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Abstract

We present a general framework for the reconstruction of natural video scenes en-
coded with a population of spiking neural circuits with random thresholds. The natural
scenes are modeled as space-time functions that belong to a space of trigonometric poly-
nomials. The visual encoding system consists of a bank of filters, modeling the visual
receptive fields, in cascade with a population of neural circuits, modeling encoding
in the early visual system. The neuron models considered include integrate-and-fire
neurons and ON-OFF neuron pairs with threshold-and-fire spiking mechanisms. All
thresholds are assumed to be random. We demonstrate that neural spiking is akin
to taking noisy measurements on the stimulus both for time-varying and space-time-
varying stimuli. We formulate the reconstruction problem as the minimization of a
suitable cost functional in a finite-dimensional vector space and provide an explicit
algorithm for stimulus recovery. We also present a general solution using the theory of
smoothing splines in Reproducing Kernel Hilbert Spaces. We provide examples of both
synthetic video as well as for natural scenes and demonstrate that the quality of the
reconstruction degrades gracefully as the threshold variability of the neurons increases.
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1 Introduction

In the recent years the increasing availability of multi-electrode recordings and functional
imaging methods has led to the application of neural decoding techniques to the recovery
of complex stimuli such as natural video scenes. An algorithm based on the optimal linear
decoder derived in [1] for a rate model was presented in [2] for the reconstruction of natural
video scenes with recognizable moving objects from recordings of a neural population of the
cat’s Lateral Geniculate Nucleus (LGN). Visual image reconstruction from fMRI data was
examined in [3], whereas in [4] fMRI data was used to identify natural images. The above
works suggest that the visual information is preserved along the different layers of the visual
system and call for the development of novel algorithms for neural decoding algorithms that
are based on spike times.

In this paper we present a formal mathematical, model based approach, for coding and
reconstruction in the early visual system. Our neural architecture consists of a population of
N spatial filters that model the classical receptive fields, in cascade with an equal number of
spiking neural circuits. The neural circuits considered are either integrate-and-fire neurons
or ON-OFF neuron pairs with thresholding and feedback. In our architecture the neuronal
variability is not attributed to a probabilistic code [5]; rather the neural circuits are assumed
to have random thresholds with known a priori distribution. Neurons with random thresholds
have been used to model the observed spike variability of biological neurons of the fly visual
system [6], as well as neurons in the early visual system of the cat [7].

We show that neural spiking with these neural circuits represents noisy and independent [8]
(generalized) measurements of the input visual stimulus. Based on these measurements, we
construct regularized cost functionals and identify the reconstructed stimulus as its mini-
mizer. For simplicity, we assume that the input visual space belongs to a finite dimensional
Hilbert space and use standard optimization techniques to find the reconstructed stimulus.
However, as it will be discussed, the results can be directly extended to infinite dimensional
spaces, using the theory of smoothing splines [9] in Reproducing Kernel Hilbert Spaces [10].

The work presented here builds and extends upon previous work on the representation of
stimuli with deterministic spiking neurons. Assuming that the input signal is bandlimited
and the bandwidth is known, a perfect recovery of the stimulus based upon the spike times
can be achieved provided that the spike density is above the Nyquist rate of the stimulus.
These results hold for a wide variety of sensory stimuli, including audio [11] and video
streams [12], [13] encoded with a population of spiking neurons. The model of stimuli
considered in this paper are defined on a discretized version of a band-limited signal space,
known as the space of trigonometric polynomials. Such spaces are suitable for modeling
since they have all the desirable properties of band-limited signal spaces with the added
benefit of being finite-dimensional and thus numerically tractable [14]. Moreover, as it
will be demonstrated, the finite-dimensionality of the space determines to a first order the
complexity of the reconstruction algorithm. Consequently, data recorded from additional
neurons can be included into the recovery algorithm at a very moderate computational cost.

Since the encoding neural circuits have random thresholds, a perfect recovery of the in-
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put stimulus is not possible. In order to derive an optimal recovery algorithm, we setup
the stimulus recovery as a regularized optimization problem. Signal representation using
regularization techniques has been discussed in the computational vision [15] and neural
networks [16] literature. In this paper we present a formal model for stimulus reconstruction
from spike timing using a method of regularization that, as we will show, can approximate
complex visual streams, such as natural scenes, in a very efficient way. Using regulariza-
tion to reconstruct signals encoded with neurons with random thresholds was first presented
in [17] in the context of time-varying stimuli belonging to Sobolev spaces encoded with a
population of leaky integrate-and-fire neurons.

We explore the recovery of natural scenes and synthetic video streams as a function of
the variability of the random thresholds. Variablity is quantified as the ratio between the
variance and the mean of the threshold. We also explore the modeling of natural scenes
with the sample functions that are defined in the space of trigonometric functions. Finally,
we present for the first time video sequences of visual stimuli encoded with neural circuit
architectures based on neurons with random thresholds. We evaluate the recovery using
both traditional measures of signal-to-noise ratio (SNR) as well structural similarity index
(SSIM)[18]. The latter more closely relates to perceptual quality of visual stimuli. Rather
than focusing on modeling a specific region of the early visual system, we show that the
methodology presented here is general and can be applied to arbitrary combinations of
receptive fields and neural spiking mechanisms. These include classic models of the early
visual pathway (retina, LGN and V1).

The paper is organized as follows. Section 2 deals with the problem of encoding and recon-
struction of time-varying stimuli. In section 2.1 we give a short overview of the spaces of
trigonometric functions and discuss how these constitute a natural discretization of spaces
of bandlimited functions. In section 2.2 we present how time-varying stimuli can be encoded
with ON-OFF neuron pairs with random thresholds and present their reconstruction by
finding the minimizer of an appropriate quadratic cost functional. In section 2.3 integrate-
and-fire neurons with random thresholds encode time-varying stimuli; their recovery is pre-
sented in the same section. Examples are given in section 2.4 that explore the quality of
the reconstruction as a function of threshold variability. In section 3 we introduce the full
model for video encoding and reconstruction with a population of spiking neurons with ran-
dom thresholds. We discuss how video streams can be modeled as space-time trigonometric
polynomials and discuss their representation and reconstruction based on this working as-
sumption. Section 4 presents examples of both synthetic and natural video scenes, encoded
with neural circuits build with classic models of receptive fields and spiking neurons arising
in the retina, LGN and V1. The examples demonstrate the effectiveness of our algorithm
by measuring various different quality metrics (Peak SNR, SNR and SSIM) for two differ-
ent choices of random threshold (Gaussian, Gamma). Actual videos can be found in the
supplementary material. Section 5 discusses various extensions of our work to the recovery
of infinite dimensional stimuli. Finally, section 6 provides the context for our research and
its relation to Bayesian estimates, as well as approaches to globally optimal reconstructions.
Section 7 concludes our work and discusses potential future directions.

4



2 Representation and Recovery of Time-Varying Stim-

uli

Encoding of space-time visual stimuli with neural circuits leads to a fairly complex neural
architecture. Since our goal is to present in this paper a rigorous framework for both rep-
resentation and recovery of visual information, we will first introduce the simpler case of
encoding time-varying signals. In this way the reader can develop the needed intuition to
deal with the more general encoding of space-time stimuli. As will be clear in section 3, the
key neural building blocks of the encoding architecture for visual stimuli require the careful
treatment described below.

Following a short introduction to the space of trigonometric functions, we present a general
framework for the representation and recovery of time-varying functions with spiking neuron
models. The neuron models considered are of integrate-and-fire and threshold-and-fire type
and arise as spiking neuron models in early vision.

2.1 Modeling Stimuli as Trigonometric Functions

In this section we briefly introduce the spaces of trigonometric polynomials and discuss how
they can be used for modeling sensory stimuli of interest. We show that trigonometric
polynomials are natural discretizations of bandlimited functions, suitable for applications.

In the univariate case, the space of trigonometric polynomials consists of functions that are
simultaneously bandlimited with bandwidth Ω (in rad/sec) and periodic with period T . The
period and bandwidth are related with each other by the relation

T =
2πM

Ω
, (1)

where M is a positive integer that denotes the order of the space. Let H denote this space.
Then H consists of all the functions u = u(t), t ∈ R, of the form

u(t) =

M
∑

m=−M

am exp (jmωM t) , (2)

where ωM = Ω/M . Note that the space of trigonometric polynomials of order M is a natural
discretization of the space of bandlimited functions. The discretization is best viewed in the
frequency domain. The exponentials in (2) have a line Fourier spectrum at the points mωM

with m = −M, . . . , M . By letting M → ∞, this spectrum becomes dense in [−Ω, Ω].

Remark 1. The stimuli defined in (2) are in general complex valued functions. To obtain
real valued functions, we require u = u ⇒ a0 ∈ R and a−m = am, m = 1, . . . , M , where u
denotes the complex conjugate of u.
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The sesquilinear form 〈·, ·〉 : H×H 7→ C defined by

〈u, v〉 =

∫ T/2

−T/2

u(s)v(s) ds, (3)

is an inner product for H and thus the space (H, 〈·, ·〉) is a well defined Hilbert space. It
is easy to see that under the inner product (3), the set of functions (em), m = −M, . . . , M
defined as

em(t) =
1√
T

exp (jmωM t) , (4)

constitutes an orthonormal basis for H.

2.2 ON-OFF Neuron Models

In this section we analyze a single-input two-output time encoding machine [19] with feedback
(Figure 1(a)). The circuit consists of two interconnected neurons (ON-OFF pair) each with
its own feedback. Each neuron is endowed with a level crossing detection mechanisms with
a threshold that takes a positive value for the ON component (upper branch) and a negative
value for the OFF component (lower branch), respectively. The thresholds are assumed to be
i.i.d. Gaussian random variables with normal distributions N (δ1, (σ1)2) and N (−δ2, (σ2)2),
respectively.

Whenever a spike is generated, for the example in the ON component at time t1k, the corre-
sponding membrane potential v1 is reset by the feedback mechanism. The feedback consists
of a causal filter with impulse response h11(t), i.e., v1(t1k+) = δ1

k − h11(0). Moreover, a
new threshold value δ1

k+1 is drawn from the normal distribution. Finally, the spike is also
communicated to the OFF component through a cross-feedback (coupling) term that is mod-
eled with a causal filter with impulse response h12(t), i.e., v2(t1k+) = v2(t1k) − h12(0). Note
that in general, it is required that the new threshold is above the reseted membrane poten-
tial, i.e., we need P(δ1

k+1 < δ1
k − h11(0)) ≪ 1. For normal distributions this is satisfied if

h11(0) ≫ σ1, so that reseting is stronger than the threshold noise component. Similarly we
require h22(0) ≫ σ2.

The neural circuit above, first presented in a deterministic setup in [13], generalizes its single
neuron counterpart proposed in [20] as a flexible model for fitting the responses of RGCs
and neurons in the LGN. Its spiking mechanism can be viewed as a simplified version of the
spike response model [21]. The pairs of coupled neurons in Figure 1(a) arise as models of ON
and OFF bipolar cells in the retina and their connections through the non-spiking horizontal
cells [22]. Similar models have also been proposed for various modeling tasks, e.g., [23, 24].

2.2.1 Stimulus Encoding and the t-Transform

Let (tjk), k = 1, 2, . . . , nj , be the set of spike times of the neuron j, j = 1, 2. Then the value
of the input stimulus can be inferred at the spike times from the equations, formally known
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Figure 1: Canonical Neural Encoding Circuits.

as the t-transform [19]. Intuitively, the t-transform shows how the neural spike train is
associated with a set of linear measurements of the stimulus.

u(t1k) = +δ1 +
∑

l<k

h11(t1k − t1l ) −
∑

l

h21(t1k − t2l )1{t2l <t1
k
} + ε1

k = q1
k + ε1

k

u(t2k) = −δ2 −
∑

l<k

h22(t2k − t2l ) +
∑

l

h12(t2k − t1l )1{t1l <t2
k
} + ε2

k = q2
k + ε2

k,
(5)

for all k, k = 1, 2, . . . , nj, where ε1
k ∼ N (0, (σ1)2) and ε2

k ∼ N (0, (σ2)2). The equations
(5) show that neural spiking in this circuit is equivalent with the point evaluation of the
input stimulus u at the spike times, and it can be rewritten as a bounded linear functional
Li

k : H 7→ R:
Li

ku = u(tik) = qi
k + εi

k, (6)

for all k, k = 1, 2, . . . , ni, and i, i = 1, 2. From Riesz representation theorem, there is a unique
element χi

k in H such that the above linear functional can be written in inner product form
as

〈u, χi
k〉 = Li

ku = qi
k + εi

k

〈u,
1

σi
χi

k〉 =
1

σi
qi
k + ε̃i

k

(7)

for all k, k = 1, 2, . . . , ni, and i, i = 1, 2, where ε̃i
k ∼ N (0, 1). In order to become operationally

significant, we express the sampling functions χi
k in H using the standard basis (em) as

χi
k(t) =

M
∑

m=−M

bi
m,kem(t) (8)
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with
bi
m,k = 〈χi

k, em〉 = 〈em, χi
k〉 = Li

kem = em(tik) = e−m(tik). (9)

The sampling functions χj
k and the projections qj

k are determined by the parameters of the
neurons and the spike times. Thus, the t-transform maps the amplitude information of the
stimulus into the time information carried by the spike trains.

2.2.2 Stimulus Reconstruction

To derive the reconstructed stimulus, we seek a stimulus that minimizes the following regu-
larized cost functional J : H 7→ R defined by

J(u) =
1

(σ1)2

n1
∑

k=1

(

q1
k − 〈u, χ1

k〉
)2

+
1

(σ2)2

n2
∑

k=1

(

q2
k − 〈u, χ2

k〉
)2

+ (n1 + n2)λ‖u‖2. (10)

The cost functional consists of three terms. The first two represent the faithfulness of the
reconstructed error with respect to the original noisy measurements, normalized so that they
all have the same variance 1. The third term is a regularization term, used to prevent over-
fiting, due to the noisy data. Finally, λ is a positive smoothing parameter that regulates the
tradeoff between faithfulness to the measurements and smoothness. We have the following
result:

Proposition 1. The minimizer û = argmin
u∈H

(J(u)) is of the form

û =

M
∑

m=−M

cmem, (11)

where cm, m = −M,−M + 1, . . . , M , are appropriate coefficients given by

c =
(

GHG + (n1 + n2)λI
)−1

GH

[

1
σ1 q

1

1
σ2 q

2

]

, (12)

with I the identity matrix with dimension (2M + 1) × (2M + 1), [qj]k = qj
k and [c]m = cm.

In addition G =

[

G1

G2

]

where Gi is a matrix of dimension ni × (2M + 1) with entries

[Gi]km = 1
σi b

i
m,k, and GH denotes the hermitian of matrix G.

Proof: Since the minimizer lies in the same space H it can be written as in (11). The
system of equations (12) is obtained by plugging (11) into (10) and solving the set of equations
∂J

∂cm
= 0 in terms of cm, m = −M, . . . , M . (see also Appendix A.)
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Remark 2. The matrix GHG has dimensions (2M + 1) × (2M + 1), independent of the
number of spikes. This shows that setting up the problem in a finite dimensional space, leads
to a recovery with complexity determined by M and not by the number of spikes as in [17] or
[25]. Moreover, a simple calculation shows that the matrix GHG is Toeplitz and Hermitian
with entries given by

[GHG]n,m =
1

(σ1)2

n1
∑

k=1

em−n(t1k) +
1

(σ2)2

n2
∑

k=1

em−n(t2k).

2.3 Integrate-and-Fire Neuron Models

The second neuron model that we examine is a leaky integrate-and-fire (LIF) with random
threshold (see Figure 1b). The stimulus u biased by a constant background current b is fed
into a LIF neuron with resistance R and capacitance C. Furthermore, the neuron has a
random threshold with mean δ and variance σ2. The value of the threshold changes only
at spike times, i.e., it is constant between two consecutive spikes. Assume that after each
spike the neuron is reset to the initial value zero. Integrate-and-Fire (IAF) neuron models
have been used to model the responses of neurons in the early visual system [26]. Note that
an ON-OFF formulation for IAF models is also possible [25], [13], but is omitted here for
simplicity.

2.3.1 Stimulus Encoding and the t-Transform

Let (tk), k = 1, 2, . . . , n + 1, denote the output spike train of the LIF neuron. Between two
consecutive spike times the operation of the neuron is described by the t-transform equations

∫ tk+1

tk

exp

(

−tk+1 − s

RC

)

(b + u(s)) ds = Cδk, (13)

where δk is the value of the random threshold during the interspike interval [tk, tk+1). The
t-transform can also be rewritten as

Lku = qk + εk, (14)

where Lk : H 7→ R is a linear functional given by

Lku =

∫ tk+1

tk

exp

(

−tk+1 − s

RC

)

u(s) ds

qk = Cδ − bRC

(

1 − exp

(

−tk+1 − tk
RC

))

εk = C(δk − δ),

(15)
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where the εk’s are i.i.d. random variables with mean zero and variance (Cσ)2 for all k =
1, 2, ..., n. The sequence (Lk), k = 1, 2, . . . , n, has a simple interpretation: it represents the
set of n generalized measurements performed on the stimulus u.

By using the Riesz representation theorem, the measurements of (14) can be given in the
inner product form

〈u, χk〉 = qk + εk, (16)

where the sampling functions χk, k = 1, 2, . . . , n, can be expressed in the standard form as

χk =

M
∑

m=−M

bm,kem, (17)

where, similarly to (9), we have

bm,k = Lke−m =
1√
T

∫ tk+1

tk

e−
tk+1−t

RC e−m(t) dt =
RCe−m(tk+1) + (yk − RC)e−m(tk)√

T (1 − jmωMRC)
, (18)

where yk = RC

(

1 − exp

(

−tk+1 − tk
RC

))

, k = 1, 2, . . . , n.

2.3.2 Stimulus Reconstruction

Similarly to the previous case, we seek a stimulus û ∈ H that satisfies

û = argmin
u∈H

(

n
∑

j=1

(qk − 〈u, χk〉)2 + nλ‖u‖2

)

. (19)

The minimizer is given in the Proposition below, whose proof is similar to the one of Propo-
sition 1.

Proposition 2. The minimizer û is of the form

û =

M
∑

m=−M

cmem. (20)

where cm, m = −M,−M +1, . . . , M , are appropriate coefficients given by the solution of the
system of equations

c =
(

GHG + nλI
)−1

GHq, (21)

where I is the identity matrix with dimension (2M + 1)× (2M + 1), [q]k = qk and [c]m = cm

and G is a matrix of dimension n× (2M + 1) and entries [G]km = bm,k, where bm,k is given
by (18).
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2.4 Examples

In this section we present a detailed example to test the performance of the recovery al-
gorithms presented above. The input space is a space of trigonometric polynomials with
signals that are bandlimited with maximum frequency of 50 Hz and periodic with period
0.5sec. In order to avoid the periodic boundary effects that do not appear in practice, the
tested signals were restricted to a time interval of length of 0.25 sec.

First the signal was encoded with a pair of ON-OFF neurons with random thresholds for 10
different noise levels. At each noise level the reconstruction algorithm of Proposition 1 was
applied for 50 different values of the smoothing parameter λ. Note that the noise levels of the
two branches were equal and on average each branch produced roughly 40 spikes. The exact
parameters of the neuron pair were δ1 = −δ2 = 0.1, h11(t) = h22(t) = 0.15 exp(−t/0.01)1{t>0}

and h12 = h21(t) = 0.01 exp(−t/0.015)1{t>0}.
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Figure 2: Mean Reconstruction Signal-to-Noise Ratio for a stimulus encoded with a) a pair
of ON-OFF neurons, and b) an IAF neuron.

Figure 2(a) shows the performance of the algorithm in terms of the signal-to-noise ratio
(SNR) averaged over 10 repetitions. Note that the standard error of the mean (SEM) was
always below 1 dB (not shown). It can be seen that as the variance of the thresholds
decreases, the quality of reconstruction improves and practically reaches excellent recovery
(50 dB SNR) for low noise levels. Moreover it can be observed that the smoothing parameter
that gives the optimal reconstruction slowly increases with the variance of the thresholds.
This is also expected as increased threshold variability essentially increases the noise level in
the t-transform and thus calls for more smoothing (larger λ) during reconstruction.

Figure 2(b) shows a similar figure for the case when the stimulus is encoded with an LIF
neuron. The parameters of the neuron were b = 2.5, δ = 0.8, R = 30 and C = 0.01 and
the neuron produced an average of roughly 75 spikes per trial. The qualitative behavior of
the SNR is the same as in the previous case of the ON-OFF neural circuit and exhibits a
graceful degradation of the SNR as the threshold variability increases.

A close observation of the two figures shows that for the same level of noise power, the
stimulus encoded with the ON-OFF neural circuit can be reconstructed with a substantially
higher SNR than the one encoded with the LIF neuron. An explanation for this comes
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from the observation of the t-transform equations (5) and (13). In the case of the ON-OFF
neural circuit, the spikes of the circuit correspond to irregular samples of the signal at values
that are related to the thresholds. Therefore each random measurement has a mean that
is in general away from zero and thus the effect of the threshold variability is limited. The
situation is different for the LIF neuron. Due to the existence of the bias b, the neuron
fires even if the contribution of the stimulus is minimal. Moreover the integrator averages
out the contribution of zero mean signals. Therefore, the mean-to-standard deviation for
the corresponding random samples is much lower and consequently the effect of threshold
variability much larger.
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3 Encoding and Decoding of Visual Stimuli

In this section we extend the formalism presented above to space-time varying visual stimuli.
The signals belong again to a space of trigonometric polynomials with appropriate param-
eters. The neural encoding architecture consists of a population of spiking neural circuits
with spatial receptive fields, such as center-surround and Gabor, that are selective to certain
features of the input stimulus. These have been widely used to model receptive fields in the
retina, LGN and V1. The spiking mechanisms of the circuits are either integrate-and-fire
or ON-OFF with thresholding and feedback, as analyzed in the previous section, and are
assumed to have random thresholds. We note that the methodology employed here is very
general and allows for an arbitrary combination of the receptive fields and spiking neuron
models.

By establishing the t-transform of the encoding architecture, we show how the population
of spike trains is equivalent with a noisy inner product representation of the input visual
signal. We then derive an optimal reconstruction algorithm based on the theory of smoothing
splines. We test the algorithm for both the relatively simple case of synthetic video streams
as well as for the case of natural scenes.

3.1 The Space of Trigonometric Visual Stimuli

We denote by V the space of trigonometric video sequences with spatial bandwidths Ωx

and Ωy, temporal bandwidth Ωt, and order (resolution) Mx, My, Mt, respectively. The video
sequences I ∈ V are periodic and can be completely defined on the grid D = Sx × Sy × T

where

Sx = [−Sx/2, Sx/2], Sx = 2πMx/Ωx,

Sy = [−Sy/2, Sy/2], Sy = 2πMy/Ωy,

T = [−T/2, T/2], T = 2πMt/Ωt.

(22)

With ωMt
= Ωt/Mt, ωMx

and ωMy
similarly defined, the space V consists of all the functions

of the form

I(x, y, t) =

Mx
∑

mx=−Mx

My
∑

my=−My

Mt
∑

mt=−Mt

amx,my ,mt
exp

(

jmxωMx
x + jmyωMy

y + jmtωMt
t
)

. (23)

The space endowed with the inner product 〈·, ·〉 : V × V 7→ C

〈I1, I2〉 =

∫

D

I1(x, y, t)I2(x, y, t)dxdydt, (24)
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is a Hilbert space with dimension (2Mt + 1)(2Mx + 1)(2My + 1) and the set of functions

emx,my ,mt
(x, y, t) =

1
√

SxSyT
exp

(

jmxωMx
x + jmyωMy

y + jmtωMt
t
)

(25)

constitutes an orthonormal basis for V. It is clear that the functions above can be written
into the form

emx,my ,mt
(x, y, t) = emx

(x)emy
(y)emt

(t).

3.2 Encoding of Visual Stimuli and the t-Transform

The general encoding architecture is shown in Figure 3. The input video I is filtered by a
set of spatial receptive fields Dj, j = 1, 2, . . . , N . The resulting dendritic currents vj, j =
1, 2, . . . , N , serve as the input to N spiking neural circuits realized with IAF neurons or
ON-OFF threshold-and-fire neuron pairs.

D1(x, y)

DN (x, y)

v
1(t)

v
N (t)

D2(x, y)

v
2(t)

Neural 

Circuit 1

(t11
k

)

.

.

.

(t1M

k
)

Neural 

Circuit 2

.

.

.

Neural 

Circuit N

.

.

.

(t2M

k
)

(tNM

k
)

(t21
k

)

(tN1

k
)

y

t

x

I(x, y, t)

Figure 3: Architecture for Encoding Visual Stimuli.

Filtering the video stream with the receptive field of the neural circuit j gives the receptive
field output vj(t) which amounts to

vj(t) =

∫

S

Dj(x, y)I(x, y, t) dx dy, (26)

14



where S = Sx × Sy.

Neural spiking is interpreted here as a series of linear functionals acting on the input stimulus.
In what follows the left superscripts T,S and D indicate action (of functionals) on the temporal,
spatial and spatio-temporal domain, respectively. Following the discussion of section 2, the
t-transform of i-th branch of the j-th neural circuit is described by

TLi
kv

j = qji
k + εji

k , (27)

where TLi
k : H 7→ R is a linear functional. This functional is an instantiation of the evaluation

functional at time tjik defined in (6) for the case of the ON-OFF neuron pair or the linear
functional defined in (15) for the case of the LIF neuron, and εji

k ∼ N (0, (σji)2). Note that
(26) can be rewritten in a functional form as

SLjI =

∫

S

Dj(x, y)I(x, y, t) dxdy = vj(t). (28)

Combining (27) and (28) we obtain

DLji
k I = qji

k + εji
k , (29)

where DLji
k : V 7→ R is a linear functional given by DLji

k = TLi
k

SLj . Therefore with each
spike (or spike pair) we can associate a linear functional acting on the input visual stimulus.
We seek again to express these functionals in an inner product form. The following lemma
provides the needed representation.

Lemma 1. The t-transform can be written in inner product form as

〈I, φji
k 〉 = qji

k + εji
k , (30)

where φji
k is of the form of the right-hand-side of (23) with

aji
mx,my ,mt,k

= (SLje−mx,−my
)(TLi

ke−mt
). (31)

Proof: The representation result holds because of the Riesz representation theorem. To
find the coefficients, we have that

aji
mx,my,mt,k

= 〈φji
k , emx,my,mt

〉 = 〈emx,my,mt
, φji

k 〉 = DLji
k (e−mx,−my ,−mt

) = (SLje−mx,−my
)(TLi

ke−mt
).

The first term of (31) is independent of the spiking mechanism and equals to

SLje−mx,−my
=

1
√

SxSy

∫

S

Dj(x, y) exp
(

−jmxωMx
x − jmyωMy

y
)

dxdy := dj
mx,my

, (32)

whereas the second term equals to bi
mt,k

, given by (9) for the ON-OFF neuron case and (18)
for the case of the LIF neuron. Therefore

aji
mx,my ,mt,k

= dj
mx,my

bi
mt,k. (33)
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3.3 Visual Stimulus Decoding

As before, an estimate of the visual stimulus I based on the set of t-transform equations, as
imposed by spike trains, satisfies

Î = argmin
I∈V

(

N
∑

j=1

M
∑

i=1

1

(σji)2

(

nij
∑

k=1

(

qji
k − 〈I, φji

k 〉
)2

)

+

(

N
∑

j=1

M
∑

i=1

nij

)

λ‖I‖2

)

. (34)

We have the following theorem

Theorem 1. The minimizer Î is given by

I(x, y, t) =

Mx
∑

mx=−Mx

My
∑

my=−My

Mt
∑

mt=−Mt

cmx,my ,mt
emx,my ,mt

(x, y, t) (35)

where cmx,my,mt
are suitable coefficients given by the solution of the system of equations

c = (GHG + nλI)−1GHq, (36)

where n =
∑N

j=1

∑M
i=1 nji, q = [q1,q2, . . . ,qN ]T , qj =

[

1
σj1 q

j1, 1
σj2 q

j2, . . . , 1
σjM qjM

]T
and

[qji]k = qji
k , c is a column vector containing (2Mx + 1)(2My + 1)(2Mt + 1) entries traversing

all possible subscript combination of ordered indices mx, my, mt for cmx,my ,mt
. The entries of

the matrix G are given by

G =

[

1

σ11
G11,

1

σ12
G12, . . . ,

1

σ1M
G1M , . . . ,

1

σN1
GN1,

1

σN2
GN2, . . . ,

1

σNM
GNM

]H

,

where
Gji =

[

A
ji
1 ,Aji

2 , . . . ,Aji
nji

]H
, (37)

A
ji
k is a row vector containing (2Mx + 1)(2My + 1)(2Mt + 1) entries traversing all possible

subscript combination of aji
mx,my,mt,k

defined in (33) in the same order as in c, for all i =
1, 2, . . . , N ; j = 1, 2, . . . , M and k = 1, 2, . . . , nji.

The decoding circuit (Time Decoding Machine) is depicted in Figure 4.
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Figure 4: Architecture for Decoding Visual Stimuli.

4 Examples

In this section we present two examples that demonstrate the performance of our algorithm
and highlight its key features. The first example describes the encoding of a synthetic video
stream with a population of ON-OFF neural circuits, with center-surround receptive fields
arising in the retina and LGN. The second example deals with the encoding of a natural
scene flow with a population of IAF neurons, with receptive fields forming a Gabor wavelet
filterbank arising in V1. We provide detailed recovery statistics as well as videos that compare
the original natural scenes with the reconstructed ones. We explicitly show the visual error
signal and the spectrum of the error signal as a function of time for various random threshold
distributions (Gaussian and Gamma) and distribution parameters. The videos are part of
the supplementary material.

4.1 Synthetic Video Example

A synthetic (real) video stream was constructed based on equation (23), with Mx = My =
Mt = 8 and domain D = [−2, 2] × [−2, 2] × [−0.1, 0.1]. The maximum temporal bandwidth
was 20 Hz and the spatial bandwidth 1 Hz in each direction. The video stimulus was encoded
with a population of symmetric ON-OFF circuits (presented in section 2.2), identical to
each other with parameters δ1 = δ2 = 0.05, h12(t) = h21(t) = 0.01 exp(−t/0.015)1{t>0} and
h11(t) = h22(t) = 0.5 exp(−t/0.01)1{t>0} (time in seconds). Each threshold was chosen to be
distributed according to a Gaussian distribution, with a threshold variability of 1%, i.e., σ =
δ/100. The receptive fields formed a filterbank generated from Difference-of-Gaussian (DoG)
mother wavelet that has been used to model retinal ganglion cells (RGCs) [27, 28]. The
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filterbank consisted of 5 different scalings and suitable number of translations to ensure that
in each scaling, the filters extend to the whole spatial domain. We performed 8 simulations
with different number of neuron pairs. In each simulation, we gradually decreased the
distance between the neighboring pairs in each scaling to cover the spatial domain more
tightly.
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]

SNR and PSNR vs # of Neurons Fired and # of Spikes
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SNR

# of Spikes: 625 934 49171264 1683 2497 38273267

Figure 5: Performance of the reconstruction algorithm as a function of the number of active
circuits/spikes that encode the stimulus.

In Figure 5 we show the performance of the reconstruction algorithm (for fixed λ = 10−6)
as a function of the number of neuron pairs, resulting from different spacing of them. The
x-axis corresponds to the number of neuron pairs that actually fired at least one spike. The
total number of spikes is also depicted along the same axis. As it can be seen, the quality
of the reconstruction (SNR, PSNR [13]) improves as more neurons are used to encode the
stimulus. These results demonstrate that increasing the number of neurons achieves a better
encoding of the input stimuli; they are consistent with basic evolutionary thought [11]. The
percentage of the neuron pairs that fired was in all cases around 70%. No specific increasing
or decreasing pattern of this percentage was found as the total number neurons was increased.

4.2 Natural Scene Example

The second example pertains to a natural video scene where the flight initiation of a
Drosophila was recorded with a high-quality digital camera [29]. The neural architecture
that was used to encode this signal, consisted of a population of IAF neurons with Gabor
receptive fields. Although the flight of the fruit fly imposed strong requirements on the en-
coding architecture the decoding circuit was able to recover the visual stimulus even under
noisy conditions (see Supplement).

18



4.2.1 Modeling Natural Scenes as Trigonometric Polynomials

The video had a frame rate of 6 KHz (maximum temporal bandwidth of 3 KHz) and a
duration of 120 frames (20 msec) and a spatial resolution of 96×96 pixels. For simplicity the
video was dilated in the time domain to have length of 1 sec (maximum temporal bandwidth
60 Hz). The spatial domain was chosen (arbitrarily) to be [−3, 3] × [−3, 3], yielding a
maximum spatial bandwidth of 8 Hz in each direction. To avoid the effects of periodicity,
the spatial domain was embedded within a space of trigonometric polynomials with domain
[−5, 5] × [−5, 5], yielding a fundamental frequency of 0.1 Hz in each direction. For similar
reasons the temporal domain was embedded into one of 40 msec duration (fundamental
frequency 0.5 Hz).

Figure 6: Modeling a Flow of Natural Scenes.

Fourier analysis on the input stimulus indicated that in the frequency domain most of the
energy of the input signal was included in the cylinder {(ft, fx, fy) : |ft| ≤ 4 Hz, 0 <
√

f 2
x + f 2

y ≤ 4 Hz}. Therefore the resolution of the space of trigonometric space-time func-

tions was chosen to be Mt = 4/0.5 = 8 and 0 <
√

m2
x + m2

y ≤ M , with Mx = My = M =
4/0.1 = 40. The importance of the choice of M is highlighted in Figure 6: The left column in
Figure 6 shows frames 10, 50 and 80 of the original visual stimulus. The next three columns
show the same frames when the order of the space of trigonometric polynomials used to
model the visual input was M = 40, M = 30 and M = 20. The threshold values of the
neural circuits of the encoding architecture were deterministic. The Structural Similarity
Index (SSIM) [18] values are shown in the table below:
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Order
M=40 M=30 M=20

Frame
10 0.9453 0.7860 0.6781
50 0.9403 0.8935 0.7836
80 0.9711 0.9377 0.8918

These values of the SSIM, that we shall investigate in more detail below, are in agreement
with the visual perception that the quality of the model is increasing with M . Clearly,
the value of the order of the space of trigonometric polynomials depends on the frequency
content, and thereby, on the statistics of the visual field. Increasing M leads to improved
stimulus recovery. It also leads to an increase in the complexity of the decoding algorithm.
Note that in this setting, increasing the order of the space results in an increase of the
spatial bandwidths Ωx and Ωy as the fundamental frequencies are determined by the input
video and are kept fixed. This is different from the case when the bandwidth is fixed and
the order increases. In the latter case, the fundamental frequency becomes smaller and the
space converges in the limit to the one of bandlimited functions.

These brief considerations further highlight the flexibility of the spaces of trigonometric poly-
nomials to accurately model natural scenes, while taking into consideration their statistics.

4.2.2 Recovery of Natural Scenes

The video stimulus was encoded with a population of 3,408 IAF neurons. The receptive
fields of the population formed a spatial Gabor filterbank generated with the same mother
wavelet [30]. The filterbank consisted of combinations between 8 rotations, 5 dilations and
3 to 11 translations in each direction depending on whether the scaling resulted in a wavelet
function with coarse (few translations) or fine resolution (many translations). All the IAF
neurons were assumed to be ideal (R → ∞) and all had C = 1. The bias varied from neuron
to neuron with a mean value of 0.39.

Initially we tested neurons with random thresholds drawn from a Gaussian distribution with
mean δ = 0.03 and variance σ2 for all neurons. At every repetition the number of spikes
produced was around 46,500. No large deviations were observed as a function of threshold
variability.

Figure 7(a) shows the performance of the recovery algorithm for various noise levels and
various values of the smoothing parameter λ. The threshold variability is defined as the co-
efficient of variation of the thresholds, i.e., σ/δ. Note that for large threshold variability, the
Gaussian distribution was truncated in order to impose positive threshold values. However,
the mean and the variance of these Gaussian distributions were adjusted such that the trun-
cated Normal distributions have the same mean δ = 0.03 and the same threshold variability.
In the left column the SNR of the recovered natural scenes is plotted, whereas in the right
column the SSIM is shown. As it can be seen, the reconstruction improves as the threshold
variability decreases and it can reach quite high values, e.g., SSIM > 0.9. For extreme values
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Figure 7: Performance of the recovery algorithm for Gaussian and Gamma distributed
thresholds.

of threshold variability (e.g., σ/δ = 1), we see that the quality of the reconstruction is poor,
e.g., SSIM ≈ 0.1.

The same experiment was also performed with neurons with random thresholds drawn from
a Gamma distribution. The results are depicted in Figure 7(b). For small threshold variabil-
ity values, e.g., σ/δ < 0.1, the Gamma distribution “resembles” a Gaussian distribution. It
starts to visibly differ from the (truncated) Gaussian distribution at higher threshold vari-
ability levels. For example for σ/δ = 1, the Gamma distribution is exactly an exponential
and is significantly different from the (truncated) Gaussian. The maximum difference of the
recovery results when using the two distributions was 0.91dB for SNR and 0.0239 for SSIM
and was mostly observed when the threshold variability was high. Overall, our simulation
results shown in Figure 7 indicate that the quality of the recovered stimulus displays small
differences when encoding with neural circuits with random thresholds drawn from these two
distributions.

Finally, Figure 8 shows the original visual stimulus, the recovered stimulus, the error and the
spectrum of the error for frame 10, 50 and 80, respectively. The coefficient of variation was
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Figure 8: Recovery of the Natural Scenes Flow.

set to 1% around the mean (Gaussian thresholds). As can be seen in Figure 8, the quality of
stimulus recovery is very high. Moreover, the noise of the recovered natural scenes is white
when restricted to the frequency support of the input space. Real-time videos exploring the
behavior of the encoding architecture with neural circuits with random thresholds drawn
from both Gaussian and Gamma distributions, the nature of the recovery error, as well
stimulus recovery for deterministic threshold values are shown in the Supplement.

22



5 Reconstruction of Infinite-Dimensional Stimuli

The results presented so far, can be easily extended to the case of infinite-dimensional stimuli.
The tools required are provided by the theory of smoothing splines [9] in Reproducing Kernel
Hilbert Spaces (RKHS) [10]. In essence, a Hilbert space (H, 〈·, ·〉) defined on a domain T is
called a RKHS if it has the property that the evaluation functional at every point t ∈ T is
bounded. If H is a RKHS then there exists a unique function K : T × T 7→ C, called the
reproducing kernel (RK) such that K(·, t) ∈ H and for any u ∈ H and any t ∈ T the so
called reproducing property

〈u, K(·, t)〉 = u(t)

holds. It is easy to see that the space of trigonometric polynomials, as well as any finite-
dimensional vector space, is a RKHS. It’s reproducing kernel, called the Dirichlet kernel, is
given by

KM(s, t) =

M
∑

m=−M

em(s)em(t) =
1

T

M
∑

m=−M

ejmωM (s−t) =
2M + 1

T

sinc
(

(2M+1)Ω
2M

(s − t)
)

sinc
(

Ω
2M

(s − t)
) , (38)

where sinc(x) = sin(x)/x. By letting M → ∞ it is easy to see that

lim
M→∞

KM(s, t) =
Ω

π
sinc(Ω(s − t)) =

sin(Ω(s − t))

π(s − t)
,

i.e., exactly is the RK for the space of bandlimited functions. Therefore trigonometric
polynomials are a natural, finite, discretization of bandlimited functions.

In the case of finite-dimensional spaces, we can express any linear measurement (functional)
Lku in an inner product form 〈u, χk〉. The sampling function is evaluated in terms of the
space basis with appropriate coefficients (see, e.g., eq. (8),(9)). In the general RKHS the
sampling functions are computed using the reproducing property [17]:

χk(t) = 〈χk, K(·, t)〉 = 〈K(·, t), χk〉 = LkK(·, t).

Suppose now that a receiver reads the following noisy measurements

qk = 〈u, χk〉 + εk, (39)

where εk are i.i.d. Gaussian random variables. The following theorem is a special case of a
very general result in the theory of smoothing splines, proven in [9].
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Theorem 2. The minimizer û of

n
∑

k=1

(qk − 〈u, χk〉)2 + nλ‖u‖2, (40)

is given by

û =
n
∑

k=1

dkχk. (41)

Furthermore, the optimal coefficients [d]k = dk satisfy the matrix equation

d = (F + nλI)−1q, (42)

where [F]kl = 〈χk, χl〉 and [q]k = qk, for all k, l = 1, 2, . . . , n.

The above theorem states that the minimizer of the cost functional is a linear combination
of the sampling functions. Since the sampling functions can be obtained from spike times
the decoding problem becomes tractable.

For a finite-dimensional space (41) and (20) are equivalent. To see that, note that χk =
∑

m bk,mem and (41) becomes

û =
n
∑

k=1

dk

∑

m

bk,mem =
∑

m

(

n
∑

k=1

bk,mdk

)

em.

Moreover, since F = GGH , it suffices to prove that GHd = c. Since

(

GGH + nλI
)

d = q

(

GHG + nλI
)

c = GHq

and therefore,

(

GHG + nλI
)

c = GH
(

GGH + nλI
)

d =
(

GHG + nλI
)

GHd

and the result follows.
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6 Discussion - Related Work

Our decoding approach is based on two steps: First, each inter-spike interval is associated
with a generalized measurement of the input stimulus, in the form of an inner product
operation. Second, based on these measurements, the reconstructed stimulus minimizes
a certain cost functional. As it was seen from the examples, this methodology provides
excellent stimulus recovery for highly complex stimuli, such as natural scenes. However,
there are two questions that naturally arise.

First, the t-transform equations do not include information about the membrane potential.
If tk, tk+1 are two consecutive spikes, then V (t) < δk+1 for all t ∈ [tk, tk+1], where δk+1 is
the threshold of the neuron in the same interspike interval. Such inequality constraints were
considered in [31] in the context of maximum likelihood estimation of the parameters of a
LIF neuron. In our problem setting they can be introduced as additional hard constraints
for stimulus recovery solved using quadratic programming methods [32]. However, the incor-
poration of inequality constraints in simulations did not show a marked improvement in the
reconstructed stimulus. In general, the equality constraints of the t-transform equations ap-
pear to be much more informative than the inequality constraints. Note that in the noiseless
case, the t-transform completely determines the input stimulus under certain spike density
conditions [11]. Intuitively, the inequality constraints ensure that the reconstructed stimulus
does not fire additional spikes in the interval [tk, tk+1]. Assuming that an additional spike
occurs, the reconstructed stimulus oscillates fast on the newly formed interspike intervals
thereby resulting in a high energy signal. However, even without the inequality constraints,
such high energy stimuli are prevented by the regularizer. In the random threshold case,
the inequality constraints hold in a probabilistic sense and call for tools from stochastic
programming [33]. For high threshold variance values, such constraints may be helpful for
stimulus reconstruction and need to be thoroughly examined.

Second, what is the best choice of the cost functional? Our approach here follows the classical
regularization approach [34]. Such regularized cost functionals appear in stochastic filtering
as they lead to minimum variance unbiased estimators (MVUE)[10]. For inputs modeled
as trigonometric functions with Gaussian i.i.d. coefficients the methodology employed here
gives an optimal solution. The regularizer controls the energy of the stimulus by giving a
uniform penalty across all the stimulus frequencies (basis functions).

Our model encoding architecture combines the following, desirable, characteristics: use of
temporal codes, receptive fields with operational significance and neural circuits with feed-
back for encoding in the presence of noise. It builds upon results obtained previously in the
field. We shall focus in the following only on a narrow subset of the vast literature.

Recordings of cell responses to visual stimuli exhibit sub-millisecond precision for many
different cell types of the early visual system, including retinal ganglion cells (RGCs) and
lateral geniculate nucleus (LGN) neurons [20], [35], [36]. Such recordings suggest that preci-
sion contributes fundamentally to the neural code [37]. A number of computational spiking
neuron models have been published [20], [26], [24] that show a certain degree of fit to neural
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recordings. In this paper, we used spiking neuron models inspired from the aforementioned
ones. By showing that these models constitute tractable neural circuit building blocks, we
constructed a large scale model architecture for the encoding of natural video scenes. The
spatiotemporal neural encoding architecture turned out to be analytically tractable as well.

Individual neurons in the early visual system exhibit remarkable selectivity to various char-
acteristics of the input stimuli (scale, position, orientation, direction of movement, etc). This
selectivity is inherited from the spatiotemporal receptive fields [38] of the neurons that filter
the input. A widely accepted model for the population of receptive fields is the one of space-
time wavelet filterbank [30, 39] which highlights the encoding properties and capabilities of
the visual system, and can reproduce many properties of the ensemble response , orientation
and direction selectivity [40], etc. Such structures have also been shown to lead to optimal
coding, in terms of sparsity, of natural scenes [41]. A few computational models that ex-
ploit the structure of the receptive field population exist in the literature, for example the
deterministic models in [42], [43]. These models however operate under the rate assumption
and represent video streams on a frame-by-frame basis. A stochastic model appeared in
[44] where the maximum-a-posteriori (MAP) decoder for images encoded with a population
neurons with center-surround receptive fields was derived.

In our model, the receptive fields are integrated with the spiking mechanism of the neurons
and appear explicitly in the t-transform of the encoder. Hence the action of the receptive
fields on the stimulus is fed directly into the neural spiking and consequently used by the
optimal stimulus reconstruction algorithm. Our model assumes prior knowledge of the re-
ceptive fields and, naturally, the quality of the decoding depends on quality of knowledge of
these receptive fields. In the case where these are unknown, similar methods can be used
to identify these, as it was shown in [45] for determining the parameters of a LIF neuron.
As our examples demonstrated, the receptive fields can have many different shapes (mother-
wavelet). What is critical, however, is the number (or density) of filters. As the results in
section 4.1 suggested, there is a density threshold upon which minimal improvement can
be made. In essence this is achieved when the receptive fields cover completely the spatial
domain, and depends on the spike density of the neurons that respond to the time-varying
stimuli [13].

Our model exhibits stimulus dependent dynamics and attributes neuronal variability to
the effect of random thresholds. As a result the measurements provided by neural spiking
are independent both across different neurons and within each individual neuron. Conse-
quently every single inter-spike interval contributes an independent noisy measurement that
is included in the regularized cost functional. Thus our model architecture can efficiently
reconstruct complex stimuli such as natural scenes, using a relatively small number of spikes
and with moderate complexity.
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7 Conclusions

We presented a formal model for the encoding and reconstruction of visual stimuli with a
spiking neural architecture akin to the neural ensembles of the early visual system. We
described how information is encoded in the time domain and worked out in detail a re-
construction algorithm, based on regularization techniques, for the case of integrate-and-fire
neurons as well as for the case of ON-OFF neural circuits with thresholding and feedback. We
demonstrated the effectiveness of our algorithm by reconstructing video streams as complex
as natural scenes, based solely on the spike times and the neuron parameters.

The paper also introduced trigonometric polynomials as a formal modeling tool for stim-
uli such as natural scenes. We showed that trigonometric polynomials are a natural dis-
cretization of band-limited functions, with added modeling flexibility and thus suitable for
applications.

In terms of future directions, we note that the optimization criteria space as well as the
stimulus modeling options remain largely unexplored. For example, the right part of (34)
is just the energy of the stimulus. Based on the properties of the stimulus or the desired
computational task to be performed, other criteria can be used [15] and other spline models
can arise [46]. Moreover, the spaces of trigonometric polynomials have great flexibility and
can adapt to the statistical properties of the expected inputs [47]. These, along with other
issues, will be the subject of future research.
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A Proof of Stimulus Reconstruction

We have already given the minimizers to the cost functions in (10), (19) and (34). Here we
present a general proof for minimizers of such cost functions in finite dimensional Hilbert
spaces.

Proposition 3. Assume H is a finite dimensional Hilbert space with orthonormal basis
em, m = 1, 2, . . . , M . We define the cost function to be

n
∑

k=1

(qk − 〈u, χk〉)2 + nλ‖u‖2, (43)

where χk ∈ H are a set of n sampling functions that gives measurements qk + εk, for all
k = 1, 2, ..., n, and λ is the Tikhonov regularization parameter and ‖ · ‖ denotes the norm in
H. Also, we assume χk =

∑M
m=1 bm,kem. The minimizer to this cost function in H is given

by

û =

M
∑

m=1

cmem, (44)

where cm, m = 1, 2, . . . , M are appropriate coefficients given by the solution of equation

(

GHG + nλI
)

c = GHq (45)

with [G]km = bm,k, [q]k = qk and [c]m = cm, for all k=1,2,. . . ,n, m = 1,2,. . . ,M.

Proof: Since the minimizer is in H, it is of the form (44). In matrix form (43) can thus be
written as

J(c) = ‖q −Gc‖2 + nλcHc, (46)

with both terms on the RHS strictly convex. Therefore the cost function J is minimized if
the gradient of J equals to zero, i.e.,

∇c (J) = 0

∇c

(

qHq − 2qHGc + cHGHGc + nλcHc
)

= 0

−GHq +
(

GHG + nλI
)

c = 0
(

GHG + nλI
)

c = GHq.

(47)

Note that GHG + nλI is nonsingular even for λ = 0, and therefore, c amounts to

c =
(

GHG + nλI
)−1

GHq. (48)

�

28



References

[1] D. Warland, P. Reinagel, and M. Meister. Decoding Visual Information From a Popu-
lation of Retinal Ganglion Cells. Journal of Physiology, 78:2336–2350, 1997.

[2] G.B. Stanley, F.F. Li, and Y Dan. Reconstruction of Natural Scenes from Ensemble
Responses in the Lateral Geniculate Nucleus. Journal of Neuroscience, 19(18):8036–
8042, 1999.

[3] Y. Miyawaki, H. Uchida, O. Yamashita, M. Sato, Y. Morito, H. Tanabe, N. Sadato,
and Y. Kamitani. Visual Image Reconstruction from Human Brain Activity using a
Combination of Multiscale Local Image Decoders. Neuron, 60:915–929, 2008.

[4] K. Kay, T. Naselaris, R. Prenger, and J. Gallant. Identifying natural images from human
brain activity. Nature, 452:352–356, March 2008.

[5] W.J. Ma, J.M. Beck, P.E. Latham, and A. Pouget. Bayesian Inference with Probabilistic
Population Codes. Nature neuroscience, 9(11):1432–1438, 2006.

[6] G. Gestri, HAK Mastebroek, and WH Zaagman. Stochastic Constancy, Variability and
Adaptation of Spike Generation: Performance of a Giant Neuron in the Visual System
of the Fly. Biological Cybernetics, 38(1):31–40, 1980.

[7] D.S. Reich, J.D. Victor, B.W. Knight, T. Ozaki, and E. Kaplan. Response Variability
and Timing Precision of Neuronal Spike Trains in Vivo. Journal of neurophysiology,
77(5):2836–2841, 1997.

[8] B.W. Knight. Dynamics of Encoding in a Population of Neurons. Journal of General
Physiology, 59(6):734–766, 1972.

[9] G. Wahba. Spline Models for Observational Data. Society for Industrial Mathematics,
1990.

[10] A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability
and Statistics. Kluwer Academic Publishers, 2004.

[11] Aurel A. Lazar and Eftychios A. Pnevmatikakis. Faithful Representation of Stimuli with
a Population of Integrate-and-Fire Neurons. Neural Computation, 20(11):2715–2744,
2008.

[12] Aurel A. Lazar and Eftychios A. Pnevmatikakis. A Video Time Encoding Machine. In
IEEE International Conference on Image Processing, pages 717–720, San Diego, CA,
October 12-15, 2008.

[13] Aurel A. Lazar and Eftychios A. Pnevmatikakis. Video Time Encoding Machines. IEEE
Transactions on Neural Networks, 2009. submitted.
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