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Abstract— We investigate architectures for time encoding and
time decoding of visual stimuli such as natural and synthetic
video streams (movies, animation). The architecture for time
encoding is akin to models of the early visual system. It consists of
a bank of filters in cascade with single-input multi-output neural
circuits. Neuron firing is based on either a threshold-and-fire or
an integrate-and-fire spiking mechanism with feedback. We show
that analog information is represented by the neural circuits as
projections on a set of band-limited functions determined by
the spike sequence. Under Nyquist-type and frame conditions,
the encoded signal can be recovered from these projections
with arbitrary precision. For the video time encoding machine
architecture, we demonstrate that band-limited video streams of
finite energy can be faithfully recovered from the spike trains
and provide a stable algorithm for perfect recovery. The key
condition for recovery calls for the number of neurons in the
population to be above a threshold value.

Index Terms— Faithful representation, neural circuit architec-
tures, spiking neurons, time encoding, visual receptive fields.

I. INTRODUCTION

IME encoding machines (TEMs) [1] are asynchronous

signal processors that encode analog information in the
time domain. TEMs play a key role in the representation of
analog waveforms by silicon-based information systems and in
sensing the natural world by biological sensory systems. There
is also substantial amount of interest in TEMs as front ends
of brain-machine interfaces, i.e., as building blocks connecting
biological and silicon-based information systems.

Intuitively, TEMs encode a (input) band-limited time signal
into a multidimensional time sequence. For applications in
the visual space, however, the input is a space-time function.
TEMs encoding space-time analog waveforms that are of
interest in silicon-based information systems and in early
biological vision systems are discussed below.

Early hardware implementations of space-time encoding
mechanisms include silicon retinas for spike-based vision
systems [2], [3]. Applications of silicon retinas include, among
others, spatial-contrast image encoding [4], motion detection
[5], and real-time 2-D convolutions [6]. The question of

Manuscript received September 10, 2009; revised August 10, 2010,
December 14, 2010, and December 15, 2010; accepted December 16, 2010.
This work was supported in part by the National Institutes of Health under
Grant RO1 DC008701-01 and in part by the Air Force Office of Scientific
Research under Grant FA9550-09-1-0350. The work of E. A. Pnevmatikakis
was supported by the Onassis Public Benefit Foundation, Athens, Greece.

A. A. Lazar is with the Department of Electrical Engineering, Columbia
University, New York, NY 10027 USA (e-mail: aurel @ee.columbia.edu).

E. A. Pnevmatikakis was with the Department of Electrical Engineering,
Columbia University, New York, NY 10027 USA. He is now with the
Department of Statistics, Columbia University, New York, NY 10027 USA
(e-mail: eftychios @stat.columbia.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2010.2103323

implementing silicon retinas that faithfully represent video
streams in the time domain and the associated design of perfect
recovery algorithms has not been addressed in the literature. In
neuromorphic engineering practice, the recovery of real-time
video streams has shown substantial aliasing effects [7].

Decoding of stimuli encoded by early biological visual
systems is a grand challenge in neuroengineering. A number of
encoding models exist in the literature including computational
models for the retina, lateral geniculate nucleus (LGN), and
V1 of mammals. However, the representation power of these
circuits in unknown. In [8], we initially addressed the use of
neurons modeled akin to simple V1 cells having Gabor-like
spatial receptive fields and a non-leaky integrate-and-fire (IAF)
spiking mechanism. However, a general methodology for
building arbitrary neural circuits with feedback and arbitrary
receptive fields is not available.

In this paper, we introduce for the first time a general
architecture of space-time video TEMs. The architecture is
inspired by models of the early visual system; it applies as
a template architecture for silicon-based TEMs. The basic
TEM architecture is based on a flexible set of interconnected
building blocks. The key building blocks are filters model-
ing receptive fields and single-input multiple-output (SIMO)
neural circuits with feedback representing analog information
akin to neuronal circuits in the early visual system.

For each SIMO neural circuit, neuron spike generation is
based on a threshold-and-fire (TAF) or an IAF mechanism.
The circuit models employed here include general feedback
connections within and in-between neurons. For each of the
encoding neural circuits, we study the representation of the
input analog signal and its recovery from the output spike
train. As we shall demonstrate, these circuits project the input
signal on a set of functions determined by the spike sequence.
Under appropriate conditions, these functions span the space of
band-limited signals, and, consequently, the encoded stimulus
can be recovered from these projections. We devise algorithms
that faithfully recover the stimulus and investigate changes in
encoding due to feedback. We also demonstrate that encoding
circuits based on TAF and IAF mechanisms can be opera-
tionally treated in a similar manner.

For the overall video TEM architecture, we derive condi-
tions for the faithful representation of the analog input stream
as a multidimensional time (spike train) sequence. We also
provide a stable algorithm for recovery of the video input
from spike times. The key condition for recovery comes from
the mathematical theory of frames [9] and requires that the
population spike density as well as the number of neurons is
above the Nyquist rate.

This paper is organized as follows. In Section II, we
present SIMO neural circuits that map an analog signal into a

1045-9227/$26.00 © 2011 IEEE
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Fig. 1. SIMO neural circuit with feedback.

multidimensional time sequence. We show how these circuits
encode information and establish invertibility conditions. In
Section III, the problem of time encoding of analog video
streams is posed in a general setting. We shall derive a time
decoding algorithm that faithfully recovers the video signal
from the multidimensional spike train in Section IV. Detailed
examples are given in Section V. Finally, Section VI concludes
our work and discusses future directions.

II. TIME ENCODING WITH NEURAL CIRCUITS WITH
FEEDBACK

In this section, we analyze the representation power of
a number of encoding circuits based on models of neurons
of the early visual system as well as models of neurons
arising in silicon retina and related neuromorphic hardware.
The basic encoding circuit investigated here is a SIMO neural
circuit with feedback that maps an analog input signal into a
multidimensional time sequence (see Fig. 1).

All analog input signals of interest u = u(¢),t € R, in this
section live in the space of band-limited functions with finite
energy and with spectral support in [—€Q, Q]. We denote this
space with the letter =. In Section II-A, single-input single-
output (SISO) neural circuits are investigated, in Section II-B
and II-C single-input two-output neural circuits are considered.
We shall show that existing models of retinal ganglion cells
(RGCs) and LGN neurons [10] and simple neural circuits
arising in frame-free cameras [5] have the same representation
properties. They are simple instantiations of the neural circuit
model with feedback (see Fig. 1).

We demonstrate that information contained at the input
of the neural encoding circuit can be recovered by a de-
coder provided the average number of spikes is above the
Nyquist rate. For each TEM, we will show how to build
a time decoding machine (TDM) that perfectly recovers the
encoded signal. The structure of the decoders is the same and
consists of a low-pass filter (LPF) whose input is a train of
weighted spikes derived from those generated by the neural
circuit.

The theoretical framework presented in this section was
first developed in [11]. It has only been formally applied,
however, to the decoding of stimuli encoded with a population
of unconnected IAF neurons without feedback. Here we show
how to apply it to stimuli encoded with fully pulse-connected
neural circuits and extend it to circuits with neurons with
TAF with feedback. Moreover, by explicitly calculating the
spike density of all the neural circuits of interest, we greatly
improve on the bounds presented in [11]. Examples are given
in Section II-D.
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Fig. 2. Single neuron TEMs with feedback. (a) TAF with feedback. (b) IAF
with feedback.

A. Time Encoding with a Single Neuron

The object of this section is the analysis of SISO TEMs
with feedback (see Fig. 2). We will refer to these circuits as
single neuron TEMs. Fig. 2(a) shows the spiking mechanism
of a time encoding neural circuit consisting of a single neuron
with feedback. The structure of the circuit is inspired by a
neuron model that was first proposed in [10]. The neuron fires
whenever its membrane potential reaches a fixed threshold
value J. After a spike is generated, the membrane potential
is reset through a negative feedback mechanism that gets
triggered by the just emitted spike. The feedback mechanism
is modeled by a filter with impulse response /().

The encoding is quantified with the f7-transform [1] that,
given the input stimulus, describes in mathematical language
the sampling process. Let (t;), k € Z, be the set of spike times
at the output of the neuron. Then the ¢-transform of the TEM
depicted in Fig. 2(a) can be written for all k, k € Z, as

u(te) =6+ D (i — 1), (1)
I<k
Equation (1) can be written in inner product form as
(u, xk) = qi (2)

where gx =0+ >, h(ti — 1), yx(t) = g(t — 1), k € Z, and
g(t) = sin(Qt)/xt, t € R, is the impulse response of a LPF
with cutoff frequency Q. The impulse response of the filter in
the feedback loop is causal, and in widely adopted models it
is decreasing with time (e.g., exponential decay) [10].

Fig. 2(b) depicts a time encoding neural circuit consisting
of an IAF neuron with feedback. IAF neurons have been used
to model RGCs and LGN neurons in [12]. The ¢-transform of
the encoding circuit can be written as

1, 1
/k+l u(s) ds =K5—b(tk+1—tk)—2/k+lh(s—t;)ds 3)
Tk

1<k /%

or in inner product form as

(u, xk) = qk 4

where g = k0 — b(tir1 — k) — 2 < fti"“ h(s —t;)ds and
Xk = &* 1y 111, for all k, k € Z (x denotes the convolution).

It is easy to see that both encoding circuits described above
have a similar operational structure. Both encode the signal u
by projecting it on a set of sampling functions (yx), k € Z.
A decoder with observations (t), k € Z, can readily evaluate
the inner product (projection) sequence (gx), k € Z. Assuming
that the spike density of the observations is above a threshold
value, the following proposition provides a representation
of the stimulus that is stable. The spike density intuitively
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Fig. 3. ON-OFF TEMs with feedback. (a) TAF with feedback. (b) IAF with
feedback.

formalizes the notion of average number of spikes in an
arbitrarily large time interval. Appendix A provides a detailed
methodology for computing the spike density of the simple
neurons models employed in this paper.

Proposition 1: The band-limited input stimulus u, encoded
with a single neuron TEM (Fig. 2), can be recovered as

u(t) = cem(t) ()

keZ

where 7 (t) = g(t — 1), provided that the spike density of the
single neuron TEM is above the Nyquist rate /7. Moreover,
with [c]x = ck, the vector of coefficients ¢ is given by

c=G"q (6)

where GT denotes the pseudoinverse of G, [q]x = ¢ and
[Glxi = (xx, 1), for all k, [ € Z.

Proof: The representation result (5) holds and it is stable
if the sequences of sampling functions y = (yx), k € Z, and
representation functions 7 = (nx), k € Z, form frames for
the space of band-limited functions =. From the theory of
frames for complex exponentials [13], the sequence 7 is a
frame if the spike density is above the Nyquist rate. For the
TAF with feedback TEM of Fig. 2(a), yx = nx, for all k € Z,
and therefore, the sequence y is a frame. For the IAF with
feedback TEM of Fig. 2(b), the sequence # can be mapped
to y by a bounded operator with closed range, and thus, the
frame property is preserved [9]. The interested reader can find
a more detailed technical discussion in [11] and [14].

Equation (6) can be obtained by substituting the repre-
sentation of u in (5) into the equation of the ¢-transform
in (2) or (4), respectively. Since the sequence #, is a
frame for =, (5) and (6) are guaranteed to give a stable
reconstruction [15]. |

B. Time Encoding with ON-OFF Neurons

In this section, we analyze single-input two-output TEMs
with feedback (see Fig. 3). Two different circuits are shown.
Each circuit consists of two neurons with the same spike
triggering mechanism and feedback. We will refer to these
circuits as ON-OFF TEM:s.

Fig. 3(a) shows a circuit consisting of two interconnected
ON-OFF neurons each with its own feedback. Each neuron
is endowed with a level crossing detection mechanism with a
threshold that takes a positive value 6! and a negative value

—52, respectively. Whenever a spike is generated, the feed-
back mechanism resets the corresponding membrane potential.
In addition, the firing of each spike is communicated to the
other neuron through cross-feedback. In general, the cross-
feedback brings the other neuron closer to its firing threshold
and thereby increases its spike density. The two neurons in
Fig. 3(a) arise as models of ON and OFF bipolar cells in the
retina and their connections through the non-spiking horizontal
cells [16].

With (t,f ), k € Z, the set of spike times of the neuron j, j =
1, 2, the t-transform of the ON-OFF TEM amounts to

u(t,g) =o'+ > n" (t,l - tl‘) - > h* (t,j — t,z) Lz <il)
1<k 1
2 2 22 (.2 2 12 (.2 1
l

I<k
(7N

for all k, k € Z. Equation (7) can be written in inner product
fonn (u,){,f) = q,f, where q,f is the right side of (7) and
1) =gt—tl), k € Z, j = 1,2, are the sampling functions.
Fig. 3(b) shows a circuit consisting of two interconnected
ON-OFF neurons each with its own feedback. The neurons are
IAF. The ¢-transform of the neural circuit can be written as

fig fig
1,1 1 11 1
/t1 u(s)ds = —b (| — 1) + E /1 h' (s —t)ds

k I<k Y%
1
I

— Z 1 " R (s — 17) ds + x'o!
<t )k
o 2,2 ) . 9 5
/tz u(s)ds = —b* (12, —tk)—Z/ h?2(s — t?) ds

2
& I<k

’kz+1
+ > ; R2(s — 1) ds + k%> (8)

dpl 2 P
Iy <t}

or in inner product form (u, X/f ) = q,f, with q,{ the right side
of (8), and the sampling functions are X/f =g=xl for
keZ,and j=1,2.

Proposition 2: The input stimulus u#, encoded with an
ON-OFF TEM (Fig. 3), can be recovered as

u(t) =D cint () + D cinp () )

keZ keZ

j J 9
[t sl

where the representation functions are given by n,i(t) =
g(t— t,f ), j = 1,2, provided that the spike density of the ON-
OFF TEM is above the Nyquist rate Q/x. Moreover, with
c¢=[c!;¢? and [¢/); = c,ﬂ, the vector of coefficients ¢ can
be computed as

c=G"q (10)
where q = [q"; ¢%] with [q/]; = ¢/, and
Gll G12 .. , :
G= [ GZ] G22 > [Glj]kl - <X]i’ 77]]>
forall i, j =1,2, and k,[ € Z.
Proof: 1t is similar to the proof of Proposition 1. [ ]
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Fig. 4. Encoding with a silicon ON-OFF TEM. (a) TAF with feedback.
(b) IAF with feedback.

C. Time Encoding with Silicon ON-OFF TEMs

ON-OFF spiking mechanisms have been used in various
neuromorphic hardware applications [2], [5]. In this section,
we present simplified versions of the ON-OFF neurons pre-
sented in Section II-B that have been implemented in silicon.
We will refer to these circuits as silicon ON-OFF TEMs.

Fig. 4(a) depicts the silicon neuron implemented in [5].
A spike is generated whenever a positive or negative change
of magnitude ¢ is detected. Immediately thereafter, the input
to the thresholding blocks is reset to zero through a simple
feedback mechanism. The encoding circuit in Fig. 4(a) can
be obtained from the ON-OFF TEM depicted in Fig. 3(a) by
setting 0! = 0> = 6 and h''(r) = K22(r) = W2 (1) = h?' (1) =
0 - 1is>0). The input to both the ON and OFF branch is

v(t) = u(?) —u(z@))

where 7 (¢) is the last spike before time 1.
For arbitrary n € Z and k € N, the z-transform of the silicon
TEM amounts to

u(rha) =ut)+ 5(k -2 1 <rf<r,1+k])

u (tr%+k) =u (t,%) - 5(/( - lé 1[t,%<t]' <I§+k])' an

As in the previous examples, the above equalities can also
be expressed in inner product form.

The circuit in [17, Fig. 4(b)] can be obtained by simplifying
the ON-OFF TEM shown in Fig. 3(b) with 6! = ¢*> = §,x! =
k? = and h'(t) = K22 (t) = h'2(t) = K> (¢) = kO - 1j1=0).
We finally note that Proposition 2 holds for the silicon ON-
OFF TEMs briefly sketched above, thus establishing condi-
tions for perfect recovery.

D. Example

We illustrate the recovery algorithms for the TEMs pre-
sented above with an example using a band-limited function
with Q = 2z - 100 rad/s on the time interval [0, 0.2] s.
For simplicity in presentation, we restrict ourselves to neuron
models based on TAF spiking mechanism. In order to simplify
the comparison of the performance of recovery algorithms
for signals encoded with different neural circuits, the circuit
parameters were chosen so that all TEMs approximately
generated the same number of spikes.

For the single neuron TEM, the threshold was 6 = 0.01
and the feedback filter h(r) = 0.1exp(—100¢)1>0
For the ON-OFF TEM, §' = & = 047, ') =
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Fig. 5. Recovery of signals encoded with TAF with feedback TEMs. Top row:
Encoding mechanisms. Single neuron TEM (left), ON-OFF TEM (middle),
and silicon ON-OFF TEM (right). Middle row: Encoding mechanisms zoomed
in, in the time interval [0.024, 0.038] s. Bottom row: Comparison between the
encoded and the recovered signals.

h?2(t1) = 0.1exp(—100t)1;~0), and A'2(r) = K?'(t) =
0.075 exp(—1/0.015)1;>0). For the silicon ON-OFF TEM
0 = 0.21. The results are shown in Fig. 5.

The single neuron TEM fired a total of 87 spikes, fired in
clusters when the input signal is greater than the threshold and
the stimulus is increasing. The neuron does not fire any spikes
when the input is negative. In theory, this does not create
problems as long as the spike density is above the Nyquist
rate. In practice, however, signals have finite time support. As
a result, in negative signal regions the recovery might be poor.

The situation improves with the ON-OFF TEM which also
fired a total of 87 spikes (51 for the ON part and 36 for the
OFF part). Trigger times occur again in clusters but sample
the stimulus at both positive and negative values. Note that
the signal entering the thresholding block has a reduced range
when compared to the encoded stimulus. In general, for the
same number of trigger times, the ON-OFF TDM tends to
lead to better recovery results than the single neuron TDM.
For example, in the time interval [0.025,0.175] s the single
neuron TDM had a signal-to-noise ratio (SNR) = 13.87 [dB]
whereas the ON-OFF TDM recovered the stimulus with
SNR = 54.04 [dB].

Finally, the silicon ON-OFF TEM produced a similar num-
ber of spikes (84 spikes, 42 for each branch). The spikes were
more uniformly distributed when compared to the spikes of
the single neuron TEM and the ON-OFF TEM, both of which
occur in clusters. This resulted in a better stimulus recovery
with SNR = 64.2 [dB] in the time interval [0.025,0.175] s.
The improved performance is primarily due to the precision
in representing the signal samples as integer multiples of the
threshold value. In the case of the ON-OFF TEM, numerical
errors are introduced through the feedback current. The latter
is dependent on the previous spike times that are measured
with a finite temporal resolution.
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Fig. 6. Architecture of the video TEM.

III. ARCHITECTURE OF VIDEO TEMSs

In this section, we introduce a model architecture for video
TEMs (see Fig. 6). The architecture consists of a bank of
N spatiotemporal filters and N neural circuits. The neural
circuits are SIMO TEMs. Each filter is connected to a single
neural circuit and represents its spatiotemporal receptive field
(STRF). The input video stream is considered to be band-
limited in time and continuous in space.

By establishing the ¢-transform of the video TEM, we show
how an analog video stream is represented in the time domain.
In Section IV, we shall prove that under mild conditions the
video stream can be perfectly recovered by only knowing the
encoder parameters and the spike times and derive perfect
recovery algorithms.

Let H denote the space of (real) analog video streams I =
I(x,y,1), (x,y,1) € R3, that are band-limited in time and
continuous in space, and have finite energy. It is clear that
the space H is a Hilbert space, when endowed with the inner
product (-, -) : H x H +— R defined by

(I, b) = / (s, v, D D(x, v, 1) dxdydt.
R3

In full generality, we assume that each neural cir-
cuit j has an STRF described by the function D/ =
Di(x,y, 1), (x,y,1) € R®, j =1,2,..., N. In what follows,
we assume that the filters describing the STRFs are bounded-
input bounded-output stable. Filtering the video stream with
the receptive field of the neural circuit j gives the receptive
field output v/ (r). The latter serves as the main input to neural
circuit j and amounts to

vj(t)z/ (/ Dj(x,y,s)l(x,y,t—s)dxdy) ds. (12)
R R2

Following the discussion of Section II, the z-transform of
ith branch of the jth neural circuit is described by

), = ol

where the sampling functions X;{ " ¢ E and the inner prod-
ucts q,{l e R, foral k € Z,i = 1,2,...,M, and all

13)

j = 1,2,...,N. Depending on the spiking mechanism of
the neural circuit, the sampling functions are of the form
20 =g =) or (1) = (g 1y jr it DO, 1 € R,
where (t,{l), keZ,i=1,2,...,M,and j=1,2,...,N, is
the spike sequence generated by the video TEM. Therefore,
the ¢-transform of the video TEM is given by

<1,¢,ﬁl>H =gqj'

where ¢'(x,y,1) = (DI(x,y,) % x{' (1)) for all k €
Z,i = 1,2,...,M, and j = 1,2,...,N (D/(x,y,t) =
DJ(x,y, —t)).

The ¢-transform in (14) quantifies the projection of the
video stream / onto the sequence of sampling functions
p=(pl"),j=12,...,N, i=12,....M, k € Z. If the
sequence ¢ is a frame for 7, then I can be perfectly recovered
from this set of projections. Furthermore, the recovery is
stable. Our goal in the next section is to find sufficient
conditions on the sequence ¢ to be a frame for 7 and to
provide a recovery algorithm.

(14)

IV. TIME DECODING AND PERFECT RECOVERY

In this section, we present the conditions on the set of
receptive fields that guarantee a faithful representation of video
stimuli and provide an algorithm for perfect signal recovery.

A. Conditions for Perfect Stimulus Recovery

Theorem 1: The input video stream [ can be per-
fectly recovered from the set of spike times (t,{ N, o=
1,2,...,N, i=12,...,M, k € Z, provided that the spike
density of the neural circuits is sufficiently large, and for every
o € [—€, 4]

(2| () o)),

is a frame for the space of spatially band-limited images. Here,
Fop and Fzp denote the 2-D and 3-D Fourier transforms,
respectively.

Proof: The proof is presented in Appendix B. Note that
an explicit sufficient density condition is to have the spike
density of every neural circuit above the temporal Nyquist
rate Q;/m. Note also that a necessary condition for (15) to
hold is to have the number of neurons at least equal to the
number of independent spatial components of the input video
stimulus. The latter is in full generality equal to Q, - Q,/ n?
per unit area, where , and Q, denote the spatial bandwidth
along the x and y directions, respectively. In practice, although
the video streams are defined on a finite spatial aperture, the
spatial bandwidths are assumed to be finite. [ ]

Remark 1: The assumption of finite spatial bandwidth is
supported in practice. In the visual system, the maximum
spatial resolution is finite and depends (among others) on the
density of the photoreceptor rods and cones [18].

Remark 2: Space-time separable receptive fields of the
form

ji=1,...,N (15

D/ (x,y,1) = D} (x, y)DL(1) (16)
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are of particular interest in systems neuroscience. For such
receptive fields, the frame condition for perfect recovery
becomes

Fan [(FpD7) (00} (. 3) = DIe, ) Dl (@)

where ﬁi denotes the (1-D) Fourier transform of D?. This
holds, for example, when the temporal components of the
receptive fields have full frequency support, i.e., supp(ﬁ{) )
[—€Q, Q/], and the spatial receptive fields form an overcom-
plete wavelet filterbank. Such filterbanks arise as a model of
receptive fields in the primate retina [19]. For more informa-
tion, see the examples in Section V or [8].

The required conditions of Theorem 1 are rather abstract.
These conditions are satisfied, however, for a number of
practical applications with STRFs that:

1) are space-time separable and the spatial components
form an overcomplete spatial filterbank (see Remark 2);

2) form an overcomplete space-time wavelet filterbank.
Such a case can be useful for tracking applications [20];

3) are chosen randomly according to a known distribution
(e.g., Gaussian). The latter case, briefly explored in
example V-C, arises in analog-to-information conversion
for compressed sensing [21].

Remark 3: The result of Theorem 1 along with the above
discussion has a simple evolutionary interpretation. If every
neuron responds to the stimulus with a positive, nonvanishing,
spike rate, then visual stimuli can be faithfully represented in
the spike domain using a finite number of neurons.

B. Perfect Recovery Algorithm

In order to devise a general recovery algorithm for the infi-
nite dimensional case, we use the sequence of representation
functions y = (y{"),j =1,2,...,N, i =1,2,..., M, k €
Z, with

v’y = (DI y sl O) @0 an
where n,{i(t) =gt — t,{i),t € R. We have the following.

Algorithm 1: If the assumptions of Theorem 1 hold, then
for a sufficiently large N, the video stream /, encoded with a
video TEM (Fig. 6), can be recovered as

N M
I, y,0)=> > > eyl (e, 3,0

(13)
j=1i=1keZ
where c,il, j=12,...,N, i = 1,2,...,M, k € Z,
are suitable coefficients. With ¢ = el ¢, ... ,eN T,
¢/ =[c/1, ¢, .., /M7 and [¢/T]k = ¢}, the coefficients ¢
can be computed as
c=G"q (19)

where T denotes the transpose, q is a vector with entries
[q/'k = g}, and G* denotes the pseudoinverse of G. G is
a N x N block matrix. Each block GY is in turn a M x M
block matrix with entries given by

(R
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Fig. 7. Architecture of the video TDM.

foralli,j=1,2,...,N; k,le Zandm,n=1,2,..., M.
Proof: Equation (19) can be obtained by substituting the
representation of / in (18) into the 7-transform equation (14). B
The video TDM pertaining to Algorithm 1 is depicted in
Fig. 7.

V. EXAMPLES

In this section, we present examples of encoding of syn-
thetic and natural video scenes with various video TEM
architectures and analyze the performance of the associated
decoding algorithms. The examples highlight the versatility
of video TEMs for modeling purposes and the generality of
their underlying structure. A note of caution, the video TEMs
are clockless. In order to simulate them on Turing machines,
however, only frame-based digital video sequences can be
used. Consequently, in all our examples we employed natural
scenes with a high frame rate. The high frame rate allowed
us to load an approximation of the analog waveforms into our
computation platform.

In Section V-A and V-B, we consider video TEMs with
receptive fields used in models of RGCs and simple cells
in V1. In Section V-C, the STRFs are randomly drawn and
are space-time nonseparable. An encoding example of natural
video scenes is presented in Section V-D.

A. Video TEM with Spatial Gabor Filterbank

The video TEM in this section consists of a spatial Gabor
filter bank and neural circuits using four different firing mech-
anisms. Such encoding circuits are encountered in modeling
simple cells and their receptive fields in the area V1 of the
visual cortex in mammals [22].

The signal at the input of the video TEM is a synthet-
ically generated space-time separable video stream of the
form I(x,y,t) = S(x, y)u(t). The stream has the following
characteristics. The temporal component has an equivalent
bandwidth of 20 Hz in the time interval T = [0, 250] ms.
A temporal bandwidth of 20 Hz (Q = 2z - 20 rad/s) has
been reported to contain almost all the information for natural
video streams [23]. The spatial component is defined on the
domain (aperture) D = [—4, 4] x [—4, 4]. One hundred and
twenty-eight pixels were used for the spatial discretization in
each direction. This spatial resolution supports stimuli with
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TABLE I
PERFORMANCE OF THE VARIOUS VIDEO TEM REALIZATIONS

PSNR[S] | SNR[u] | PSNR[/] | Spikes | # fired
TAF 26.67 28.21 29.25 4667 259
IAF w bias 44.36 44.44 40.90 4409 450
IAF w/o bias 20.17 28.83 25.69 4543 215
ON-OFF TAF 32.63 423 35.11 4258 239

spatial bandwidth of up to 8 Hz in each direction. In our case,
the spatial bandwidth was 2.5 Hz in each spatial direction
2z - 2.5 rad/degree).

The architecture of the video TEM consists of a spatial
Gabor filterbank in cascade with a population of neural cir-
cuits. The (Gabor) mother wavelet employed here was origi-
nally proposed by Lee [24] based on a number of mathematical
and biological constraints. It is given by

1 1 _ .
V(X,Y)=—exp —_(4x2+y2) (emx_efk/)
V2 ( 8

with x/2x = 0.75 Hz. For (real) video streams, the mother
wavelet decomposes into two wavelets corresponding to its
real and imaginary part, respectively. To construct a spatial
filterbank, one performs the operations of rotations, dilations,
and translations on the mother wavelet. More information can
be found in [8]. On both wavelet components, operations on
three scales, three rotations, and 5 x 5 translations along both
dimensions were used to generate a spatial Gabor filterbank
consisting of a total of N =2 x 3 x 3 x 5 x 5 = 450 filters.

Four different firing mechanisms for the neural circuits
were considered, single neuron TEMs (with TAF, TAF with
bias and feedback, and IAF with feedback without bias) and
ON-OFF TAF TEM. In each case, the 450 SIMO TEMs
were chosen to be the same. By appropriately choosing
certain parameters, the four different video TEMs realizations
approximately generated the same number of spikes. More
specifically, the parameters of the neurons were chosen as
follows. For every single neuron TEM with TAF, 6 = 0.06
and h(t) = 0.055exp(—1/0.03) - 1(+ > 0). For every single
neuron TEM with IAF with bias, b =1.1,0 = 2.7, k = 0.01,
and h(t) = 0.055exp(—1/0.03) - 1(t > 0), and finally, for the
IAF without bias, » = 0,0 = 0.068,x = 0.01, and h(r) =
0.055 exp(—/0.03) - 1(t > 0). For every ON-OFF TEM ¢! =
—0% =0.085, k' (1) = h?*(t) = 0.08 exp(—1/0.06) - 1(t > 0)
and h'2(t) = h?' () = 0 (time in seconds).

To quantify the quality of the recovery, we used the peak-
SNR (PSNR) for the spatial component (PSNR[S]) and for
the entire video stream (PSNR[/]) and, SNR for the temporal
component (SNR[u«]). The performance of the various
architectures under these metrics is summarized in Table I,
where we also provide the total number of spikes for each
architecture and the number of neurons that fired spikes out
of the total 450. All the quality metrics are measured in dB.

From Table I, we conclude that the best results were
achieved by the video TEM realized with IAF neurons with
bias, followed by the video TEM realized with ON-OFF TAF
TEMSs. The bias term in the former TEM forces every neuron
to fire and, thereby, provides a “more uniform” sampling of

45
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Fig. 8. Performance of the video TEM as a function of the number of spikes.
Each neuron is realized as an ON-OFF TEM.

the video stream. Consequently, information about all the pro-
jections of the video stream onto the elements of the filterbank
is obtained. This leads to improved performance in recovery.

For the remaining cases, it is clear that the video TEM
built with ON-OFF TAF TEMs significantly outperforms the
other two. The reasons are similar to the ones mentioned
in the example of Section II. It is important to note that
for the spatial component, the largest errors appear at the
spatial boundaries of the video stream. This is of course
expected since the finite aperture stream fails to be spatially
band-limited. By excluding the boundaries (5 pixels on each
side), the spatial component PSNR[S] and of the video stream
PSNR[/] significantly increases in all four cases (2-3.5 [dB]).

For the ON-OFF TAF-based video TEM, we also examined
the quality of signal recovery as a function of the number
of spikes that the neurons produced. In order to do so, we
changed the feedback parameters of the ON-OFF TEMs while
leaving the rest of the parameters (receptive fields, thresholds)
unchanged. The plot of the three quality measures (PSNR[S],
SNR[u], and PSNR[/]) as a function of the number of spikes
is shown in Fig. 8. As shown, with an increase in the number
of spikes, the quality of the recovery also increases.

B. Video TEM with Spatial Isotropic Wavelet Filterbank

The methodology presented in the previous example can
also be applied to video TEMs with spatial receptive fields
constructed from other mother wavelets. For example, a filter
bank with a difference-of-Gaussians (DoG) mother wavelet
has been used to model the spatial receptive fields of RGCs
[25], [26].

As above, we used a space-time separable video stream
with the same bandwidth, duration of 200 ms, spatial domain
D = [-2,2] x [-2,2], and 128 pixels in each direction.
To eliminate the boundary effects, the spatial domain was
extrapolated to [—2.5,2.5] x [—2.5,2.5] (with 160 pixels
per direction). The spatial filterbank had a wavelet structure
generated from an isotropic wavelet given by a DoG

(x, ) = — S 24y
x,y) = —=expl ———— | — —exp{ —
4 Y 4a12 P 2a12 4a% P Za%

with ap = 0.5,a1 = az/1.6. Since the DoG wavelet is
isotropic, the filterbank was constructed by performing only
dilations and translations. Six different scales were used,
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Fig. 9. Performance of a video TEM based on a DoG wavelet. Each neuron
is realized as an ON-OFF TEM.

m= —2,—1,...,3, and ay = ~/2, and a different number
of translations was performed for each scale. For each scale
a6", the number of translations in each direction was given
by 2 - nint(2.25/boay’) + 1, with resolution boag', where
by = 0.55. Here nint(x) denotes the nearest integer of x.
In total, 622 filters were constructed. The ON-OFF TEM
had a TAF with feedback spiking mechanism and parameters
ol = =02 = 0.7, h'2(t) = h?'(r) = 0.01 exp(—1/0.01)1{,-0
and ' (t) = h?2(t) = 0.65 exp(—1/0.015)1|;~¢;. Overall, 554
neuron pairs fired at least one spike amounting to a total of
5660 spikes. The input and the recovered components of the
stimuli are shown in Fig. 9. The performance of the stimulus
recovery was PSNR[S] = 34.57 dB, PSNR[/] = 30.26 dB,
and SNR[u«] = 39.37 dB.

The results of Fig. 9 suggest that any possible mother
wavelet (or in general x-let structure) can be used as long
as the set of wavelets is “dense enough” so that it can
faithfully represent the required spatial characteristics of the
input video stream. Consequently, the optimal choice of the
mother wavelet largely depends on the desired application.

C. Video TEM with Nonseparable STRFs

In this section, we highlight the versatility of the theoretical
framework and the generality of the decoding algorithms
presented in this paper. From a technical standpoint, both the
input video stimulus / and the set of STRFs are nonseparable.

The input video stream belongs to a discretized version of
‘H, the space of trigonometric polynomials (see Appendix B)
with M, = My = 3, M; = 5, and bandwidth Q, = Q, =
27 -2 rad/degree, Q; = 2z - 7.5 rad/s. The STRFs also belong
to the same space of trigonometric polynomials. Their line
frequency response was randomly chosen, for each frequency,
from a standard normal distribution. One hundred STRFs were
constructed in this way. Since the frequency responses were
picked randomly, all the necessary rank conditions (required
rank = 49) were satisfied with high probability. The neural
circuits consisted of ON-OFF neuron pairs with TAF with
feedback spiking mechanism. These neurons produced a total
of 1150 spikes.

The video synthetic stream was reconstructed using
Algorithm 2 (see Appendix C). The encoded and recovered
synthetic video stream are shown for three different time
instances in Fig. 10. The embedding of the videos and the
STREFs into the finite-dimensional space of trigonometric poly-
nomials enables the closed form evaluation of the dendritic
outputs v/ [see (30)] as well as the entries of the matrix
F. As such, there are no numerical errors introduced during
the encoding and reconstruction phase beyond finite precision
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Fig. 10. Performance of a video TEM based on filters with random STRFs.
The upper row shows three of the encoded frames and the lower one the
corresponding recovered ones.

considerations of the spike times. This leads to a practically
perfect reconstruction of the input stimulus. The performance
of the reconstruction algorithms speaks for itself: SNR[/] =
74.78 [dB] and PSNR[/] = 86.96 [dB]. Note that random
filters have been used as analog-to-information converters for
compressed sensing applications [21].

D. Natural Video Scene Example

The most experimentally demanding case pertains to the
encoding and decoding of natural scenes. As already men-
tioned, we used high-frame-rate video sequences captured with
special cameras. The high computational demands were met
by employing a computational platform based on GPUs.

The video TEM architecture consisted of 2744 neurons with
spatial receptive fields drawn from a Gabor filterbank. Seven
different scales and four different orientations were used. On
average, for each pair of orientation/scale 49 different trans-
lations along the both axes were employed, more translations
were used for finer scales and less for coarser ones. For m = 0

and m = —1, three translations were used in each direction,
for m = =2 five, for m = —3 and m = —4 seven, for m = —5
nine and finally for m = —6 eleven translations were used.

All the neurons had an IAF spiking mechanism with bias
b = 0.25, threshold 6 = 0.04, and integration constant
x = 0.01. The input video, showing a fly taking off, had a
duration 20 ms with a frame rate of 6000 frames/s, resulting
in an effective temporal bandwidth of 3 kHz. Ninety-six pixels
were used in each direction giving a total of 9216 pixels. The
neurons fired a total of 33 713 spikes, giving an average of
12.3 spikes per neuron, and 615 spikes per neuron per second.
Note that this number is one order of magnitude less than the
6-kHz frame rate of the video stream. The recovered video
had PSNR[/] = 31.28 [dB].

Three frames of the recovered video, along with the corre-
sponding encoded ones, are shown in Fig. 11. Note that the
number of neurons used to encode the video is significantly
lower than the number of pixels that are used to display the
video stream. This highlights one of the potential advantages
of the video TEMs when compared to past silicon retina
implementations.
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Frame 35 (PSNR = 30.94 dB)

Frame 65 (PSNR = 31.38 dB)

.‘r-r

Frame 95 (PSNR = 37.07 dB)

Fig. 11. Encoding of a natural video scene with a video TEM. The upper
row shows three of the encoded frames and the lower one the corresponding
recovered frames. The PSNR for each of these three frames is also displayed.

VI. DISCUSSION AND CONCLUSION

Stringent requirements for extremely low-power information
processing systems are one of the main drivers for information
representation in the time domain. Due to the ever-decreasing
size of integrated circuits and the attendant low voltage,
in traditional silicon-based information systems amplitude-
domain high precision quantizers are more and more difficult
to implement. By representing information in the time domain,
SISO TEMs leverage the phenomenal device speeds that a
temporal code can take advantage of [27]. Consequently,
next-generation encoders in silicon are expected to represent
information in the time domain [28]. Widely used modulation
circuits such as asynchronous sigma/delta modulators and FM
modulators in cascade with zero-crossing detectors have been
shown to be instances of TEMs [1]. These advances served as
a basis for (1-D) TEM implementations in hardware [29]-[35].
These implementations exhibit extremely low power require-
ments, see [34] for an extensive discussion on SISO TEMs
meeting these power requirements.

Video TEMs realized in silicon are a natural extension
of SISO information systems that represent analog wave-
forms in the time domain. They are highly versatile for
modeling purposes, since they enable different combinations
of filters/receptive fields and spiking mechanisms. Unlike
asynchronous silicon retina implementations, which assign to
every pixel a neuron, video TEMs use a bank of STRFs
to map the incoming video streams into a train of spikes.
Thus, video TEMs provide a more compact representation of
information in the time domain and can serve as templates for
future neuromorphic hardware applications. In quantized form,
the spike sequence generated by video TEMs can be used
for transmission and for further processing with any digital
communications and/or signal processing system.

The interest in temporal encoding in systems neuroscience
is closely linked with the natural representation of sensory
stimuli (signals) as a sequence of action potentials (spikes) in
early olfaction, audition, and vision. TEMs based on single-
neuron models such as IAF neurons [36] and more gen-
eral Hodgkin—Huxley neurons with multiplicative coupling,

feedforward, and feedback have also been investigated [37].
Video TEMs can be used to represent analog information
residing in the visual world as a multidimensional time (spike)
sequence. They are versatile encoding circuits for modeling
information representation in the early visual system.

From a theoretical point of view, video TEMs realize
two operators in cascade. The first, which is a filter bank
or receptive field, is a vector linear operator. The second,
which is population of neural circuits, is a vector nonlinear
operator. The task of decoding, which is a key challenge
both in silicon-based information systems and in systems
neuroscience, calls for finding the inverse of the composition
of these two operators. We formally investigated conditions for
the existence of the inverse, i.e., for the faithful representation
of analog band-limited video streams using the sequence of
spikes. We examined a variety of neuron spiking mechanisms,
such as level-crossing detection and IAF with feedback, and
combined these with models of receptive fields that arise in the
early visual system. Our investigations demonstrated that the
visual world can be faithfully represented with a population of
neurons, provided that the size of the population is beyond a
critical value. Based on the characteristics of the input signal,
we showed that this estimate is substantially smaller than the
total number of pixels.

Finally, we note that the formal representation of spatiotem-
poral information as a set of projections in the Hilbert space of
band-limited functions may serve as a theoretical foundation
for future asynchronous stimulus encoding algorithms. The
work presented here raises a number of issues regarding the
encoding efficiency of video TEMs. These and other issues
will be investigated elsewhere.
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APPENDIX A
SPIKE DENSITY OF SPIKING NEURAL CIRCUITS

In this section, we present a formal definition of the
notion of spike density and a general methodology for its
computation for spiking neural circuits. The methodology
to evaluate the spike density for spiking neurons was first
developed in [38] for the case of a single IAF neuron without
feedback.

Definition 1: A real sequence A = (g)re7 is called sepa-
rated if infr; A — Ai] > 0 and relatively separated if it is a
finite union of separated sequences.

Definition 2: Let A = (Ax)rer be a sequence of real
numbers that is relatively separated. Let N(a, b) the number
of elements of A that are contained in the interval (a, b).
The upper and lower (Beurling) densities of A are defined as

1
D™ (A) = liminf inf —N(ty, to + 1)
t—>00 ek t
+ . 1
D" (A) = limsup sup —N(tp, to + 1). 21
I—>00 feR
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A. Spike Density of Ideal IAF Neural Circuits

Lemma 1: The interspike time interval generated by an IAF
neuron (wlog without feedback) with input # € = and bias
b > 0 is bounded.

Proof: Let t; be a spike time and assume that the neuron

did not fire another spike until time #;, (2 > #1). Then

n
B =h 5/ u(s)ds < K6 — bty — 1)
141

where the first inequality follows from the Cauchy—Schwartz
inequality. Solving for #» — #; we obtain the bound

[ T WL
—h = 5 14 /14 4bxd/|ul +7

Note that this bound is presented here for the first time. W

Let [ay, az] be an arbitrary time interval and let #; denote
the first spike time immediately after a; and #, denote the last
spike time just before a;. The average number of spikes in the
interval [ay, a2], D(ay, a2), of the IAF neuron is given by

1 ( 2 (u(s) +b) ds). o)
ar — ay Ko

Assume that |ap — aj| — oo. From Lemma 1, we have
(t1 —ay)/(ar—ay) = 0(t —a3)/(az — o) — 0 and therefore
the integration interval [z, 2] in (23) can be replaced with
[a1, az].

Proposition 3: For all inputs u, u € =, the spike density of
an ideal TAF neuron with feedback is equal to

b
ké— [ph(s)ds’
+00,

(22)

D(ai1,az) =

if [ph(s)ds <Ko

D= (24)

if [ph(s)ds > k6.

Proof: We will compute the lower and upper densities
D~, DT defined above. Let I denote the whole current due
to feedback. Proceeding as above

ST+ us) + 1(s)) ds
D liminf inf —

1—>00 feR t Ko

v

b 1 1 to+t
— + — liminf inf —/ u(s)ds
to

KO KO 1—00 peRt

1 1 to+t
+ — lim inf inf —/ I(s)ds.
0 tJ:

KO t—>00 eR 0

Using again the Cauchy—Schwarz inequality, we get

1 t+1o
— / u(s)ds
t to

For the feedback current we have

1 t+ty I
lim inf inf —/ ﬂd = +00

=00 el t Ko

lim inf inf
t—00 l‘()ER

1
< liminf 1nf —||u|] = 0.
\/—

[—>0o0 tOE
(25)

provided that ffoooh(s) ds > k0 since each spike produces
enough feedback current to elicit another spike with a contin-

uously increasing frequency. Otherwise

1 t+1o I
liminf inf —/ &d —/ h(s)ds

1—>00 fyeR ¢
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and the result of (24) is a lower bound for D™. Repeating
the procedure for the upper density D™ we can show that the
right side of (24) is an upper bound and the general result
follows. [ ]

Remark 4: Note that the result of (24) is asymptotic in the
sense that the instantaneous firing rate of the neuron converges
to the value of the density.

Using similar arguments, one can also derive the spike
density of the IAF ON-OFF TEM as follows.

Proposition 4: Consider the IAF ON-OFF TEM of
Fig. 3(b) and let HY = [p h'/(s)ds, i, j = 1,2. Assume that
H" > —k'¢',i = 1,2 and that

(K151 +H“) (K252 +H22) _HR2H2 < .

The spike density of the IAF ON-OFF TEM is given by

D = D'+ D?
Dl 3 (K252+H22) bl +H21b2
(K151 + Hll) (K252 + H22) — H12g21
5 H2p' + (k'o' + H') b2

(26)

- (10! + H) (k202 + H?2) — HIZH2

If one of the inequality conditions is not satisfied, then the
spike density is infinite.
Proof: Similar to the proof of Proposition 3. [ ]

B. Spike Density of TAF Neural Circuits

For completeness, we present the evaluation of the spike
density of neurons with TAF with feedback spiking mecha-
nism. We assume that the neuron exhibits a bias b. This bias
was absent in our analysis in Section II since in applications
stimuli have finite time support and therefore the neural
circuits do not fire infinitely often.

Proposition 5: The spike density D of the single neuron
TEM with TAF with feedback spiking mechanism and external
bias b is 0 for b < 6. For b > J, the spike density is the
solution of the equation

b—Zh(%):

keN

27)

where N is the set of positive integers.

Proof: In the absence of a time-varying external input, the
neuron will not fire at all if b < . If b > J, then the neuron
will fire periodically with period T at times #x = kT, k € Z.
From (1), we have that

u(i) +b =35+ D h((k—DT).
1<k

Since u = 0, the result follows. If the feedback mechanism
is of the form h(t) = h(0) exp(—t/7) - 1{;=0, With £(0) > O,
then the spike density becomes

oo ((+5))

0, otherwise.

b>o 28)
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APPENDIX B
PROOF OF THEOREM 1

In this section, we first present the proof of Theorem 1
for band-limited video streams that belong to the finite-
dimensional space of trigonometric polynomials. Subsequently
we shall extend these results to the infinite-dimensional case.

Let the set of functions (em, mym, (x,y,t)) for all
my = —My,.... My, my = —M,,...,My, and m; =
—M;, ..., M;, be defined as

Cmy,my,m; (x,y,1) = em, (x)emy (»em, (1)

with e, (x) = (T/22) (0 /My) exp (jm(Qy/My)x) and
em,, em, similarly defined. The space spanned by this set
consists of the band-limited and periodic video streams, with
space-time bandwidth (Q,, Q,, Q;) and period (27 M,/€Q,,
2r My /Qy, 2w M;/€;), respectively. The band-limited and
periodic video streams are elements of a Hilbert space en-
dowed with the usual (sesquilinear) inner product and with
(€my,my,m; (x,y,1)) as its orthonormal basis.

The elements of the space represent a natural discretiza-
tion of band-limited functions in the frequency domain. The
functions in the Hilbert space have a discrete spectrum at
frequencies (m,(Qy/My), my(Qy/My), m(Q;/M;)). By let-
ting My, My, M; — oo, the spectrum becomes dense in
[—Qy, Q] x [-Qy, Qy] x [-Q, €] and these functions
converge to band-limited functions.

Let the input video I and the STRFs D/ be expressed by

I(x,y,1) = me,my,ml Amy,my,m; €my,my,m; (x,y,1)
D/ (x, y,t) = me,my,m, dr{lx,my,ml Cmy,my,m; (x, y,t). (29)

Leta=|ay;..
cients, with

.; @y, ], denote the column vector of coeffi-

T
am, = [a—My,—My,m;s - -5 MMy m, ]

Similarly, letd/ = [d!; ...;d;, ] forall j, j=1,2,..., N,
denote the set of coefficients for every STRF. To simplify the
notation we assume that i = 1, i.e., all neurons have a single
component (this can easily be generalized). The problem is to
recover the vector a.

We assume here that the spike density of every neural circuit
Jj,j=1,2,..., N, is above the temporal Nyquist rate Q;/x.
Based on Propositions 1 and 2, for each j, j =1,2..., N,
the set of sampling functions (;(,f ), forms a frame for =.
Therefore, all the dendritic outputs (v/), j = 1,2,..., N, can
be perfectly recovered. Equation (12) can be rewritten as

/(1) =" vih,em, (1)

where the coefficients are given by

J o J _ TqJ
U, = E amx,my,m,dmx,my,m, = (am,) dm,~
My, Ny

(30)

For a fixed m; € [—M;, ..., M;] we can write (30) for all

neurons in the matrix form

D) am, = vy, (31)

11

1 N 1 N T
where D,,, = [dm,""’dm,]’ Vi, = [0y, 0,17, for
each m;,m; = —M;,..., M;. For these equations to be

solvable, we need the matrices D,,, to have full row rank
(M, + 1)(2M, + 1) for all m;. A necessary condition to
achieve full row rank is to have the number of neurons N at
least equal to the number of independent spatial components
(2M; +1)(2My + 1). Note that this full row rank condition is
equivalent with having the columns of the matrix form a frame
for the space of images spanned by the set of basis functions
(em,,m,) [9]. Moreover, each vector dfnt represents the Fourier
transform of the receptive field D/ at the temporal frequency
m€; /M;. Therefore, the rank condition on the matrices D,,,
calls for the set of STRFs to form a frame for the space of
spatial images when restricted to each and every temporal
frequency m;Q;/M;, m; = —M;, ..., M;.

In order to extend the above results to the infinite di-
mensional case, let M,, M,, M; — oo. Then the set
(myQy/ My}, my = —M,,..., My becomes dense in the
interval [—Q,, Q,], and

Amy,my,m; = (F3pI)(myQy /My, myQy/My» mQ /M)

where F3p denotes the 3-D Fourier transform. Let also
Fop denote the 2-D (spatial) Fourier transform. In the
limit, the rank condition becomes a frame condition for
every w; € [—€Qy, Q;], the set of spatial receptive fields
(.7-‘{5 {(.7-'3DDj)(-, -,w,)}) ,j=1,..., N, is a frame for the
set of spatially band-limited images. [ ]

APPENDIX C
FINITE-DIMENSIONAL RECOVERY ALGORITHM

We now present an algorithm that faithfully recovers a video
stimulus with a finite-dimensional representation in the space
of trigonometric polynomials.

Algorithm 2: If the assumptions of Theorem 1 hold, then
for a sufficiently large N, the finite dimensional video stream
I, encoded with a video TEM (Fig. 6), can be recovered as

I(x» Y, t) = Z Cmy,my,m;€my,my,my (X, Y, t) (32)
My My Ny
where the vector of coefficients ¢ is given by
c=F'q (33)

with q = [q'; % ...q"17, ¢/ = [¢/',¢/%,...,¢/M]" and
[@/'1c = g]' and F denotes the pseudoinverse of F. The
matrix F has dimensions Ny x QM. +1)2M,+1)(2M; +1),
where Nt is the total number of spikes (measurements). If the
Ith entry of the vector q corresponds to the spike at time t,fl,
then the /th row of F is given by

)y = [(#]" emamm )|

with my = —M,,..., My, —M,, ...
—M;, ..., M.

Proof: By considering (14) for all spike times and substi-
tuting the finite-dimensional representations of the sampling

functions and of the input video stream, we obtain

my = ,My, my =

Fc=q.
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If the rows of F form a frame for the finite-dimensional
video space, then the inversion is stable. A necessary
condition is to have F of rank 2M, +1)(2M, +1)(2M; +1).
This can be guaranteed by increasing the number of
neurons and appropriately chosing their receptive fields
(e.g., randomly). ]

Algorithm 2 assumes that the input stimulus belongs to a
known space of trigonometric polynomials, i.e., has a discrete
spectrum with a known structure. This assumption leads to an
algorithm that can be fully discretized and implemented with-
out numerical errors, thereby exhibiting very high accuracy
(see for example, V-C). In practice, however, this information
may not be available.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

(13]

[14]

[15]

(16]

[17]

REFERENCES

A. A. Lazar and L. T. Téth, “Perfect recovery and sensitivity analysis of
time encoded bandlimited signals,” IEEE Trans. Circuits Syst. I, vol. 51,
no. 10, pp. 20602073, Oct. 2004.

K. A. Zaghloul and K. A. Boahen, “Optic nerve signals in a neuromor-
phic chip I: Outer and inner retina models,” IEEE Trans. Biomed. Eng.,
vol. 51, no. 4, pp. 657-666, Apr. 2004.

K. Shimonomura and T. Yagi, “Neuromorphic VLSI vision system for
real-time texture segregation,” Neural Netw., vol. 21, no. 8, pp. 1197-
1204, Oct. 2008.

J. Costas-Santos, T. Serrano-Gotarredona, R. Serrano-Gotarredona, and
B. Linares-Barranco, “A spatial contrast retina with on-chip calibration
for neuromorphic spike-based AER vision systems,” IEEE Trans. Cir-
cuits Syst. I, vol. 54, no. 7, pp. 1444-1458, Jul. 2007.

P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 x 128 120 dB 15 us
latency asynchronous temporal contrast vision sensor,” IEEE J. Solid-
State Circuits, vol. 43, no. 2, pp. 566-576, Feb. 2008.

R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jimenez,
C. Serrano-Gotarredona, J. A. Perez-Carrasco, B. Linares-Barranco,
A. Linares-Barranco, G. Jimenez-Moreno, and A. Civit-Ballcels, “On
real-time AER 2-D convolutions hardware for neuromorphic spike-based
cortical processing,” IEEE Trans. Neural Netw., vol. 19, no. 7, pp. 1196—
1219, Jul. 2008.

K. A. Zaghloul and K. Boahen, “A silicon retina that reproduces
signals in the optic nerve,” J. Neural Eng., vol. 3, no. 4, pp. 257-267,
2006.

A. A. Lazar and E. A. Pnevmatikakis, “A video time encoding machine,”
in Proc. 15th IEEE Int. Conf. Image Process., San Diego, CA, Oct. 2008,
pp. 717-720.

O. Christensen, An Introduction to Frames and Riesz Bases (Applied and
Numerical Harmonic Analysis). Basel, Switzerland: Birkhduser, 2003.
J. Keat, P. Reinagel, R. C. Reid, and M. Meister, “Predicting every spike:
A model for the responses of visual neurons,” Neuron, vol. 30, no. 3,
pp. 803-817, Jun. 2001.

A. A. Lazar and E. A. Pnevmatikakis, “Faithful representation of
stimuli with a population of integrate-and-fire neurons,” Neural Comput.,
vol. 20, no. 11, pp. 2715-2744, Nov. 2008.

J. W. Pillow, L. Paninski, V. J. Uzzell, E. P. Simoncelli, and E. J.
Chichilnisky, “Prediction and decoding of retinal ganglion cell responses
with a probabilistic spiking model,” J. Neurosci., vol. 25, no. 47, pp.
11003-11013, Nov. 2005.

K. Seip, “On the connection between exponential bases and certain
related sequences in L2(—7r, ), J. Funct. Anal., vol. 130, no. 1, pp.
131-160, May 1995.

E. A. Pnevmatikakis, “Spikes as projections: Representation and
processing of sensory stimuli in the time domain,” Ph.D. dissertation,
Dept. Elect. Eng., Columbia Univ., New York, NY, Sep. 2010.

Y. C. Eldar and T. Werther, “General framework for consistent sampling
in Hilbert spaces,” Int. J. Wavelets, Multiresolution Inf. Process., vol. 3,
no. 4, pp. 497-509, 2005.

R. H. Masland, “The fundamental plan of retina,” Nature Neurosci.,
vol. 4, no. 9, pp. 877-886, 2001.

J. C. Sanchez, J. C. Principe, T. Nishida, R. Bashirullah, J. G. Harris, and
J. A. B. Fortes, “Technology and signal processing for brain-machine
interfaces,” IEEE Signal Process. Mag., vol. 25, no. 1, pp. 2940, Jan.
2008.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

IEEE TRANSACTIONS ON NEURAL NETWORKS

F. W. Campbell and D. G. Green, “Optical and retinal factors af-
fecting visual resolution,” J. Physiol., vol. 181, no. 3, pp. 576-593,
Dec. 1965.

G. D. Field and E. J. Chichilnisky, “Information processing in the
primate retina: Circuitry and coding,” Annu. Rev. Neurosci., vol. 30,
no. 1, pp. 1-30, 2007.

J.-P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali, 2-D
Wavelets and Their Relatives. Cambridge, U.K.: Cambridge Univ. Press,
2004.

J. Laska, S. Kirolos, Y. Massoud, R. Baraniuk, A. Gilbert, M. Iwen,
and M. Strauss, “Random sampling for analog-to-information conversion
of wideband signals,” in Proc. IEEE Dallas/CAS Design Appl., Integr.
Softw., Richardson, TX, Oct. 2006, pp. 119-122.

J. P. Jones and L. A. Palmer, “An evaluation of the 2-D Gabor filter
model of simple receptive fields in cat striate cortex,” J. Neurophysiol.,
vol. 58, no. 6, pp. 1233-1258, Dec. 1987.

D. A. Butts, C. Weng, J. Jin, C.-I. Yeh, N. A. Lesica, J.-M. Alonso,
and G. B. Stanley, “Temporal precision in the neural code and the
timescales of natural vision,” Nature, vol. 449, no. 7158, pp. 92-95,
Sep. 2007.

T. S. Lee, “Image representation using 2-D Gabor wavelets,” [EEE
Trans. Pattern Anal. Mach. Intell., vol. 18, no. 10, pp. 959-971, Oct.
1996.

R. W. Rodieck, “Quantitative analysis of cat retinal ganglion cell
response to visual stimuli,” Vis. Res., vol. 5, no. 12, pp. 583-601, Dec.
1965.

R. Van Rullen and S. J. Thorpe, “Rate coding versus temporal order
coding: What the retinal ganglion cells tell the visual cortex,” Neural
Comput., vol. 13, no. 6, pp. 1255-1283, Jun. 2001.

E. Roza, “Analog-to-digital conversion via duty-cycle modulation,” IEEE
Trans. Circuits Syst. 11: Analog Digital Signal Process., vol. 44, no. 11,
pp- 907-914, Nov. 1997.

A. A. Lazar, E. K. Simonyi, and L. T. Téth, “An overcomplete stitching
algorithm for time decoding machines,” IEEE Trans. Circuits Syst. I,
vol. 55, no. 9, pp. 2619-2630, Oct. 2008.

L. Hernandez and E. Prefasi, “Analog-to-digital conversion using noise
shaping and time encoding,” IEEE Trans. Circuits Syst. 1, vol. 55, no.
7, pp. 2026-2037, Aug. 2008.

A. Garcia-Tormo, E. Alarcon, A. Poveda, and F. Guinjoan, “Low-OSR
asynchronous X-A modulation high-order buck converter for efficient
wideband switching amplification,” in Proc. IEEE Int. Symp. Circuits
Syst., Seattle, WA, May 2008, pp. 2198-2201.

L. C. Gouveia, T. J. Koickal, and A. Hamilton, “An asynchronous spike
event coding scheme for programmable analog arrays,” in Proc. I[EEE
Int. Symp. Circuits Syst., Seattle, WA, May 2008, pp. 1364-1367.

J. G. Harris, J. Xu, M. Rastogi, A. Singh-Alvarado, V. Garg, J. C.
Principe, and K. Vuppamandla, “Real time signal reconstruction from
spikes on a digital signal processor,” in Proc. IEEE Int. Symp. Circuits
Syst., Seattle, WA, May 2008, pp. 1060-1063.

D. Koscielnik and M. Miskowicz, “Asynchronous sigma-delta analog-
to-digital converter based on the charge pump integrator,” Ana-
log Integr. Circuits Signal Process., vol. 55, no. 3, pp. 223-238,
Jun. 2008.

S. Y. Ng, “A continuous-time asynchronous sigma delta analog to
digital converter for broadband wireless receiver with adaptive digital
calibration technique,” Ph.D. dissertation, Dept. Elect. Comput. Eng.,
Ohio State Univ., Columbus, 2009.

R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco,
R. Paz-Vicente, F. Gémez-Rodriguez, L. Camuiias-Mesa, R. Berner,
M. Rivas, T. Delbriick, S. C. Liu, R. Douglas, P. Hafliger, G.
Jimenez-Moreno, A. C. Ballcels, T. Serrano-Gotarredona, A. J. Acosta-
Jimenez, B. Linares-Barranco, “CAVIAR: A 45k neuron, 5M synapse,
12G connects/s AER hardware sensory—processing—learning—actuat-
ing system for high-speed visual object recognition and track-
ing,” IEEE Trans. Neural Netw., vol. 20, no. 9, pp. 1417-1438,
Sep. 2009.

A. A. Lazar, “Time encoding with an integrate-and-fire neuron
with a refractory period,” Neurocomputing, vols. 58-60, pp. 53-58,
Jun. 2004.

A. A. Lazar, “Time encoding machines with multiplicative coupling,
feedforward, and feedback,” IEEE Trans. Circuits Syst. II, vol. 53, no.
8, pp. 672-676, Aug. 2006.

A. A. Lazar, E. A. Pnevmatikakis, and L. T. Téth, “On computing the
density of the spike train of a population of integrate-and-fire neurons,”
Dept. Elect. Eng., Columbia Univ., New York, NY, BNET Tech. Rep.
#4-07, Dec. 2007.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LAZAR AND PNEVMATIKAKIS: VIDEO TIME ENCODING MACHINES

Aurel A. Lazar (S’77-M’80-SM’90-F’93) is a
Professor of electrical engineering at Columbia
University, New York, NY. In the mid-1980s and
1990s, he pioneered investigations into networking
games and programmable networks (www.ee.
columbia.edu/~aurel/networking.html). His current
research interests (www.bionet.ee.columbia.edu)
are at the intersection of computational, systems
and theoretical neuroscience. In silico, his focus
is on neural encoding, systems identification of
sensory systems, and spike processing and neural
computation in the cortex. In this work, he pioneered rigorous methods of
encoding information in the time domain, functional identification of spiking
neural circuits, and massively parallel neural computation algorithms in the
spike domain. In vivo, his focus is on the olfactory system of the Drosophila.
His current work primarily addresses the nature of odor signal processing in
the antennal lobe of the fruit fly.

13

Eftychios A. Pnevmatikakis (S’08-M’11) received
the Diploma degree in engineering from the School
of Electrical and Computer Engineering, National
Technical University of Athens, Athens, Greece, in
2004. He received the M.Sc. and Ph.D. degrees
from Columbia University, New York, NY, both
in electrical engineering, in 2006 and 2010,
respectively.

He was an Adjunct Assistant Professor with the
Department of Electrical Engineering, Columbia
University, in 2010. Since May 2010, he has been a
Post-Doctoral Researcher with the Department of Statistics and the Center
for Theoretical Neuroscience, Columbia University. His current research
interests include theoretical neuroscience, signal processing, brain inspired
computation, and methods for statistical analysis of neural data.

Dr. Pnevmatikakis received the Jury Award from the Department of Electri-
cal Engineering, Columbia University, in 2010, for outstanding achievement
by a graduate student in the area of systems, communications, and signal
processing.



