. 2. IAF neuron with variable threshold.

high-precision quantizers are more and more difficult to imple-
ment. TEMs leverage the phenomenal device speeds that a tem-
poral code can take advantage of [18]. The interest in temporal
encoding in neuroscience is closely linked with the natural rep-
resentation of sensory stimuli (signals) as a sequence of action
potentials (spikes). Spikes are discrete time events that carry in-
formation about stimuli.

A general class of TEMs that exhibit multiplicative coupling,
and, feedforward and feedback was introduced in [15]. The
basic underlying circuit consists of a garden variety oscillator
whose output feeds a zero crossings detector (see Fig. 1).
The detector generates the time sequence of the zeros of the
oscillator waveform. The oscillator is in turn modulated by an
input bandlimited signal. The analysis in [15] demonstrated
that TEMs with multiplicative coupling are I/O equivalent
with simple nonlinear circuits. The TEM shown in Fig. 1 is
input–output (I/O) equivalent with an integrate-and-fire (IAF)
neuron with variable threshold depicted in Fig. 2. The variable
threshold sequence is given by the difference between the
consecutive zeros of the waveform generated by the oscillator
for unit input. The same result holds for a TEM with feedfor-
ward while a TEM with feedback (see Fig. 3) is I/O equivalent
with an asynchronous sigma–delta modulator (see Fig. 4) with
variable thresholds [15].

For all TEMs considered, the bandlimited signal at the input
can be perfectly recovered from the zero crossings of the mod-
ulated signal and the threshold sequence. Perfect reconstruction
can be achieved provided that a Nyquist-type rate condition is
satisfied. Although methods used in frame theory [3], [11] and
irregular sampling [4], [20] are needed to establish these condi-
tions [12], [13], the algorithms are often easy to find and only
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Fig. 3. TEM with multiplicative coupling and feedback.

Fig. 4. TEM realized as an asynchronous sigma–delta modulator with .

require solving a consistent but (typically) ill-conditioned infi-
nite-dimensional system of linear equations.

In this paper we investigate an algorithm for signal recovery
that uses an overlapping sequence of finite-dimensional cover-
ings of the infinite-dimensional system. The algorithm: 1) is in-
sensitive with respect to the TEM parameters; 2) is highly ef-
ficient and stable; and 3) can be implemented in real time. It
is based on the observation that the recovery of time encoded
signals given a finite number of observations has the property
that the quality of signal recovery is very high in a reduced
time range. A similar time-locality property was investigated in
[5] in the context of irregular sampling. We show how to ob-
tain a local representation of the time-encoded signal in an effi-
cient and stable matter using a Vandermonde formulation of the
recovery algorithm. Once the signal values are obtained from
a finite number of possibly overlapping observations, the re-
duced-range segments are stitched together. The signal obtained
by segment stitching is finally filtered for improved performance
in recovery.

The recovery of time encoded bandlimited signals is closely
related to the recovery of bandlimited signals from irregular
samples. In [21] an extensive numerical analysis of algorithms
for signal recovery from irregular samples was presented; in
addition, extensive performance results for the case when the
number of samples is large were discussed. These algorithms,
however, do not operate in real-time. In order to address the
real-time requirements, we have explored in the past efficient
stitching algorithms [16] using a pseudo-inverse formulation
of local recovery. However, the latter algorithms are parameter
sensitive and exhibit stability issues. In contrast, the algorithms
presented here are parameter-insensitive and have provably ro-
bust stability properties.

The outline of the paper is as follows. Section II describes a
general class of TEMs with multiplicative coupling and the cor-

responding TDMs that achieve perfect signal recovery. Finite-
dimensional TDMs are described in Section III. Section III.B
gives a parameter-insensitive and minimum-least square formu-
lation for signal recovery including estimates for the reconstruc-
tion error. Section IV provides an overcomplete stitching algo-
rithm for the overall signal reconstruction in real-time as well as
overall error estimates. Practical computational considerations
are dealt with in Section V. Two examples are given that eval-
uate the theoretical results.

II. TDMS ACHIEVING PERFECT SIGNAL RECOVERY

A. TEMs With Multiplicative Coupling

As already mentioned, the TEM with multiplicative coupling
shown in Fig. 1 is I/O equivalent [15] with an IAF neuron with
the variable threshold sequence depicted in Fig. 2.
The sequence , represents the set of zeros of the
oscillator waveform in Fig. 1. The analytical characterization of
the IAF neuron is given by

(1)

where , is the TEM input signal and ,
is the output time sequence. The elements of the time sequence
will also be referred to as trigger times. The input signal is as-
sumed to be bounded in amplitude

(2)

has finite energy on and is bandlimited to .
An example of a TEM with multiplicative coupling and feed-

back is shown in Fig. 3. This circuit is I/O equivalent with the
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asynchronous sigma–delta modulator (ASDM) (an example is
shown in Fig. 4) that is analytically described by

(3)

with . Equation (1) and (3) are instances
of the t-transform [12]. They map the amplitude information
contained in the bandlimited signal , into the
increasing time sequence .

B. Time Decoding Machines

In what follows we shall assume that the class of TEMs under
consideration are I/O equivalent with a nonlinear circuit with
input , and output , that satisfies the
t-transform

(4)

where is a function of and with , .
Note that the ’s in the (1) and (3) are linear functions of
and for the IAF neuron and ASDM described above. See
[15] for an example of nonlinear functions .

Theorem 1 [12], [15]: If the Nyquist-type rate condition

(5)

is satisfied, the bandlimited input signal , can
be recovered as

(6)

where and

(7)

is the impulse response of an ideal low-pass filter (LPF) with
cutoff frequency . The set of coefficients , satisfy the
system of linear equations

(8)

for all . Finally, the matrix , vectors and introduced
above, verify the linear equation

(9)

Without loss of generality, our discussion will focus on TEMs
realized as ASDMs (an example is shown in Fig. 4). We have
extensively investigated the latter circuit both by simulations
[10] and experimentally [9]. We note that, parameter-insensitive

TDMs eliminate the effects of several circuit imperfections that
are beyond the ideal TEM model of Fig. 4, [10].

III. FINITE-DIMENSIONAL TDMS

A. Class of Finite-Dimensional Recovery Algorithms

In what follows we shall consider the covering sequence
, of the real line , where is an arbitrary

positive integer. Our first goal is to develop an accurate recon-
struction for for all , for given integers

, and . is said to be
the restricted range.

Similarly to the approach of [4] and [14], we approximate
on by the periodic bandlimited signal

(10)

Here is a set of coefficients whose values are to be deter-
mined. The bandwidth and the period of are and
(for ), respectively.

The approximation in (10) can be obtained by noting that the
function defined by

is interpolated by

as for all . Since
is approximated by . Note

that

for all . Note also that the Dirichlet kernel above
[4] is the working kernel and not in (7).

Proposition 1: The coefficients satisfy the ma-
trix equation

(11)

for all , where is a Vandermonde
matrix, is a diagonal matrix, is an upper
triangular matrix with values and for

and , respectively, and ,
.
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Proof: The matrix (11) is a compact notation of the
linear systems of equations where

, and .
It is known [8] that is nonsingular if

for . This condition is satisfied since
. Note that with (5)

. As a result, the values of
for all , are distinct and located within one pe-
riod of the complex exponential. The Vandermonde system
in (11) can be solved for by the Björk-Pereyra algorithm in
a numerically very stable way with flops [1], [8]. For
convenience, it is given below.

Algorithm 1: Let where
, and . The system of linear (11)

can be solved with flops as follows:

At the end of the procedure .
With this approach our numerical experiments were similar

to those of [16], [14]: increasing the accuracy of the recon-
struction improves, that is, the error

(12)

decreases. However, the conditioning of the system gets worse.
As a consequence of Gautschi’s classic results [6]–[8], esti-
mates for , the infinite-norm condition number of ,
are given by the following lemma.

Lemma 1:

(13)

Proof: The definition of -norm of gives:

(14)

Let be an by Vandermonde matrix generated by
the arbitrary distinct nodes as where

. The lower bound [6] and the upper bound [7] for
are given by

and

respectively. Since in our case and
, the statement of the

lemma in (13) follows from simple algebraic manipulations.

As described in detail in [8], the error in the solution of a
Vandermonde system due to parameter inaccuracies can be es-
timated based on the condition number.

Remark 1: Multiplying both sides of (11) by , where
the superscript stands for conjugate-transposition, transforms
(11) into the normal equations

(15)

Since is a Toeplitz matrix with elements
the above equation is essen-

tially equivalent with the Toeplitz formulation used in [4] and
[14]. The representation in (15) offers significant benefit in
terms of computational complexity for larger linear systems,
when the matrix-vector multiplications in the recursive solution
(such as the accelerated conjugate gradient method in [4])
can be sped up by using the FFT algorithm on an augmented
circular system. The main disadvantage of this method is that
the conditioning of the Toeplitz system can be much worse
than that of the Vandermonde system due to the relationship

between the 2-norm condition
numbers [8]. Since we use small matrices, the natural choice is
to use the better-conditioned Vandermonde representation.

B. Parameter-Insensitive TDM

In what follows we shall assume that the oscillator in Fig. 3 is
described by a periodic orbit in the phase space. Then, the TEM
with multiplicative coupling and feedback can be described by
the ASDM [15] shown in Fig. 4 where the integrator’s time con-
stant and the Schmitt-trigger’s height and width are the
circuit parameters. Since holds [see (3)–(5)]

(16)

In addition, the bounds for [see also (5)] give

and

(17)

is a sufficient condition for perfect reconstruction [12]. Such
TEMs offer a natural way for developing TDMs that are insen-
sitive with respect to the TEM circuit parameters. The compen-
sation principle of [12] takes the form

(18)

for all . Note that the right-hand side of equality (18)
above does not depend on . In addition, an inaccurate value for

merely introduces a constant scaling error in the reconstructed
signal. Therefore, any recovery algorithm based on (18), i.e.,

, does not have knowledge of the parameters of the
TEM and is, thereby, parameter-insensitive.

The TDM coefficients in (11) directly depend on
the circuit parameters , and through , since
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. We note that the compo-
nents of are given by [14]

(19)

This expression does not depend on for even . For odd ,
the terms can be eliminated by subtracting from

an appropriate rank-one matrix as detailed below.
Algorithm 2: The Vandermonde system in (11) can be re-

duced to an underdetermined linear system whose minimum-
least-square and minimim-norm solution is given by

(20)

where and, and denote the solutions of the
Vandermonde systems

(21)

and

(22)

respectively, where does not depend
, and .

Proof: The relationship in (19) and the definitions of ,
and imply:

(23)

Denoting the identity matrix of size by and using
, we have . It is easy to show

that is a projection matrix with rank .
Therefore, by using (23) and (11), we obtain the underdeter-

mined linear system

After rearranging terms, we have

(24)

where and
. A minimum-least-square and minimum-norm solution

of (24) is given by

where the superscript stands for the pseudo-inverse [8], [2].
Since (24) is a linear system modified by the rank-one matrix

can be calculated by the general formulas

(6 possible cases) presented in [2] (Theorem 3.1.3). Note also
that since is nonsingular and

the corresponding result of [2] (case (vi)) gives (20) after sim-
plifications (and using the fact that ).

Lemma 2: Algorithm 2 is robust in the sense that division by
“very small” is safely avoided and

(25)

for all .
Proof: Clearly . Also, im-

plies . Finally, from
, (14), and (see [8. p. 53]) , (25) follows.
As illustrated in the example of Section III-D, for large

numerical inaccuracies might occur if . Fi-
nally, since in the parameter-insensitive case two Vandermonde
systems have to be solved, the overall computational load is
around (the rest of the computations in (20) only need

flops).

C. Error Estimate of the Parameter-Insensitive TDM

As shown above, the coefficients in (20) are found in the
parameter insensitive case by a projection on an -dimensional
subspace of the column space of (of dimension ).
Therefore, the accuracy of the reconstruction based on (20),
(21), and (22) is certainly below that obtained by solving (11)
directly.

Lemma 3: The error in the parameter-insensitive case

(26)

is given by

(27)

where

(28)

Proof: Recall that is the error without using the
parameter-insensitive formulation [see also (12)]. Then, with

with elements
we have

(29)
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where is the solution of (11). Likewise, the error in the pa-
rameter-insensitive formulation is given by

(30)

With (23) and (11), (21) can be rewritten as

and therefore, with (22)

Substituting above into (30) and using (29) gives

This concludes the proof.
Remark 2: Ignoring the term in (27) gives the approx-

imation

(31)

The formula for can be used only when accurate values for
and are known. Since generally this is not the case, we define
the average consecutive error .
Assuming furthermore that the sum on the right-hand side of
(31) is the same for and , the error estimate becomes

(32)

where

(33)

As the example in Section III below demonstrates, this error es-
timate gives reasonable results with the additional benefit that
the interval-reducing parameter can also be estimated. Fi-
nally, since this error estimate is proportional to , an accurate
value for is not needed.

D. Example

Here we demonstrate the results above by simulations. The
input to the TEM in Fig. 4 is given by a sum of 100 sinu-
soids with random amplitudes, phases, and frequencies with an
overall bandwidth of 300 Hz . The input was scaled
to satisfy the condition (2) with . Fig. 5(a) shows the seg-
ment of we used in the simulations. With parameters
ms, , and , the second inequality in (17) is sat-
isfied with . The TEM in Fig. 4 was simulated and 347

Fig. 5. (a) Input signal as a sum of 100 sinusoids with rad/s. (b)
TEM input (gray), integrator output (black), and TEM output (dashed).

Fig. 6. Scaled and shifted error functions
with (a) and (b) with (black), (gray),

and (dashed). The length of the segment is .

trigger times were obtained by recursively solving the equations
in (16) with the initial condition . Fig. 5(b) shows
the TEM signals of Fig. 4 in a smaller time range.

The finite dimensional covering was tested for various seg-
ments of in Fig. 5(a). Typical results are shown in Figs. 6
and 7.

Fig. 6 shows the error function for and
with in Fig. 6(a) and in Fig. 6(b). Note

that the compact representation in Fig. 6 was made possible by
the change of variables on
the restricted range with .

Fig. 7(a) shows the infinite-norm condition number of
on a log scale and the corresponding upper and lower bounds
computed according to (13) as a function of for .
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Fig. 7. (a) The infinite-norm condition number of (black) together with
the upper (gray) and lower (dashed) bounds. (b) SNR with double and single bit
precision in black solid and dashed lines, respectively, and the SNR evaluated
using the error estimate in gray.

As mentioned before, by increasing the conditioning of
gets worse. The quality of the reconstruction quantified as the
signal-to-noise ratio (SNR) in dB is given by

where denotes the RMS value of in dB. (
dB in Fig. 5(a)]. The SNR evaluated by using both double

and single bit precision is shown in Fig. 7(b) together with those
corresponding to the error estimates in (32) in terms of for

and .
It can be seen, that the error is drastically decreased for

larger by a small increase of . This result is not surprising
given that our approach to approximating is equivalent
to taking the time derivative of a Lagrange interpolation
with interpolating points (referred to as nodes)

. The large interpolation error at the bound-
aries of the interpolating interval [see Fig. 7(a)] is due to the
well-known Runge phenomenon. Specially placed nodes (such
as the Chebyshev nodes) can remedy this problem. However,
node placement can not be employed here since the trigger
times (and hence the nodes) are input parameters. The re-
maining option is to set to some value (usually between
2 and 5) based on the trigger times and the error estimate.
Finally, we note that the error traces close to the estimates were
calculated with double bit precision. The dashed error traces
were obtained with the built-in single bit precision. For
the extra error is due to numerical inaccuracies arising in the
subtraction in (20). Therefore, selecting the condition number,
shown as a function of in Fig. 7(a), is an important design
choice.

Remark 3: Because of boundary effects, the TEM inves-
tigated above operates with an oversampling ratio (or OSR
defined as the Nyquist period divided by the average of
the ’s), between 2 and 3. This is a radically different mode

of operation than that of synchronous sigma-delta modula-
tors whose typical OSR is in the several hundreds [18]. In
contrast to conventional synchronous sigma-delta modulators,
the ASDM-based TEM investigated here does not exhibit the
“noise shaping” property if the time quantizer is outside the
feedback loop. If the time quantizer is in the feedback loop, a
first order noise shaping effect is discernable for high OSRs.
Since the OSR needs to be in the several hundreds in order to
create a noticeable noise shaping effect, however, noise shaping
is hardly relevant in our setting.

IV. STITCHING ALGORITHM FOR SIGNAL RECOVERY

A. Stitching Algorithm

Since excellent approximations can be achieved within finite
time intervals (see Section III-D), a reasonable approach for the
overall reconstruction of the input signal on the real line is
to (i) carry out approximations in different intervals using the
formulation in Section III, (ii) cut out the accurate parts by ap-
propriate windows with finite support in the time domain and
forming a partition of unity, (iii) sum up the windowed approx-
imations, and finally (iv) carry out efficient post-processing.

Several window types are available in the literature (such
as those used in Wavelet theory) that do not dependent on the
trigger times. Since, is a key parameter in terms of both con-
ditioning and accuracy (see Fig. 7), the use of variable windows
determined by trigger times seems to be a natural choice in our
setting. As explained below, adjacent windows should overlap
over a certain number of trigger times. The number of trigger
times that overlap in adjacent windows will be subsequently de-
noted by . Using the notation

(34)

we define the windows

(35)

where the ’s are appropriately chosen functions. With
, , and (hence ) an illustration is

shown in Fig. 8. The lowest trace demonstrates that the windows
so defined form a partition of unity.

By stitching the finite dimensional coverings together a nat-
ural approximation of the bandlimited signal ,
is given by

(36)

It only remains to perform the post-processing operation. In
what follows our goal is to calculate the samples of the recon-
structed signal taken uniformly with appropriate sampling
period . In this way the reconstructed signal can be processed
by standard digital algorithms.
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Fig. 8. Illustration of the windows defined in (35) with
, and .

Since the windows , have finite support,
in (36) is very well suited for real-time uniform sampling
in an overlap-add fashion (see also Fig. 8). In addition, the
Fourier-series representation of the finite dimensional coverings
in (10) allows calculating the samples via the FFT
(see Section V). The bandwidth of determines the values
of the sampling time that avoids (or minimizes) aliasing. In
particular, denoting the Fourier transform of by ,
let be such that for all and . Since
the bandwidth of is [see (10)], the bandwidth of the
product in (36), and thus that of is .
Therefore, for

(37)

aliasing is (practically) avoided.
Algorithm 3: The reconstructed signal in discrete-time (DT)

is given by , where the is the impulse response
of a DT LPF with (digital) cutoff frequency and
denotes the convolution.

Since the reconstruction error spreads over the range
, low-pass filtering further improves the overall

accuracy. In addition, the Nyquist rate of the samples can be re-
covered via decimating the filtered reconstructed samples. How-
ever, it depends on the application if an (even accurate) approxi-
mation of the filtered samples is acceptable instead
of approximating the original samples .

Remark 4: Increasing not only improves the accuracy of
the reconstruction [see Fig. 7(b)], but also broadens in
the time domain, and hence decreases . This technique clearly
has its limitations since by increasing , the condition number
of the Vandermonde systems also increases [see Fig. 7(a)]. By
appropriately choosing the parameter and in (35), can
be decreased for fixed and . For example, a good frequency
localization for can be achieved by using

(38)

while both and its derivative are continuous.

B. Overall Error Estimation

The DT reconstruction error is given by

(39)

and if filtering is used the error amounts to

(40)

Lemma 4: The DT reconstruction estimated error amounts to

(41)

where is given by (32).
Proof: Since , forms a partition of unity, using

(36) and (26) the overall reconstruction error
can be written as

Approximating by and setting , the result
follows.

Remark 5: If postfiltering is employed, then the filtered error
estimation sequence

(42)

can be used.
The error estimates in (41) and (42) assume accurate values

for the trigger times. In practice the trigger times certainly
exhibit jitter as a result of the TEM circuit imperfections [10]
and the unavoidable quantization of the ’s. The jitter-induced
error often dominates the reconstruction error obtained with
perfect trigger times. Modeling the jitter as a sequence of
independent random variables uniformly distributed within

with given , the error estimate (defined in [dB])

(43)

was developed in [12] for the ideal TDM of Section II-B, with
and

. As demonstrated in the example of Section IV-C
below, this rough estimate gives acceptable results for the pro-
posed TDM, although the jitter-processing mechanism in this
paper is not exactly the same as the one in [12]. The behavior of
the error estimate in (41) with corrupted trigger times is rather
important. Since the error estimate does not incorporate knowl-
edge about jitter, it relies on the existence of an input that exactly
generates the available trigger times. Because of this built-in
“tolerance,” the error estimate saturates for larger values of
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Fig. 9. Two sets of frequency-domain windows with .

than the actual error. As illustrated in Section IV-C, this fact to-
gether with (43) makes it possible to determine for a given .
The error estimate eventually also breaks down for large enough

, when “it turns out” that the corrupted trigger times cannot
belong to a bandlimited signal. However, at this point is al-
ready determined.

C. Example

In this section, we use the input signal , the TEM param-
eters and the trigger times of the example in Section III.D. The
overall reconstruction was carried out with two sets of window
functions, with and

, respectively, with defined by (38).
Fig. 9 shows that the window’s Fourier transforms exhibit little
variation as a function of . Using this figure and (37)

s

is a safe choice for the sampling period.
For DT postfiltering, a standard Parks-McClellan finite-im-

pulse-response (FIR) low-pass filter of order 153 was designed
with passband ripple 1 dB, stopband attenuation 90 dB, pass-
band edge and transition band [17]. Fig. 10 shows a
small portion of the original and the filtered input sequences.
To compensate for the delay introduced by the (linear phase)
filter, a shifted version of the latter is shown. In this example,
we assume that the “distortion” due to the filter is acceptable.
The DT reconstruction error and the corresponding SNR in
dB amounts to

(44)

where dB, and are ap-
propriate integers. In calculating SNR according to the (40)
above, and have to be chosen such that the range

excludes the error due to the first and last win-
dows (see the lowest trace of Fig. 8). The reconstructed samples
are compared with the filtered input sequence, that is, the error
sequence and the corresponding SNR (denoted by )

Fig. 10. Small portions of the original input sequence (gray) and a de-
layed filtered sequence.

are evaluated. For evaluating and [see (44)]
are chosen such that the range excludes the errors
due to both the first and last windows, and the filter transient. Fi-
nally, the SNR value computed using the error sequence
is denoted by .

Corresponding to the two sets of windows, portions of the
reconstructed and estimated error sequences without and with
postfiltering calculated by (39), (40), (41), and (42), as well as
the corresponding SNR values evaluated by (44) are shown in
Fig. 11. As seen, the improvement due to postfiltering is notice-
able, and the overall error estimates are reliable.

Finally we consider the case when the ’s are corrupted by
jitter. In the simulations random numbers uniformly distributed
within were generated with

and added to the accurate ’s.
For simplicity, the SNR values evaluated using several error

estimates are shown without postfiltering in Fig. 12. The figure
indicates the equations used to compute the SNR values. As
seen, the SNR computed using (39) saturates for . Al-
though (43) underestimates the SNR by about 6–8 dB, its inter-
section with the trace corresponding to (41) points to between
12 and 13. The dashed traces correspond to the SNR and its esti-
mated value using the consecutive error formula in (41) without
jitter. This confirms, again, that for accurate trigger times the
estimate in (41) is reliable. As a result, based on the jitter-cor-
rupted trigger times, parameter , and , a reconstruction error
around -108 dB is predicted for (conservatively chosen)

. As shown, this forecast is close to the actual error trace.

V. PRACTICAL COMPUTATIONAL CONSIDERATIONS

In this section, we demonstrate how overflow can be avoided
in the reconstruction algorithms and provide an estimate of the
total number of flops needed to implement the stitching algo-
rithm in real-time.

A. Reconstruction Based on the ’s

Since the ’s form a strictly increasing sequence of , a prac-
tical reconstruction algorithm cannot use these values because
of potential overflow. However, the ’s are bounded by
[see (5)]. Our goal in this subsection is to demonstrate a recon-
struction algorithm that only uses the ’s.
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Fig. 11. Error sequences (stars) and average consecutive error sequences (dia-
monds) without (a,c) and with (b,d) postfiltering for . In the subfigures
(a) to (d) dB, 116 dB, 159 dB, 180 dB, and dB,
112 dB, 154 dB, 175 dB, respectively.

Fig. 12. SNR values evaluated using the error sequences given in (39) and (41)
with and without jitter and the rough SNR estimate given in (43).

The samples of the windows employed can easily be gener-
ated without using large sampling times. Since for

, where is monotonically increasing with [see Fig. 8

and (34)], the first sample occurs at where stands for
the ceiling operation. For a window shifted towards the origin
as , for an appropriate positive integer , we have

for , i.e., for . The
first sample of the shifted window occurs at and

obviously holds. As a re-
sult, window samples can be generated by using a bounded set
of independent variables after shifting the window close to the
origin by appropriate integer multiples of the (given) sampling
period.

As for the matrix parameters in the finite-dimen-
sional coverings, no problem arise with the ’s. The

’s and the ’s are determined, on the other hand,
by the trigger times through and ,
respectively. Using the periodicity of the complex ex-
ponentials we have and

where and
are arbitrary integers. Choosing and

appropriately, the exponentials can be generated by a bounded
set of quantities.

B. An Estimate of the Total Number of Flops

We have seen that floating point operations are needed
in the parameter-insensitive case for the implementation of a
finite-dimensional TDM algorithm. A factor that should be also
taken into account comes from generating the samples of (10).
Selecting as

with an appropriate positive integer ( in Section IV.C),
the samples of (10) can be expressed as

where if and
if . The summation can be calculated by
FFT with floating point operatins [8]. The rest
of the computation requirements includes operations and
the generation of the complex exponentials. Ignoring these, the
dominant number of floating point operations per window be-
comes

(45)

Assume finally that the overall range is covered by windows
with , where is a large integer. The support of the th
(last) window terminates at [see (35)]. Therefore, the total
range becomes [see (34)].
Let the average of the ’s be denoted by . Then ,
and therefore by using (45) and [see (34)],
for large the number of flops becomes
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Finally, as in [12], can be approximated by the arithmetic
mean of the lower and upper bound for in (17) as

. Using the expression for in
(17)

easily follows. Therefore, we have the following
Lemma 5: The number of flops for realizing the stitching

algorithm is given by

VI. CONCLUSION

We investigated the implementation of a signal recovery algo-
rithm that consists of an overlapping sequence of finite-dimen-
sional coverings of an infinite-dimensional space. The recovery
of the signal on finite dimensional coverings calls for solving a
Vandermonde system.

The main focus of our work was on developing efficient pa-
rameter-insensitve TDM algorithms that can be implemented in
real-time and that are stable. In order to construct such algo-
rithms, we have developed a novel solution method that calls
for projecting the -dimensional space generated by the
column of the Vandermonde matrix onto dimensional space.
The algorithm was shown to be provably stable.

The real-time algorithm stitches finite-dimensional cover-
ings together using a set of variable-size windows that are
data driven. A linear filtering of the output of the real-time
algorithm further improves its performance. The complexity of
the stitching algorithm is linear in size of the finite-dimensional
coverings. It is, therefore, amenable to real-time implementa-
tions.

Currently, we are evaluating the stitching algorithm de-
scribed here in experimental body area networks. The stringent
energy constraints at the transmitter (sensor) side can be ad-
dressed by using ultrawide-wide-band wireless communication
channels [19] or the skin surface as a communication medium
[9]. The trigger times can be readily transmitted through either
of these channels while the decoding complexity can be easily
implemented at the receiver.
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