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Abstract

Past work demonstrated how monochromatic visual stimuli could be faith-
fully encoded and decoded under Nyquist-type rate conditions. Color visual
stimuli were then traditionally encoded and decoded in multiple separate
monochromatic channels. The brain, however, appears to mix information
about color channels at the earliest stages of the visual system, including the
retina itself. If information about color is mixed and encoded by a common
pool of neurons, how can colors be demixed and perceived?

We present Color Video Time Encoding Machines (Color Video TEMs) for
encoding color visual stimuli that take into account a variety of color repre-
sentations within a single neural circuit. We then derive a Color Video Time
Decoding Machine (Color Video TDM) algorithm for color demixing and re-
construction of color visual scenes from spikes produced by a population of
visual neurons. In addition, we formulate Color Video Channel Identifica-
tion Machines (Color Video CIMs) for functionally identifying color visual
processing performed by a spiking neural circuit.

Furthermore, we derive a duality between TDMs and CIMs that unifies the
two and leads to a general theory of neural information representation for
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stereoscopic color vision. We provide examples demonstrating that a mas-
sively parallel color visual neural circuit can be first identified with arbitrary
precision and its spike trains can be subsequently used to reconstruct the
encoded stimuli. We argue that evaluation of the functional identification
methodology can be effectively and intuitively performed in the stimulus
space. In this space, a signal reconstructed from spike trains generated by
the identified neural circuit can be compared to the original stimulus.

Keywords: stereoscopic color vision, massively parallel neural circuits,
time encoding machines, time decoding machines, channel identification
machines.

1. Introduction

The sensation of light for many animals is primarily due to two of its proper-
ties. Light intensity provides information about the brightness of the scene
and the shape of objects, while its wavelength provides information about the
color. Although it has long been known that the separation of color space
in humans and some of the primates is mediated by three types of cone
photoreceptors having peak sensitivity at different wavelengths (roughly cor-
responding to red, green and blue light), the exact nature of color processing
and representation downstream of photoreceptors remains to be elucidated
(Dacey, 2000; Solomon & Lennie, 2007).

The study of color vision is complicated by the fact that the early visual
system employs a large number of neurons to process and represent visual
stimuli. This processing involves a variety of cell types, complex wiring
of neurons into canonical circuits and a large number of outputs (Masland,
2012; Gollisch & Meister, 2010; da Silveira & Roska, 2011; Lazar et al., 2013).
Furthermore, neurons in the early visual system appear to combine signals
from different types of cones, thereby mixing colors on the level of individual
cells so that a spike train of a single cell carries information about multiple
colors present in the visual scene (Dacey, 2000; Solomon & Lennie, 2007). For
example, retinal ganglion cells (RGCs) exhibit opponent channel processing,
whereby differences between the responses of cones such as red vs. green or
blue vs. yellow or black vs. white is encoded.

How is color information represented in the activity of different types of visual
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neurons? Can we identify the color mixing performed by any given neuron?
Can the color information be demixed once it is encoded by spiking neurons
into an unlabeled set of spike trains?

In this paper, we approach these questions by proposing and studying a novel
class of massively parallel neural circuits with spiking neurons that model the
encoding of color visual scenes in early visual systems. For this novel class of
circuits, we investigate three different but interrelated problems: encoding,
decoding and functional identification.

Encoding describes the transformation of sensory inputs into neural codes,
e.g., spike trains, by the sensory system. In a closely related setting of
analog to digital conversion, the encoding procedure maps, or transforms,
analog input signals into discrete amplitude sequences.

Decoding is the process of inverting the transformation established by the
encoder. In other words, it is the process of reconstructing the sensory input
from the spikes generated by the encoder. While decoding may not take
place at every stage in the brain, it provides a quantification of the amount
of information encoded by the neural circuit under investigation.

Functional identification aims at inferring the transformation performed by
a neural circuit or system. In the setting of functional identification, the
inputs are known and the outputs are observable, while the functionality of
the neural circuit is unknown. Functional identification is critical in under-
standing the information processing taking place in biological systems and is
operationally significant to decipher what a neural circuit does.

In this paper, we apply formal methods seeking the unification of encoding,
decoding and functional identification algorithms operating on massively par-
allel neural circuits that share a common underlying representation of visual
information in the spike domain. Our formal methods are based on and ex-
tend upon the rigorous theory of Time Encoding Machines (TEMs), Time De-
coding Machines (TDMs) and Channel Identification Machines (CIMs).

TEMs are asynchronous nonlinear circuits that encode analog signals into
multi-dimensional spike trains (Lazar & Tóth, 2004; Lazar, 2004). They
naturally arise as models of early sensory systems. For a general TEM of
interest, the inputs are first filtered by a (linear) receptive field and then fed
to a spike generation mechanism (Lazar & Pnevmatikakis, 2008, 2011). The
spike generators can be viewed as asynchronous samplers, while the receptive
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fields can be considered akin to communication channels. Receptive fields
may be implemented by complex neural circuits in cascade with dendritic
trees feeding into the spike generator. TEMs have been investigated for both
single neuron and population configurations, with applications to multiple
sensory modalities, e.g., audition and vision (Lazar & Pnevmatikakis, 2008,
2011).

TDMs reconstruct time encoded analog signals from spike trains (Lazar &
Tóth, 2004; Lazar, 2004). Each TDM is a realization of an algorithm that
recovers the analog signal from the output of its TEM counterpart. TDMs
play important roles in understanding the encoding as well, since the decod-
ability of spike trains quantifies how much information about the encoded
stimuli is preserved in the spike sequence.

Functional identification of a neural circuit is formulated here in the setting
of CIMs (Lazar & Slutskiy, 2012). CIMs are algorithms that identify neural
circuit parameters (e.g., receptive fields and parameters of spike generators)
directly from spike times generated in response to a collection of test stimuli.
Some of the key advantages of parameter identification in the setting of CIMs
are (i) clear lower bounds on the number of test stimuli and spikes required
for identification can be specified and (ii) both synthetic and naturalistic
stimuli can be used (Lazar & Slutskiy, 2014a,b).

TEM, TDM and CIM algorithms are all based on spike time sequences in-
stead of average spike rates. They are versatile and have been applied in
many contexts, including, neural circuits encoding time-varying stimuli, nat-
ural visual stimuli and multi-sensory circuits (Lazar & Pnevmatikakis, 2008;
Lazar et al., 2010; Lazar & Slutskiy, 2013). However, they have typically
been used separately, within their own context. Here we bridge the theoreti-
cal formalism of TEMs, TDMs and CIMs in the context of color vision.

Previously, Video TEMs have been considered for mono-chromatic videos,
e.g., gray-scale visual stimuli (Lazar & Pnevmatikakis, 2011; Lazar et al.,
2010). Encoding of color visual stimuli was modeled as mono-chromatic
video encoding in separate color channels (Lazar & Zhou, 2012). We present
in this paper a Color Video TEM for modeling the encoding of color visual
stimuli that takes into account a variety of color representations in early
visual systems within a single neural circuit. A decoding (color demixing)
algorithm is devised that reconstructs color videos from a population of spike
trains. In addition, we formulate CIMs for functionally identifying receptive
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fields that carry visual information from multiple color channels. This allows
us to identify the spatio-temporal structure of the receptive fields in each of
the base color channels. We also demonstrate that demixing and identifica-
tion results hold in full generality for Stereoscopic Color Video TEMs and
CIMs, respectively.

Moreover, we extend the duality between TDMs and CIMs (Lazar & Slut-
skiy, 2012) and thereby obtain a general theory of neural representation of
color visual information. We provide examples to demonstrate that a mas-
sively parallel color video encoding neural circuit of unknown parameters
can be identified with arbitrary precision and its spike trains can be used to
reconstruct the encoded stimuli.

Given the extended duality between TEMs and CIMs, we argue that eval-
uation of the functional identification methodology can be effectively and
intuitively performed in the stimulus space. In this space the reconstructed
signals using spike trains generated by an identified neural circuit can be
compared to the original stimulus.

This paper is organized as follows. In section 2, we model the space of color
visual stimuli as a vector-valued Reproducing Kernel Hilbert Space (RKHS).
We formulate the encoding/decoding problem of color visual stimuli and
provide an algorithm for stimulus recovery. We also provide rigorous methods
for identifying circuits in the early visual system. In section 3 we present an
unified framework for quantitatively evaluating identification algorithms of
massively parallel neural circuits in the stimulus space and demonstrate the
use of decoding algorithms as a means of model verification. Extensions to
encoding, decoding and identification of stereoscopic color vision is dealt with
in section 4. Finally, section 5 provides a discussion of the results and their
implication, and future work.

2. Massively Parallel Neural Circuits for Color Vision

The majority of existing neural computation models employ grayscale or
monochrome stimuli to test and describe the computation performed by neu-
ral circuits of the visual system. An exception is Lazar & Zhou (2012) where
it is demonstrated how to encode an RGB (Red, Green and Blue) video
stream for each color using separate, dedicated circuits for each color com-
ponent.
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In this section we present a novel approach that formally models the mixing
of color information within a single neuron level, e.g., as performed by the
retina. We begin by describing how both synthetic and natural grayscale
stimuli can be effectively modeled as elements of a scalar-valued Reproducing
Kernel Hilbert Space (RKHS) (Berlinet & Thomas-Agnan, 2004). We then
extend the space of stimuli to a vector-valued RKHS to handle both color
and stereoscopic visual stimuli. Due to space constraints, we discuss video
stimuli only. However, images can be handled in a similar fashion.

2.1. Modeling Color Visual Stimuli

We model monochromatic visual stimuli u = u(x, y, t), (x, y, t) ∈ D, as el-
ements of an RKHS H. The elements of the space H are scalar valued
functions defined over the space-time domain D = Dx × Dy × Dt, where
Dx = [0, Tx], Dy = [0, Ty] and Dt = [0, Tt], with Tx, Ty, Tt ∈ R+. The
scalar functions represent the intensity of light at a particular point in a
two-dimensional space (x, y) at time t.

For practical and computational reasons we choose to work with spaces of
trigonometric polynomials. However, the theory developed below is quite
general and applies to many other RKHSs (examples include Sobolev spaces
and Paley-Wiener spaces; see Berlinet & Thomas-Agnan (2004) for an ex-
tensive list of alternatives). Each element u ∈ H is of the form

u(x, y, t) =
Lx∑

lx=−Lx

Ly∑
ly=−Ly

Lt∑
lt=−Lt

clxlyltelxlylt(x, y, t), (1)

with

elxlylt(x, y, t) =
1√

TxTyTt
exp

[
j

(
lxΩxx

Lx
+
lyΩyy

Ly
+
ltΩtt

Lt

)]
, (2)

where j denotes the imaginary number and Lx, Ly, Lt represent the order of
the space H in each corresponding variable. The elements of H are periodic
bandlimited functions with bandwidths Ωx,Ωy and Ωt in space and in time,
respectively. The period in each variable is associated with the space-time
domain and is defined as

Tx =
2πLx
Ωx

, Ty =
2πLy
Ωy

, Tt =
2πLt
Ωt

. (3)
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As already mentioned, the choice of the space of trigonometric polynomials
was motivated by the ease of representation and the associated computational
efficiency. In addition, the concept of bandwidth naturally arises from this
representation and will become important in devising bounds for decoding
and identification.

H is endowed with the inner product defined by

〈u,w〉H =

∫
D
u(x, y, t)w(x, y, t)dxdydt, (4)

where w denotes the complex conjugate of w. It is easy to see that the set
of functions

{elxlylt | lx = −Lx, ..., Lx; ly = −Ly, ..., Ly; lt = −Lt, ..., Lt}

forms an orthonormal basis in H. The reproducing kernel of H is a function
given by K : D× D→ R, where

K(x, y, t;x′, y′, t′) =
Lx∑

lx=−Lx

Ly∑
ly=−Ly

Lt∑
lt=−Lt

elxlylt(x− x′, y − y′, t− t′) (5)

satisfies the reproducing property

〈u,Kxyt〉H = u(x, y, t), for all u ∈ H, (6)

and Kxyt(x
′, y′, t′) = K(x, y, t;x′, y′, t′). The RKHS H is very effective in

modeling both synthetic and natural stimuli (Lazar et al., 2010). Moreover,
it allows for (i) easy interpretation of the encoding of color visual stimuli
as generalized sampling, (ii) easy derivation of sampling functions, and (iii)
derivation of a reconstruction algorithm that solves a spline interpolation
problem.

In what follows we denote the total dimension of H by dim(H) = (2Lx +
1)(2Ly + 1)(2Lt + 1), the spatial dimension of H by dimxy(H) = (2Lx +
1)(2Ly + 1) and the temporal dimension by dimt(H) = 2Lt + 1. Clearly,
dim(H) = dimxy(H) · dimt(H).

Color is the perception of the wavelength of light. Here we consider a discrete
representation of wavelength, which is naturally provided by multiple types of
cone photoreceptors having different peak spectral sensitivities. For example,
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it is well known that the trichromacy in human vision arises as a result of
the visual space being sampled by three different kinds of photoreceptors
at the very first stage of the visual system. Specifically, the L-, M-, and
S-cones of the retina provide an initial representation of the visual space in
terms of the red, green, and blue color channels, respectively. Subsequent
processing within and across these color channels affords enhanced scene
segmentation, visual memory, as well as perception and recognition of objects
and faces (Russell & Sinha, 2007; Gegenfurtner, 2003; Gegenfurtner & Rieger,
2000).

We now extend the problem setting presented above to the space of color
stimuli. Without loss of generality, we assume the traditional red, green and
blue, or RGB, color representation. We assume that color visual stimuli are
elements of the space of trigonometric polynomials. Each visual stimulus u
is a vector-valued function u : D→ R3 of the form

u(x, y, t) = [u1(x, y, t), u2(x, y, t), u3(x, y, t)]
T , (7)

where each of the component functions u1 (red channel), u2 (green channel)
and u3 (blue channel) is a scalar-valued function in the RKHS H. As the
space we have in mind is a direct sum of three orthogonal spaces H, we
denote this color visual stimulus space as H3. For simplicity, we assume that
the bandwidth and order of each of the considered subspaces are the same.
By construction, the space H3 is endowed with the inner product

〈u,w〉H3 =
3∑

m=1

〈um, wm〉H. (8)

RKHSs with vector-valued function elements have been studied in depth (see
Carmeli et al. (2006); Caponnetto et al. (2008) and reference within) and the
reproducing kernel of H3 is given by K : D×D→M(3,C), where M(3,C) is
the space of 3× 3 matrices (bounded linear operators on R3) given by

K =

 K1 0 0
0 K2 0
0 0 K3

 . (9)

and Km, m = 1, 2, 3, are reproducing kernels of H as in (5). The reproducing
property of H3 is given by

〈u,Kx,y,tv〉H3 = 〈u(x, y, t),v〉R3 , for all u ∈ H3 and v ∈ R3, (10)
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where Kx,y,tv ∈ H3 and is defined as

Kx,y,tv = K(x, y, t;x′, y′, t′)v. (11)

From the above, it is easy to see that for a unit vector em ∈ R3, m = 1, 2, 3,

um(x, y, t) = 〈u,Kx,y,tem〉R3 . (12)

Note that the dimension of H3 is dim(H3) = 3 · dim(H).

2.2. Neural Encoding Circuits for Color Vision

We now describe how the color visual stimuli of the previous section can be
faithfully encoded into a multidimensional sequence of spikes by a population
of spiking neurons. We employ a massively parallel neural circuit consisting
of thousands of neurons, in which each neuron is a fundamentally slow de-
vice capable of producing only a limited number of spikes per unit of time.
Our goal is to devise a set of conditions on the population of neurons that
guarantees a faithful, or loss-free, representation of color visual stimuli in the
spike domain.

Consider the massively parallel neural circuit shown in Fig. 1. The color
visual stimulus u consists of 3 components u1, u2, u3, as in (7). These
components (corresponding to the red, green, and blue channel, respectively)
are assumed to be extracted by the photoreceptors and subsequently encoded
by a population of N neurons. In the most general case, all neurons receive
information from each photoreceptor type and multiplex (mix) and encode
that information in the spike domain. Specifically, each neuron i is associated
with a multi-component linear receptive field, or kernel, hi(x, y, t), where

hi(x, y, t) =
[
hi1(x, y, t), h

i
2(x, y, t), h

i
3(x, y, t)

]T
. (13)

The components him(x, y, t),m = 1, 2, 3, i = 1, ..., N , are assumed to be causal
in the time domain Dt and have a finite support in the spatial domains
Dx and Dy. In addition, we assume that all components of the kernel are
bounded-input bounded-output (BIBO) stable. Therefore, the component
filters belong to the filter kernel space H = L1(D), where L1(D) denotes the
space of absolute integrable functions on D.
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 Neuron 1

 Neuron 2

 Neuron N

+

+

+

Figure 1: Diagram of the Encoding Neural Circuit for Color Visual Stimuli.

For every neuron i, each color channel um(x, y, t), m = 1, ..., 3, of the input
signal u is independently filtered by the corresponding component him(x, y, t)
of the receptive field hi(x, y, t), yielding a temporal signal

vim(t) =

∫
D
him(x, y, t− s)um(x, y, s)dxdyds, m = 1, 2, 3. (14)

The outputs of the three receptive field components are then summed to
provide an aggregate temporal input vi(t) to the ith neuron that amounts to

vi(t) =
3∑

m=1

vim(t) =
3∑

m=1

(∫
D
him(x, y, t− s)um(x, y, s)dxdyds

)
. (15)

The three-dimensional color visual stimulus u(x, y, t) is effectively trans-
formed into a one-dimensional signal vi(t), in which colors, spatial and tem-
poral attributes of u are multiplexed. vi is then encoded by the ith neuron
into a spike train, with the sequence of spike times denoted by (tik)k∈Z, where
k is the spike index. The summation here can be justified by experiments
in retina and V1 that have shown that the response of many neurons can
be captured by a linear combination of cone signals (Gegenfurtner & Kiper,
2003; Solomon & Lennie, 2007).
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For simplicity, we assume here that each point neuron is an Integrate-and-Fire
(IAF) neuron, as illustrated in Figure 2. However, many other point neu-
ron models, including conductance-based models such as Hodgkin-Huxley,
Morris-Lecar, Fitzhugh-Nagumo, Wang-Buzsáki, and Hindmarsh-Rose, threshold-
and-fire neurons and oscillators with both multiplicative and additive cou-
pling can be considered as well (Lazar & Slutskiy, 2014b, 2012).

+
spike triggered reset

Figure 2: Block diagram of an (ideal) IAF neuron. The input vi together with an additive
bias bi are passed through an integrator with integration constant Ci. A spike is generated
whenever the integrator output reaches a threshold δi. The integrator is reset after every
spike.

The IAF neuron i encodes its input vi into the sequence of spike times tik∫ tik+1

tik

vi(s)ds = qik, k ∈ Z, (16)

where qik = Ciδi−bi(tik+1−tik). Here Ci, δi and bi are the integration constant,
threshold and bias, respectively, of the ith neuron. The encoding performed
by the entire neural circuit can then be expressed by the following equations

∫ tik+1

tik

3∑
m=1

(∫
D
him(x, y, t− s)um(x, y, s)dxdyds

)
dt = qik, k ∈ Z, (17)

for all i = 1, 2, ..., N . By defining linear functionals T ik : H3 → R, i =
1, 2, ..., N, k ∈ Z, where

T iku =

∫ tik+1

tik

3∑
m=1

(∫
D
him(x, y, t− s)um(x, y, s)dxdyds

)
dt, (18)

equation (17) can be compactly rewritten as

T iku = qik. (19)
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Called the t-transform (Lazar & Pnevmatikakis, 2011), equation (19) above
describes the mapping of the analog signal u into a set of spikes (tik), i =
1, 2, ..., N, k ∈ Z.

By combining signals from different channels, each neuron may now carry dif-
ferent types of color information. For example, combining all three channels
may provide luminance of the visual stimulus over a wide spectrum. Color
opponency in the retina that typically takes the form of red versus green,
blue versus yellow can be modeled as well.

The neural encoding circuit shown in Figure 1 is called the Color Video Time
Encoding Machine (Color Video TEM). The Color Video TEM can be equally
interpreted as a Multiple-Input Multiple-Output (MIMO) neural encoder,
where um,m = 1, 2, 3, are seen as three separate inputs. By modeling the
color video as a single element in H3, we highlight the fact that color is an
intrinsic property of a natural visual stimulus.
Lemma 1 (The Geometry of Time Encoding). The Color Video TEM projects

the stimulus u onto the set of sampling functions φik = [φi1k, φ
i
2k, φ

i
3k]

T
with

φimk = T ikKxytem,m = 1, 2, 3, and

〈u,φik〉H3 = qik, i = 1, 2, ..., N, k ∈ Z. (20)

Proof: By the Riesz Representation Theorem (Berlinet & Thomas-Agnan,
2004), there exist functions φik ∈ H3 such that for all u ∈ H3,

T iku = 〈u,φik〉H3 , i = 1, 2, ..., N, k ∈ Z, (21)

and therefore, the encoding of the color video u by the TEM can be expressed
as

〈u,φik〉H3 = qik, i = 1, 2, ..., N, k ∈ Z.

The entries φimk of the sampling function φik can be obtained by the repro-
ducing property

φimk(x, y, t) = 〈φik,Kxytem〉 = 〈Kxytem,φ
i
k〉 = T ikKxytem, m = 1, 2, 3.

(22)
�

In Appendix A, we demonstrate how φimk can be efficiently computed. Thus,
similar to the monochrome video encoding (Lazar & Pnevmatikakis, 2011),
the encoding of the color video has a simple geometrical interpretation as
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sampling of u by a set of input dependent sampling functions (coordinates)
φik, and the qik, k ∈ Z, are the corresponding measurements. The important
difference is that the set of coordinates is not fixed. Rather, it changes at
every spike time tik.

2.3. Decoding Algorithms for Color Vision

2.3.1. Time Decoding Machines for Color Vision

Assuming that all receptive fields and parameters of the neurons are known,
the decoding algorithm reconstructs the video u from the set of N spike
trains (tik), i = 1, 2, ..., N, k = 1, 2, ..., ni+1, produced by the encoding neural
circuit, where ni + 1 is the number of spikes generated by neuron i.

Given the assumption that u ∈ H3, and the fact that encoding of the visual
stimuli consists of projections of u onto a set of sampling functions, we for-
mulate the reconstruction of the encoded video as the spline interpolation
problem

û = argmin
u∈H3,{T i

ku=q
i
k}

i=1,...,N

k=1,...,ni

{‖u‖2H3}. (23)

Theorem 1. Let the color video u ∈ H3 be encoded by the color Video TEM
with N neurons and N linearly independent receptive fields. The color video
can be reconstructed as

û =
N∑
i=1

ni∑
k=1

cikφ
i
k, (24)

where the cik’s are the solution to the system of linear equations

Φc = q, (25)

with c =
[
c11, c

1
2, ..., c

1
n1 , · · · , cN1 , cN2 , ..., cNnN

]T
, q =

[
q11, q

1
2, ..., q

1
n1 , · · · , qN1 , qN2 , ..., qNnN

]T
,

and Φ is the block matrix

Φ =
[
Φij
]
, (26)

where i, j = 1, 2, ..., N , and the block entries are given by (see also Appendix
A)[
Φij
]
kl

= 〈φik,φ
j
l 〉H3 , for all i, j = 1, 2, ..., N, and k = 1, 2, ..., ni, l = 1, 2 · · · , nj.
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A necessary condition for perfect recovery of any arbitrary u ∈ H3 is that the
set of sampling functions φ = (φik), k = 1, 2, ..., ni, i = 1, 2, ..., N, span H3.
This requires to have the number of neurons N ≥ 3 · dimxy(H) and a total of
at least dim(H3) +N spikes.

Proof: See Appendix B for a complete proof. �

Theorem 1 shows that color visual stimuli can be reconstructed by a linear
combination of sampling functions. Moreover, color visual stimuli can be
perfectly reconstructed only if the encoder generates enough spikes such that
the sampling functions fully explore the input space.
Remark 1. The solution of the optimization problem in Theorem 1 can
easily be extended to an infinite dimensional space with û reconstructed in
the subspace generated by the span of the set of sampling functions (φik), k =
1, 2, ..., ni, i = 1, 2, ..., N . Moreover, (25) can be solved by a simple recursive
algorithm instead of using the pseudoinverse. The recursive algorithm can
efficiently be implemented on graphical processing units (GPUs) (Lazar &
Zhou, 2012).

The overall decoding procedure is summarized in the diagram shown in Fig. 3.

Solve

Spline Interpolation Problem in the Vector-valued RKHS 

Sequences of Spike Times

Generated by

Color Video TEM

Color Video Time Decoding Machine

Reconstruct

Compute

Reconstructed

Video

Compute

Sampling Functions

Compute

Measurements

Figure 3: Color Video TDM diagram.

Remark 2. By employing regularization our results can be readily extended
to the case of noisy neurons (e.g., IAF neurons with random thresholds or
Hodgkin-Huxley neurons with stochastic conductances) (Lazar et al., 2010).
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2.3.2. Evaluating Massively Parallel TDM Algorithms for Color Vision

In this section we describe an example of encoding and decoding of a color
video sequence. The stimulus is a 10 [s], 160[px]×90[px] natural color video.
The video is encoded by a neural circuit consisting of 30, 000 color-component
receptive fields in cascade with 30, 000 IAF neurons. The detailed construc-
tion of the encoding circuit is given in Appendix C.

In reconstruction, a spatio-temporal stitching algorithm similar to the one
in Lazar & Zhou (2012) is deployed. The entire screen is divided into 4
overlapping regions of size 56[px]×90[px] and time is cut into 150 [ms] slices.
The stitching volume then becomes 56[px]× 90[px]× 0.15[s]. We picked the
orders of the space to be Lx = 24, Ly = 36, Lt = 8, Ωx = Ωy = 0.375 · 2π
and Ωt = 10 · 2π so that the overall period of the space is larger than each of
the volumes. We did this in order to embed a typically non-periodic natural
stimulus into a periodic space.
Remark 3. Note that natural stimuli exhibit an “1/f spectrum”. Their
Fourier coefficients are typically significant only in a certain spectral neigh-
borhood around the origin. For simulation purposes, we restricted the set of
spatial basis functions (lx, ly) to lie inside the elliptical set {(lx, ly) | l2x/L2

x +
l2y/L

2
y ≤ 1}. Since the coefficients of all other basis functions in H are set to

zero this restriction let us work instead in a subspace of H with an elliptical
bandwidth profile. The spatial dimension dimxy(H) is thereby approximated
by the cardinality of the above subspace. Throughout this paper, if not stated
otherwise, the cardinality of this subspace will provide the order of H.

The total number of spikes produced by encoding a 10-second long video
was 9, 001, 700. Each volume is typically reconstructed from about 90, 000
measurements. It took about 2 days to reconstruct the video on 9 GPUs. The
reconstructed video is provided in Video S1 (see supplementary material).
We show a snapshot of the original color video and the reconstructed video
in Figure 4. The snapshot of the original video is shown on the left, which
shows a bee on a sunflower. The reconstruction is shown in the middle and
the error on the right. The error can be seen to be fairly small (zero error
is shown in gray). The signal-to-noise ratio (SNR) of the reconstruction
is 30.71 [dB]. The structural similarity (SSIM) index (Wang et al., 2004)
of the reconstruction is 0.988. In addition, each color component can be
individually accessed. Snapshots of all three channels corresponding to the
time instant depicted in Fig. 4 are shown in Fig. 5. The corresponding video
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is shown in Video S2 (see supplementary material). Since the original video
is a natural video and is not strictly in the RKHS, the video is not perfectly
reconstructed. However, it is still decoded with very high quality.

Figure 4: A snapshot of the original and the reconstructed color video. From left to right
are respectively, the original video, reconstructed color video and the error.

Figure 5: A snapshot of the original and the reconstructed videos of each color channel.
From left to right are respectively, the original video, reconstructed color video and the
error. Each color channel is a gray-scale image that is pseudo-colored to indicate the
respective channels.

A limitation in modeling stimuli using the representation in (1) is that stimuli
must be periodic. However, this is rarely true for natural visual stimuli. The
imposed periodicity can be mitigated by using a larger period in reconstruc-
tion. We note that the periods Tx, Ty, Tt defined in the reconstruction space
are larger than the size and duration of the stitching volume. By embedding
the stitching volume in a larger periodic space, the reconstruction no longer
has to be periodic within the stitching volume. This makes reconstruction of
natural stimuli possible and the choice of space flexible. It may seem at first
that the dimension of the space that the reconstruction is embedded into is
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increased. However, this does not necessarily mean that the number of spikes
required to reconstruct the stimulus has to increase. This is due to the fact
that the sampling functions only need to span a subspace that the stitching
volume is associated with. For example, in the reconstruction above, the
space of choice is of dimension 137, 751 (dimxy(H) = 2, 701, dimt(H) = 17).
Already some 90, 000 measurements yield a high quality reconstruction of
the visual stimuli. We note that the temporal period is Tt = 0.8s, while
the duration of the stitching volume is only 0.15s. As long as the spikes are
dense enough within the 0.15s time interval of interest, the stimulus can be
reconstructed even if the number of spikes is lower than 137, 751. However,
the sampling functions still have to span a minimal subspace that encloses
the 0.15 time duration.

2.4. Identification of Neural Encoding Circuits for Color Vision

2.4.1. Channel Identification Machines for Color Vision

The color video encoded by the Color Video TEM can be reconstructed,
given the spike times produced by a population of neurons and the parame-
ters of each of the neurons. However, in many circumstances, the parameters
of the neurons are not available apriori and need to be identified. In this sce-
nario, the neurons are typically presented with one or more input test stimuli
and their response, or output, is recorded so that neuron parameters can be
identified using the input/output data. It can be shown that identification
problems of this kind are mathematically dual to the decoding problem dis-
cussed in the previous section. Specifically, it can be shown that information
about both the receptive fields and the spike generation mechanism can be
faithfully encoded in the spike train of a neuron. Spike times are viewed
as signatures of the entire system, and under appropriate conditions, these
signatures can be used to identify both the receptive fields and the param-
eters of point neurons. The key experimental and theoretical insight is that
the totality of spikes produced by a single neuron in N experimental trials
can be treated as a single multidimensional spike train of a population of
N neurons encoding fixed attributes of the neural circuit. Furthermore, it
can be proven that only a projection of the neural circuit parameters onto
the input stimulus space can be identified. The projection is determined by
the particular choice of stimuli used during experiments and under natural
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conditions it converges to the underlying parameters of the circuit (Lazar &
Slutskiy, 2010, 2012, 2014b).

In this section we demonstrate that the ideas developed in Lazar & Slutskiy
(2010), Lazar & Slutskiy (2012) and Lazar & Slutskiy (2014b) can be ex-
tended to massively parallel neural circuits that process (color) visual stimuli.
For clarity, we consider identification of receptive fields only. Identification
of spike generation parameters and/or connectivity between neurons can be
handled similarly to what has been previously described (Lazar & Slutskiy,
2014b).

For presentation purposes, we consider the identification of a single receptive
field associated with only one neuron, since identification of multiple receptive
fields for a population of neurons can be performed in a serial fashion. We
therefore drop the superscript i in him throughout this section and denote the
m-th kernel component by hm. Moreover, we introduce the natural notion
of performing multiple experimental trials and use the same superscript i to
index stimuli ui on different trials i = 1, ..., N . In what follows, the neural
circuit referred to as the Color Video TEM consists of a color receptive field
h = (h1, h2, h3)

T in cascade with a single IAF neuron.
Definition 1. A signal ui, at the input to a Color Video TEM together with
the resulting output Ti = (tik)k∈Z is called an input/output (I/O) pair and is
denoted by (ui,Ti).
Definition 2. The operator P : H3 → H3 with elements (Ph)m, m = 1, 2, 3,
given by

(Ph)m(x, y, t) =

∫
D
hm(x′, y′, t′)Km(x, y, t;x′, y′, t′)dx′dy′dt′,

is called the projection operator.

Consider a single neuron receiving a stimulus ui ∈ H3, i = 1, 2, ..., N . The
aggregate output vi = vi(t), t ∈ Dt, of the receptive field h produced in
response to the stimulus ui during the trial i is given by

vi(t) =
3∑

m=1

∫
D
hm(x, y, t− s)uim(x, y, s)dxdyds, (27)

where each signal uim is an element of the space H.
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Let Lik : H3 → R be the linear functionals given by

Lik
[
Ph
]

=

∫ tik+1

tik

3∑
m=1

(∫
D
uim(x, y, t− s)(Ph)m(x, y, s)dxdyds

)
dt, (28)

for all i = 1, ..., N , and k ∈ Z. Then, the Color Video TEM is described by
the set of equations (see also Appendix D):

Lik
[
Ph
]

= qik, k ∈ Z, i = 1, ..., N. (29)

We note that because Lik is linear and bounded, (29) can be expressed in
inner product form as

〈Ph,ψi
k〉 = qik, (30)

where ψi
k(x, y, t) =

[
ψi1,k(x, y, t), ψ

i
2,k(x, y, t), ψ

i
3,k(x, y, t)

]T
and

ψim,k(x, y, t) = Lik
[
Kem

]
, m = 1, 2, 3. (31)

In contrast to equation (20) each inter-spike interval [tik, t
i
k+1) produced by the

IAF neuron on experimental trial i is now treated as a quantal measurement
qik of the sum of the components of the receptive field h, and not the stimulus
ui. When considered together, equations (29) and (19) demonstrate that
the identification problem can be converted into a neural encoding problem
similar to the one discussed in the previous section. Note, however, that in
(19) i denotes the neuron number whereas i in (29) denotes the trial number.
This concept is further illustrated in Figure 6.

We note that the spike trains produced by a Color Video TEM in response
to test stimuli ui, i = 1, ..., N , carry only partial information about the un-
derlying receptive field h. Intuitively, the information content is determined
by how well the test stimuli explore the system. More formally, given test
stimuli ui ∈ H3, i = 1, ..., N , the original receptive field h is projected onto
the space H3 and only that projection Ph is encoded in the neural circuit
output. It follows from (30) that we should be able to identify the projection
Ph from measurements qik, i = 1, ..., N , k ∈ Z.

We now provide an algorithm, called the Color Video Channel Identification
Machine (Color Video CIM), to functionally identify a neural circuit process-
ing color video stimuli. As discussed in the previous section, this algorithm
can be considered to be the dual of the decoding algorithm of Theorem
1.
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Figure 6: Block diagram of functional identification with multiple trials of controlled visual
stimuli. Note that the same neuron is stimulated with N visual stimuli.

Theorem 2. Let {ui|ui ∈ H3}Ni=1 be a collection of N linearly independent
stimuli at the input to a Color Video TEM with a receptive field h. The
projection Ph of the receptive field h, can be identified from a collection of
I/O pairs {ui,Ti}Ni=1 as a solution to the spline interpolation problem

P̂h = argmin
Ph∈H3,{Likh=q

i
k}

i=1,··· ,N
k=1,··· ,ni

{‖Ph‖2H3}. (32)

The solution is

P̂h =
N∑
i=1

ni∑
k=1

cikψ
i
k,

where the cik’s satisfy the system of linear equations

Ψc = q, (33)

with c =
[
c11, c

1
2, ..., c

1
n1 , · · · , cN1 , cN2 , ..., cNnN

]T
, q =

[
q11, q

1
2, ..., q

1
n1 , · · · , qN1 , qN2 , ..., qNnN

]T
,

and Ψ is the block matrix
Ψ =

[
Ψij
]
, (34)

20



where i, j = 1, 2, ..., N , and the block entries are given by (see also Appendix
A)[
Ψij
]
kl

= 〈ψi
k,ψ

j
l 〉H3 , for all i, j = 1, 2, ..., N and k = 1, 2, ..., ni, l = 1, 2, ..., nj.

A necessary condition for perfect identification of Ph ∈ H3 is that the set of
sampling functions ψ = (ψi

k), k = 1, 2, ..., ni, i = 1, 2, ..., N, span H3. This
requires to have the number of trials N ≥ 3 · dimxy(H) and a total of at least
dim(H3) + N spikes. Equivalently, if the neuron produces ν spikes on each
trial i = 1, ..., N , of duration Tt, then the number of trials

N ≥


⌈

3 · dim(H)

ν − 1

⌉
, ν < 2Lt + 2

3 · dimxy(H), ν ≥ 2Lt + 2.

Proof: The proof is along the lines of the one for Theorem 1.
Remark 4. Note that only the projection Ph of h onto H3 can be identified.
In addition, notice the similarity of the identification and the decoding algo-
rithms. This is a direct result of the duality of the functional identification
and decoding problems.

Theorem 2 provides, in addition to an algorithm, a lower bound on the
number of video clips and the number of spikes required to perfectly identify
the projection of receptive fields.

2.4.2. Evaluating Massively Parallel CIM Algorithms for Color Vision

In this section, we show an example of functional identification of a single
non-separable spatio-temporal receptive field. We first demonstrate how one
can use both natural video and artificially generated bandlimited noise to
identify the receptive fields, and illustrate bounds for the number of video
clips and number of spikes for perfect identification. Then, we perform a
full-scale identification of the neural circuit described in Section 2.3.2 by
using a long sequence of continuous natural stimuli instead of short video
clip segments.

In the first example, the neuron to be identified has a receptive field that re-
sembles that of a Red-On-Green-Off (R+G-) midget cell in the primate retina
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(Benardete & Kaplan, 1997). The red and green components of the recep-
tive field are modeled as space-time separable functions. They are Gaussian
functions spatially, and resemble bandpass linear filters temporally. The blue
component will also be identified, although it is set to zero. The temporal
span of the filter is 150 [ms] and spatially it is confined to a 32 [px]× 32 [px]
screen size. The receptive field is shown in Video S3 (see supplementary ma-
terial). The snapshot of the receptive field at 40ms is depicted in Figure 7(a).

(a) (b)

Figure 7: An example of a spatio-temporal receptive field (150ms duration). (a) A snap-
shot of the receptive field to be identified, at 40ms. (b) A snapshot of the projection of
the receptive field at 40ms. Parameters of the elements of the space H are: Tt = 300ms,
Tx = Ty = 32, Lx = Ly = 6, Lt = 12, Ωx = Ωy = 0.25π and Ωt = 80π. At this time
instant, the red component of the receptive field provides the excitatory center (red sur-
face) while the green component provides the inhibitory surround (green surface). The
subtle difference between the original and the projected receptive field (23.12 [dB] SNR)
indicates that the chosen input space is effective in exploring the receptive field. (see also
Video S3 in supplementary material for full video)

To identify the receptive field, we consider Tt = 300ms, Tx = Ty = 32. We
chose Lx = Ly = 6, Lt = 12, Ωx = Ωy = 0.25π and Ωt = 80π. The total
dimension of the space is dimxy(H)×(2Lt+1)×3 = 8, 475, where dimxy(H) =
113, since we restricted the spatial basis functions to the set{(lx, ly) | l2x/L2

x +
l2y/L

2
y ≤ 1} (see also Remark 3). The projection of the receptive field Ph,

shown in Video S3 (see supplementary material), is close to the underlying
receptive field h itself (see also Figure 7(b)). The Signal-to-Noise ratio (SNR)
of the projection of the original filter onto the stimulus space is 23.12 [dB]
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(the SNR is computed only for the red and green components). In what
follows, we will only depict the SNR of the identified receptive fields and
compare with the projection of the receptive field.

To identify the receptive field, we generate N video clips in the Hilbert space
of interest by randomly picking coefficients for each basis. Note that by ran-
domly picking coefficients we can easily end up with complex valued signals.
We further ensure that the visual stimuli are real valued.

To illustrate the identification quality for different number of spikes and
number of video clips, we modified the parameters of the IAF neuron while
keeping the underlying receptive field the same. Note that the modification
of parameters of the IAF neuron may not be biologically plausible; it is used
here to better illustrate the bounds on the number of measurements.

First, we vary the number of video clips N while using the same number
of spikes generated by each video clip. The SNR is shown is Figure 8(a).
All three curves follow a general trend: the SNR increases as more video
clips are used until it saturates at around 60 [dB], which indicates perfect
identification (up to machine precision). Comparing the three curves, we
see that if the neuron produces more than 25 measurements, or 26 spikes,
per each video clip (blue and black curves), the SNR saturates at roughly
N = 3 × dimxy(H) = 3 × 113 = 339 video clips, as stated in Theorem 2.
This corresponds to the lower bound on the number of stimuli needed in
order to identify the receptive field. If the neuron generates fewer than 25
measurements, more stimuli are needed. For example, if 19 measurements,
or ν = 20 spikes, are produced in response to each stimulus, then a minimum
of d3× dimxy(H)× dimt(H)/(ν − 1)e = d3× 113× 25/19e = 447 video clips
is needed.

In Figure 8(b), we fix the number of video clips while varying the number of
measurements of each video clip. Note that as the number of measurements
per each video clip increases, so does the identification quality. However, the
SNR cannot be further improved after the number of spikes for each video
clip reaches (2Lt + 1) + 1 = 26 spikes, or 25 measurements. This is due to
the fact that the freedom of the space in the temporal dimension is (2Lt+1).
As shown in Theorem 2, once each neuron fires (2Lt + 1) + 1 = 26 spikes,
it does not produce additionally informative measurements. Therefore, the
identification quality cannot be improved further. Furthermore, the cyan
and black curves demonstrate that even if the total number of measurements
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is larger than the dimension of the space, perfect identification may not be
achieved if the lower bound N = 3 · dimxy(H) = 3 × 113 = 339 is not met.
For example, if the neuron generates 40 measurements per video clip, then
both 180 and 336 video clips will result in the total number of spikes that is
greater than the required number of 3× dim(H) = 8, 475 spikes.

In Figure 8(c), we vary the number of video clips while the total number of
measurement remains fixed at around 9, 000. Identification quality is high
when N ≥ 339, illustrating the lower bound of videos/experiments needed
in order to identify the receptive field with arbitrary precision. However,
the identification quality saturates at N = 342, slightly shifted away from
N = 339. This shift is mainly due to numerical errors and the random
choice of video clips that does not guarantee linear independence among the
sampling functions.

To sum up, for the first example, we have shown two useful bounds for per-
fectly identifying the projection Ph of a receptive field h onto a Hilbert space
H3. The first lower bound is that the total number of measurements must
be greater or equal to the dimension of the space dim(H3). Equivalently,
the totality of spikes produced in response to N experimental trials involv-
ing N different video clips must be greater than dim(H3) + N . The second
lower bound is that the number of video clips N must be greater or equal to
3·dimxy(H). Both conditions must be satisfied at the same time. In addition,
we see that each video clip can provide a maximum of 2Lt + 1 informative
measurements towards the identification.

We now consider using a long sequence of continuous natural video in identi-
fying the entire neural circuit. Colors in natural visual scenes are much more
correlated than in randomly generated bandlimited signals using the above
procedure. As neural systems are tuned to the natural statistics, it is likely
that neurons will respond differently to natural stimuli. Thus, there is a
need to be able to accommodate the use of natural stimuli during functional
identification in real experiments. The machinery of RKHS, and spaces of
trigonometric polynomials specifically, provide that capability. It is essential,
however, to properly segment a long natural sequence into multiple segments
with appropriate spike times associated with each. This is detailed in Ap-
pendix E.

In examples below we use a custom natural video shot by a handheld device.
The total length of the video is 200 seconds. We use this single video to
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Figure 8: Effect of the number of video clips and the total number of measurements on
the quality of identification. (a) A fixed number of measurements (19, 25 and 29) is
used from each video clip. SNR increases as more video clips are used until the total
number of measurements passes the dimension of the space (19, 25) and the number
of video clips reaches 3 · dimxy(H) (25,29) (b) A fixed number of video clips are used
in identification while the number of measurements from each video clip increases. The
identification performance saturates after each video clip generates 25 measurements. This
number corresponds to dimt(H). This suggests that a minimum of 26 spikes is needed
to fully explore the space in the time dimension. (c) Varying the number of video clips
in identification while keeping the number of total measurements above dim(H3) at all
times, the identification performance steeply increases after the number of video clips
reaches 3 · dimxy(H). This suggests that in order to identify the color receptive field, not
only the total number of spikes has to be larger than dim(H3), but also the number of
video clips used needs to be larger than 3 · dimxy(H).
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identify the complete neural circuit, that is, the receptive fields of all N =
30, 000 neurons. Due to computational constraints and in the interest of
time, we identify each of the receptive field components him(x, y, t) separately
rather than the entire hi. This can easily be done by supplying a single color
channel during the identification procedure.

For simplicity, we assume that the dilation parameter of the receptive field
was known. For α = 20.5, the chosen screen size is 24 [px]×24 [px], Ωx = Ωy =
0.5. For α = 21.5, the chosen screen size is 48 [px] × 48 [px] and Ωx = Ωy =
0.25. In both cases, Lx = Ly = 12, Lt = 4 and Ωt = 2π ·20. The dimension of
both spaces is dimxy(H)× (2Lt + 1) = 3, 969, where dimxy(H) = 441. In this
example, each neuron in the population has fixed but different parameters
and generates about 100 spikes per second, or about 10 = 2Lt + 2 spikes
per windowed video clip. Note here that since we only use spikes generated
in the second half of the Tt = 0.2 window (see Figure 9(a)), the number of
spikes used per windowed video clip is approximately 100× Tt/2 = 10. This
choice of stimulus and neuron parameters allows each neuron to provide
the maximum number of informative spikes about each video clip in the
simulation. We vary the number of spikes used in the identification. The
number of video clips co-vary with the number of spikes as a result. Each
receptive field is identified on a single GPU and it takes about 10 minutes
when using 17,000 spikes to identify the receptive field. When using only
1,000 spikes, it takes 30 seconds to finish the identification process. Since a
large number of neurons had to be identified, we performed simulation on a
cluster that has 96 GPUs.

The SNR of the identified receptive fields over the original receptive fields
are shown in Figure 9, where different colors are used to indicate a different
number of total measurements used in identification. Each dot in the figure
corresponds to the SNR of an identified receptive field for the corresponding
neuron. Figure 9 shows a general trend that a larger number of measurements
produces better identification results.

3. Jointly Evaluating Encoding, Decoding and Identification

Functional identification of a visual neural circuit provides a quantitative de-
scription of the relationship between the input video and the spiking activity
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Figure 9: SNR of the 30,000 identified filters. Color indicates the number of total mea-
surements used in the identification for each receptive field. The average SNR is shown
by dashed line for corresponding colors.

of the neurons in the circuit. It is natural, then, to ask if this description can
be used to reconstruct the actual stimulus that produces the spikes.

By connecting the CIM and TEM methodologies and exploiting their duality
we provide an answer to this question in section 3.1. After functionally
identifying the entire neural circuit, we apply a novel visual stimulus to the
identified encoding circuit. From the resulting spike trains the visual stimulus
is recovered using the identified circuit parameters (of the receptive fields).
As shown in section 3.2 this provides a single measure for the quantitative
evaluation of the identification process.

3.1. Stimulus Reconstruction Using the Identified Circuit

Decoding of a visual stimulus from spikes produced by a population of identi-
fied visual neurons was previously investigated under various contexts. War-
land et al. (1997) attempted to decode the time course of stimuli with spa-
tially uniform intensity by identifying an optimal linear decoder for retinal
ganglion cells in salamanders. A similar decoding algorithm was used to
decode natural visual scenes from neural activity in the cat LGN (Stanley
et al., 1999). Both of these approaches are based on linear decoding using
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the firing rate of the neurons. In addition, only a small number of neurons
was considered.

Our approach differs in three important ways. First, instead of decoding
from firing rate of neurons with a linear decoder, we use a non-linear decoder
applied to the exact spike times generated by the neurons. This is attractive
from an experimental standpoint, since the stimulus can be recovered using a
single experimental trial, eliminating the need to repeat the same experiment
in order to compute the firing rate. The latter may not be possible due to
the variability in experimental conditions and the state of the neural circuit.
Second, the neural circuit we are investigating is a massively parallel neural
circuit comprised of thousands of neurons. In recent years it has become
apparent that information in the brain is in general represented by vast pop-
ulations of neurons that process sensory stimuli in a parallel fashion. The
required population size is both modality- and stimulus-specific and our find-
ings provide an estimate for the lower bound on the number of neurons that
are need to faithfully represent a color video stimulus in the spike domain.
Finally, we have provided conditions under which the neural circuit can be
identified and the input videos can be subsequently faithfully reconstructed.
Note that, in identification, we can only identify the projection of the neu-
ral circuit parameters onto the RKHS. Therefore, using the identified neural
circuit, it is only possible to reconstruct a stimulus up to its projection onto
the same RKHS.

Furthermore, by bridging the identification and reconstruction problems, it
is possible to evaluate the amount of information encoded by neurons. One
approach is summarized in Fig. 10. Given a massively parallel neural circuit,
we first identify its parameters (Fig. 10(a)). This can be done by presenting
an input video and using the resulting spike train in identification. Second,
for a novel stimulus presented to the same neural circuit, the spike train gen-
erated by the neural circuit can be used along with the identified parameters
to reconstruct the novel stimulus (Fig. 10(b)).

3.2. Evaluation of Functional Identification in the Stimulus Space

There are three ways to evaluate the quality of the identification process,
as schematically illustrated in Fig. 11. In simulation, the original receptive
fields are known, and we can compare the identified circuit to the original
(indicated by (1) in Figure 11). Such evaluation is performed in the parameter
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Figure 10: Massively parallel neural circuit. (a) Neural circuit identification. Known
stimuli are presented to a neural circuit whose parameters are unknown, the circuit needs to
be identified from the stimuli and the spike times generated. (b) Diagram of the encoding
circuit. An unknown stimulus is present to the circuit. The circuit has been identified and
spikes are known, the visual stimulus can be reconstructed from the identified parameters
and the spike times. (Modified with permission from: Lazar & Zhou (2014), c©2014 IEEE)

space. The drawback of this approach is that in biological neural systems
the ground truth is not known. In other words, there is no true parameter
space to compare with.

An alternative and widely adopted approach is to use the identified circuit to
predict the response of the circuit to novel stimuli (indicated by (2) in Figure
11). A novel stimulus is presented to both the neural circuit and the iden-
tified circuit and their responses are compared. In other words, this type of
verification is performed in the spike train space. In this approach the identi-
fied circuit can be viewed as an I/O equivalent or phenomenological circuit.
Often, however, such I/O equivalence cannot be made on a spike by spike
basis. Typically, only coarser measurements such as the Peri-Stimulus Time
Histogram (PSTH) are available for making predictions (Carandini et al.,
2005). Although these coarser metrics are often good useful indicators of
the identification performance, they exhibit several shortcomings, especially
in population encoding and natural stimuli settings. When evaluating the
identification performance of a massively parallel neural circuit, checking the
PSTH for every neuron alone typically amounts to thousands of measure-
ments. Moreover, quantitative distance measures between PSTHs are often
times not well defined and are hard to interpret. Most importantly, indi-
vidual PSTH predictions may not speak for the overall functionality of the
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Figure 11: Three ways of evaluating the identification quality.

entire identified circuit.

Within the framework of time encoding and channel identification, we intro-
duce a third way of directly assessing the quality of the identification using
the information content retained in the spike train. This metric is the dis-
tance between the original visual stimulus and the stimulus decoded using the
identified circuit parameters (indicated by (3) in Fig. 11). When using the
identified filters in decoding instead of the underlying filters, the t-transform
corresponding to (19) is no longer precise since the identified filters deviate
from the projections of the underlying filters. However, it is expected that
the error in the t-transform should decrease when the identification qual-
ity increases, thereby leading to improved reconstruction. Similarly, a poor
quality of the decoded cross-validating stimulus suggests that the identified
circuit parameters deviate from their true values. By using large scale sim-
ulations, the converse can be observed, i.e., a high quality reconstruction
indicates a high quality functional identification.

By evaluating the identified circuit in the stimulus space, we obtain a metric
that quantifies the identification result. In other words, the evaluation of
the entire identified neural circuit is reduced to intuitive comparisons in the
stimulus space, thereby augmenting the usual neuron-by-neuron comparison
in the spike-train space. For images and video, such an evaluation can be
visually performed. In addition, many well defined distance measures are
readily available in the signal processing literature (see Wang et al. (2004)
and references therein).

This methodology of using identified parameters in decoding may allow us
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to identify a relevant subset of neurons in a large scale neural circuit and, at
the same time, evaluate the goodness of the identification algorithm for that
neuronal subset. In the ideal case, the entire circuit can be identified. We
use here faithful representation as an example. By bridging the identification
problem (channel identification) with the encoding problem (time encoding),
we are able to evaluate the function of the entire circuit by decoding the
stimulus and quantifying the information content retained in the spikes.

3.3. Joint Performance Evaluation

To illustrate the results of the methodology presented in the previous sec-
tion, we performed computer simulations of encoding, decoding and identi-
fication using the massively parallel neural circuit described in section 2.3.2
and identified in 2.4.2. We also evaluated the performance of the identifica-
tion algorithm in the stimulus space. Here we present the results obtained
and discuss practical issues arising in using the TEMs, TDMs and CIMs with
natural videos.

In section 2.4.2, we identified a massively parallel neural circuit with 30, 000
neurons. The identified receptive fields were compared to the ground truth in
the parameter space (see also Figure 11), and it was shown that the quality of
the identified receptive fields improves with the length of the test stimulus.
Using the identified receptive fields, we evaluate the quality of functional
identification in the stimulus space.

The neural circuit is first identified with 7 different settings. In each setting,
a stimulus of a given duration was used for identifying the receptive fields
(see also Figure 9). As the length of the stimuli increases, more spikes are
obtained for identification Using each set of identified parameters, we decode
the spikes generated by the Color Video TEM when encoding novel stimuli.
Since a perfect reconstruction of the video can be demonstrated for the case
when the underlying receptive fields are known (see Section 2.3.2), we know
that it is possible to reconstruct the stimulus with high quality if the circuit
is identified well. The decoding procedure, including the parameter of the
space and the stitching window, was taken to be exactly the same as that in
Section 2.3.2. The decoding using identified neural circuit parameters takes
the same time as the decoding in Section 2.3.2, that is, about 2 days for 10
seconds of video.

31



The reconstruction quality is shown in Figure 12. The entire video sequence
can be found in Video S4a (see supplementary material). The SNR of the
decoded video increases as more measurements are used for identifying each
receptive field in the neural circuit. This indicates a better overall quality
in the identification step. Such an evaluation in the stimulus space is also
consistent with the parameter space evaluation in Section 2.4.2 that is based
on the ground truth neural circuit. Moreover, the reconstructed videos are
visually self-explanatory. The reconstruction artifacts are clearly visible in
the videos to the left of the vertical line that marks the theoretical lower
bound on the number of measurements required for identification. Those
videos to the right of the vertical line have a superior quality and are visually
close to what can be reconstructed when using the underlying receptive fields.
In Video S4b, we show the reconstruction evaluated using the SSIM index as
the metric (see supplementary material).
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Figure 12: Evaluation of identification in the stimulus space. Neural circuit identified with
different number of measurements is used to reconstruct a novel stimulus. The increase of
SNR of the reconstructed video shows the improved identification quality as the number
of measurements used in identifying each receptive field in the neural circuit increases.
Snapshots of the corresponding reconstruction are shown with their SNR.

Comparing to the evaluation in Section 2.4.2, the quality assessment in the
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stimulus space appears to be much more straightforward and more intuitive.
It also provides a measure of the encoding capability of the identified circuit.
Specifically, one can readily evaluate what information about the stimulus is
preserved by the neural circuit by simply comparing the original video and
the video decoded using the identified circuit parameters.

4. Massively Parallel Neural Circuits for Stereoscopic Color Vi-
sion

The encoding, decoding, identification and its evaluation in the stimulus
space for color videos discussed in the previous sections provides a basis
for encoding, decoding and identification of multi-dimensional videos. We
discuss here these extensions with particular emphasis on stereoscopic color
vision.

In this section we present examples for encoding/decoding of stereoscopic
monochrome video and stereoscopic color video. In addition, examples are
provided, demonstrating that mixing binocular information as well as color
information can be treated within our theoretical framework. Identification
results hold similarly. However, due to space constraints, parameter identifi-
cation examples in the stereoscopic video setting are omitted.

The current formulation of encoding in a vector-valued RKHS also provides
the flexibility to model videos that have a total of p components. Examples
include color videos defined with a different color scheme, and multiview
videos that correspond to the same visual scene sampled by more than one
visual sensor. The extension to a Rp-valued RKHS is straightforward, since
the space of signals can be modeled as Hp. In what follows we discuss two
applications based on different values of p.

4.1. Massively Parallel Neural Circuits for Stereoscopic Video

Stereoscopic videos are two different streams of video that are projected onto
the left and right eyes. Typically, the two video streams represent views of the
same visual scene taken from slightly different angles. They arise naturally
in the early visual system of vertebrates where binocular vision dominates.
By combining multiple views of the visual scene, binocular vision makes it
possible to extract the depth information about the visual scene.
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A massively parallel neural circuit for encoding monochrome (grayscale)
stereoscopic video is shown in Fig. 13. The input videos, denoted by (abuse

Neuron 2 

Neuron 3

Neuron 1 +

+

+

Figure 13: Diagram of massively parallel neural circuit for encoding stereoscopic video.

of notation),
u(x, y, t) = [u1(x, y, t), u2(x, y, t)]

T ,

may come from a single visual scene but are sensed by two eyes, where u1
denotes the monochrome video sensed by the left eye and u2 denotes that
sensed by the right eye. In the visual cortex, the information from both
eyes is combined in some of the neurons (Qian, 1997). This is modeled by
the multi-component receptive fields hi(x, y, t), where, by abuse of notation,

hi(x, y, t) =
[
hi1(x, y, t), h

i
2(x, y, t)

]T
. (35)

Again, each component him(x, y, t),m = 1, 2, i = 1, ..., N , is assumed to be
causal with finite support, and BIBO stable. Each component receptive
field performs a linear filtering operation on its corresponding input video
before the outcomes are summed and fed into an IAF neuron (Freeman &
Ohzawa, 1990; Zhu & Qian, 1996). The above neural encoding circuit forms
a Stereoscopic Video TEM.

We provide an example here demonstrating the encoding of stereoscopic
videos and their reconstruction. We omit the example of identification and
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the performance evaluation, since they will be similar to the case of color
video.

The stereoscopic video has a view of 192 [px]×108 [px] in each component and
was shot by two cameras calibrated to match binocular vision and provide
a 3D visual perception (Inoue, 2009). Parameters of the space are Lx = 72,
Ly = 40, Ωx = 0.75π, Ωy = 0.74π, Lt = 8 and Ωt = 20π. The decoded
stereoscopic video is shown in Video S5 (see supplementary material). A
snapshot of the reconstruction is shown in Fig. 14. SNR of the reconstruction
is 35.77dB, SSIM index is 0.980. The reconstructions of separate eye channels
are shown in Fig. 15. The corresponding video is shown in Video S6 (see
supplementary material)

Figure 14: A snapshot of the original stereo video and the reconstructed stereo video.
From left to right are respectively, the original video, reconstructed stereo video and the
error. The 3D effects can be visualized by wearing red-cyan 3D glasses.

Figure 15: A snapshot of the original stereo video and the reconstructed stereo video in
separate channels. The left eye channel is shown in the top row and the right eye channel
in the bottom row. From left to right are respectively, the original video, reconstructed
video and the error.

4.2. Massively Parallel Neural Circuits for Stereoscopic Color Video

The massively parallel neural circuits for color video and stereoscopic video
can be combined to work with stereoscopic color video. The RKHS of interest
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then becomesH6. Figure 16 depicts a block diagram of the massively parallel
neural circut for encoding stereoscopic color video. Neurons in the circuit can
now encode information in all the color channels of both eyes.

The encoding, decoding and functional identification based on this circuit
can be formulated similarly as described in Section 2 and 4.1.

We show here a video in Video S7 (see supplementary material) for demon-
stration of the decoding of stereo color video. A snapshot of the original 3D
color video and reconstruction is shown in Fig. 17. SNR of the reconstruction
is 27.37dB, SSIM index is 0.960. The reconstruction of individual channels
are shown in Fig. 18. The corresponding video is shown in Video S8 (see
supplementary material).

5. Discussion

We presented TEMs and derived TDMs for color and stereoscopic visual
stimuli. A common feature of encoding of all these stimuli is the use of
multiple sensors to extract and to subsequently combine information from
these sensors. Color visual scenes were decomposed into three color chan-
nels. Neurons then sampled, compared or composed information contained
in the output of various color channels and multiplexed that information in
the time domain using spikes. For stereoscopic vision, the visual scene was
separately sensed by two horizontally displaced observers (eyes) and fed into
a population of neurons. The receptive fields of each neuron can individually
process and compose the information received from both eyes.

Natural scenes are highly complex with variations in intensity, wavelength
and geometry. It is interesting to note that in order to perceive the com-
plexity of the visual world, the visual system seems to mix different types of
information. The TEMs we formulated here for stereoscopic color vision are
instances of such mixing.

Mixed signals encoding may be important in a number of ways. First, each
of the color channels represents an aspect of a visual scene. Information can
be highly redundant across multiple channels. For example, all RGB chan-
nels carry information about the same objects in a visual scene. The shapes
of these objects are shared in all channels. A change in color intensity is
more likely to happen at the boundary between two objects and this change
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Figure 16: Diagram of the massively parallel neural circuit for encoding stereoscopic color
video.
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Figure 17: A snapshot of the original stereoscopic color video and the reconstructed stereo-
scopic color video. From left to right are respectively, the original video, reconstructed
color video and the error. The 3D effects can be visualized by wearing red-cyan 3D glasses.

Figure 18: A snapshot of the original stereo color video and the reconstructed in separate
channels. The first three rows are the color channels in the left eye and the last three rows
are the color channels in the right eye. From left to right are respectively, the original
video, reconstructed video and the error.
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is propagated across color channels. Combining information from multiple
channels may enhance the encoding efficiency and provide a simpler decoding
algorithm. The YUV or YCbCr video formats, for example, have long been
used in digital video technology where some of the channels can be subsam-
pled while, at the same time, keeping a similar perceptual quality level. We
did not explore here such a method of redundancy reduction. Rather, we
provided a framework for representing multiple channels of information, for
recovering the scene and for identifying channel parameters, such that these
facilitate redundancy reduction.

Second, the mixing of cone signals can be utilized as coordinate transfor-
mations in the space/time color space. Such transformations may be useful
in object recognition or in the separation of color and contrast informa-
tion.

Third, mixing multiple channel output signals allows multiple information
patterns to be represented together and therefore enables readout of differ-
ent aspects of signals anywhere in the system. In other words, it provides
broadcast information to multiple “receivers”. This makes it possible for
higher level neural systems to extract information from a common pool of
spikes.

We have presented a comprehensive, yet highly intuitive method for evalu-
ating the functional identification of massively parallel neural circuits. The
problem was formulated in the space of color visual scenes, but can gener-
ally be applied to other stimulus spaces, e.g., monochrome videos, or other
sensory modalities.

The key result that led to the evaluation of identification algorithms in the
stimulus space is the duality between

• the decoding problem of a single stimulus encoded by a bank of filters
in cascade with a population of neurons, and,

• the identification problem of a single receptive field using different stim-
uli in multiple experimental trials.

We have implicitly assumed that the parameters of the spike generator are
always known, even in the functional identification setting. This may not
hold true in practice and additional experiments may be required to estimate
these parameters before the identification of the receptive field (Lazar &

39



Slutskiy, 2014b). However, evaluation in the stimulus space is still applicable
to assess the identification quality of both filters and neurons.

Our results were formulated using an encoding architecture that preserves
the information contained in the input stimuli and therefore perfect recon-
struction is possible. We shall expect that this takes place in the early stages
of sensory processing, for example, in the retina.

In practice, it may be difficult to access the entire population of neurons of a
sensory system. However, as multi-electrode devices become more accessible
and powerful, it is possible to sample a subset of neurons that are restricted to
certain spatial domains. In addition, a sensory circuit may be further divided
into subcircuits based on output cell types (da Silveira & Roska, 2011) and
their functionality. The encoding, decoding and identification problem is
readily extensible to such problem settings.

Finally, the decoding formalism for evaluating functional identification qual-
ity can also be used to estimate the overall bandwidth support of the en-
semble of receptive fields of the neural circuit. As we have pointed out, only
the projection of the filters can be identified, so the decoding quality is also
dependent on the stimulus space one chooses in the identification process.
We should expect that for an input space with lower bandwidth, decoding
using the identified projection of the receptive field should lead to high re-
construction quality. As the bandwidth of the stimulus space increases, the
projection of filters converges to the actual filters. When the bandwidth of
the stimulus space exceeds the overall bandwidth of the circuit, the filters can
no longer support the entire input (signal) space. The decoding quality will
degrade even with a set of known filters. Therefore, the degradation of the
decoding quality with identified filters indicates the value of the bandwidth
of the receptive field of the encoding circuit.

The scalar-valued RKHS we have focused on in this paper is the space of
trigonometric polynomials. The finite dimensionality of this space allowed us
to derive bounds on the number of spikes and the number of neurons/trials for
perfect reconstruction/identification. The structure of the space also enabled
us to use faster algorithms to perform decoding and identification. However,
the choice of the base RKHS is flexible and does not exclude infinite dimen-
sional spaces, and the formulation of decoding and functional identification
by a variational approach is readily applicable to infinite dimensional spaces.
While bounds on number of spikes may no longer be appropriate, the inter-
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pretation of the interpolation spline algorithm still holds: the reconstruction
is still generated by the subspace spanned by the finite number of sampling
functions. That is, based on the observations in the sampling stage.
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Appendix A. Computation of the Sampling Functions and Φ ma-
trix

To compute the entries for matrix Φ in (25), we note from (22) that φjik(x1, x2, t)
amounts to

=

∫ tik+1

tik

(∫
D
him(x′, y′, s− t′)Km(x, y, t;x′, y′, t′)dx′dy′dt′

)
ds

=

∫ tik+1

tik

(∫
D
him(x′, y′, t′)Km(x, y, t;x′, y′, s− t′)dx′dy′dt′

)
ds

=

Lx∑
lx=−Lx

Lx∑
ly=−Ly

Lt∑
lt=−Lt

∫ tik+1

tik

(∫
D
him(x′, y′, t′)elxlylt(x− x′, x− y′, t+ t′ − s)dx′dy′dt′

)
ds

=

Lx∑
lx=−Lx

Ly∑
ly=−Ly

Lt∑
lt=−Lt

el1l2lt(x, y, t)

∫ tik+1

tik

(∫
D
him(x′, y′, t′)e−lx,−ly ,−lt(x

′, y′, s− t′)dx′dy′dt′
)
ds

=

Lx∑
lx=−Lx

Ly∑
ly=−Ly

Lt∑
lt=−Lt

elxlylt(x, y, t)

∫ tik+1

tik

e−lt(s)ds

∫
D
him(x′, y′, t′)e−lx,−ly ,lt(x

′, y′, t′)dx′dy′dt′.

(A.1)

Since the elxlxlt(x, y, t)’s form the orthonormal base in H, we see that

φimk(x, y, t) =
Lx∑

lx=−Lx

Ly∑
ly=−Ly

Lt∑
lt=−Lt

aimklxlyltelx,ly ,lt(x, y, t), (A.2)
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where aimklxlylt are the coefficients of the linear combination of bases and

aimklxlylt =

∫ tjk+1

tjk

e−lt(s)ds ·
∫
D
him(x′, y′, t′)e−lx,−ly ,lt(x

′, y′, t′)dx′dy′dt′, (A.3)

or

aimklxly ,−lt =

(∫ tik+1

tik

elt(s)ds

)(∫
D
him(x′, y′, t′)e−lx,−ly ,−lt(x

′, y′, t′)dx′dy′dt′
)
.

(A.4)
Let

himlxlylt =

∫
D
him(x′, y′, t′)e−lx,−ly ,−lt(x

′, y′, t′)dx′dy′dt′, (A.5)

we have

aimklxlylt =


(
tik+1 − tik

)
himlxly ,−lt , lt = 0

jLt
Ωtlt

(e−lt(tk+1)− e−lt(tk))himlxly ,−lt , lt 6= 0
(A.6)

The computation of the coefficients in (A.5) can be simplified by considering
the space-time domain D to be exactly one period of the function in H, and
by numerically evaluating the integral in the second half of (A.4) using the
rectangular rule with uniform grid. Since the result is closely related to the
3D-DFT coefficients of him(x, y, t), these coefficients can be very efficiently
obtained. Note also that the aimklxlylt clearly depends on the particular neuron
model and the spatio-temporal receptive field used in the encoding. Equation
(A.4) shows, however, that this dependency can easily be separated into two
terms. The term in the first parenthesis depends only on the IAF neuron and
the term in the second parenthesis depends only on the receptive field.

Therefore, [
Φij
]
kl

= 〈φik,φ
j
l 〉H3

=
3∑

m=1

〈φimk, φ
j
ml〉H

=
3∑

m=1

Lx∑
lx=−Lx

Ly∑
ly=−Ly

lt∑
lt=−lt

aimklxlylta
j
mllxlylt

.

(A.7)
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Appendix B. Proof of Theorem 1

We present the proof of Theorem 1 in this section.

The form of the solution (24) is given by the Representer Theorem and the
solution is unique. Substituting (24) into equation (23), the coefficients cik
can be obtained by solving the constraint optimization problem

minimize 1
2
cTΦc

subject to Φc = q
. (B.1)

We note that all solutions to Φc = q lead to the same value in 1
2
cTΦc.

Therefore, the solution to Φc = q verifies (B.1). Since û is unique, we shall
expect any solution to this system of equations leads to the same û.

The necessary condition for perfect recovery can be more readily observed
when we consider using the basis representation of u = [u1(x, y, t), u2(x, y, t), u3(x, y, t)]

T

with

ui(x, y, t) =
Lx∑

lx=−Lx

Ly∑
ly=−Ly

Lt∑
lt=−Lt

dilxlyltelxlylt(x, y, t), (B.2)

Substituting (B.2) into equation (23), the coefficients dilxlylt in (B.2) have to
verify the system of equations

Ξd = q, (B.3)

where

d =

 d1

d2

d3


with [di]l = dil, i = 1, 2, 3 and the column index l traverses all possible
subscript combinations of lx, ly, lt. Ξ is a block matrix

Ξ =

 Ξ1

...
ΞN

 ,
and

Ξi =
[
Ξi

1,Ξ
i
2,Ξ

i
3

]
,
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with [
Ξi
m

]
kl

= 〈φimk, el〉
(a)
= aimkl,

for all i = 1, · · · , N,m = 1, 2, 3, and the column index l traverses all possible
subscript combinations of lx, ly, lt, and (a) is given by (A.2). Since H3 is
finite dimensional, the two approaches are equivalent in the absence of noise.
This can be observed by noticing that Φ = ΞΞH (see also (A.7)).

The columns of Ξ are associated with the basis functions in H3 and the
number of variables to be solved in this case is dim(H3). To achieve perfect
reconstruction of any arbitrary u, d must be uniquely determined and it is
necessary to have rank(Ξ) = dim(H3). As each row of Ξ is essentially the
sampling function φik, it is thereby necessary to have the set of sampling
functions φ span H3. Consequently, the number of rows must be greater
than or equal to the number of columns, i.e., the number of basis functions.
Therefore, a necessary condition for perfect recovery is that the number of
measurements/sampling functions must be at least dim(H3). This implies
at least dim(H3) + N spikes are needed with a neural circuit consists of N
neurons. In addition, since each individual neuron encodes a temporal signal,
at most dimt(H) measurements per neuron are informative. Therefore, the
number of neurons should at least be dim(H3)/dimt(H) = 3 · dimxy(H). �

Appendix C. Constructing Gabor Receptive Fields and IAF Neu-
rons

Each receptive field component has a profile modeled as a spatial Gabor filter
derived from the mother function

D(x, y, η) =
1√
2π

exp

(
−x

2

2
− y2

8

)
cos(−2.5x+ η),

with translations

T(x0,y0)D(x, y, η) = D(x− x0, y − y0, η),

dilations

DαD(x, y, η) =
1

α
D

(
1

α
x,

1

α
y, η

)
,
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and rotations

RθD(x, y, η) = D (cos(θ)x+ sin(θ)y,− sin(θ)x+ cos(θ)y, η) .

The phase η provides additional flexibility in modeling phase selectivity of
Gabor receptive fields (Reid et al., 1991).

We consider an initial orientation θim and phase ηim picked from a uniform dis-
tribution [0, 2π), as well as two levels of dilation αim ∈ {20.5, 21.5}, with proba-
bility 0.8 and 0.2, respectively. The center coordinates of the red-component
receptive fields (xi0, y

i
0) are picked randomly from a uniform distribution. The

center coordinates of green- and blue-component receptive fields are picked
around the red-component center with Gaussian distributions N (0, I), where
I is 2×2 identity matrix. Note that while the parameters above are randomly
chosen, once picked they are assumed to be known (or identifiable).

To create a non-separable spatio-temporal receptive field, we add a temporal
component to the Gabor functions such that the receptive fields rotate at
an angular speed v = 2.5π(rad/s) around their respective centers (xim, y

i
m).

Furthermore, the temporal dynamics is modulated by a raised cosine func-
tion

f(t) =

{
1− cos(2π · 10 · t), 0 ≤ t ≤ 0.1[s]

0, otherwise

to ensure that the spatiotemporal receptive field is causal in the time variable
and has finite memory.

The overall receptive field can be expressed as

him(x, y, t) = f(t)Txim,yimDαi
m
Rθim+2.5πtD(x, y, ηim).

The bias, threshold and integration constant of all IAF neurons are picked
to be the same, and they are bi = 3, δi = 0.1, and κi = 1, respectively. In
simulations, since the input video had a frame rate of 100 frames per second,
the inputs to the IAF neurons had a time step of 0.01 second. The time
occurrences of spikes generated by the IAF neurons are analytically computed
using linear interpolation between two consecutive time steps. The encoding
process took 5 minutes on a single Nvidia M2050 GPU.
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Appendix D. Proof of Equation (29)

Since H is an RKHS, by the reproducing property we have uim(x, y, t) =
〈uim,Kxytem〉H. It follows that the mth term of the sum in Eq. (27) can be
written as∫

D
hm(x, y, t− s)uim(x, y, s)dsdxdy =

∫
D
hm(x, y, s)uim(x, y, t− s)dxdyds =

(a)
=

∫
D
hm(x, y, s)uim(x′, y′, t′)Km(x, y, t− s;x′, y′, t′)dx′dy′dt′dxdyds

(b)
=

∫
D
uim(x′, y′, t′)

∫
D
hm(x, y, s)Km(x′, y′, t− t′;x, y, s)dxdydsdx′dy′dt′

(c)
=

∫
D
uim(x′, y′, t′)(Ph)m(x′, y′, t− t′)dx′dy′dt′

=

∫
D
uim(x′, y′, t− t′)(Ph)m(x′, y′, t′)dx′dy′dt′,

where (a) follows from the reproducing property of the kernel Km, (b) from
the symmetry and the structure of the reproducing kernel Km(x, y, t;x′, y′, t′)
given in (5), and (c) from Definition 2.

Appendix E. Segmenting Continuous Visual Stimuli for Identifi-
cation

We use a sliding temporal window to create multiple video clips from a single
continuous natural video. This is needed to fix one of the complications
arising in using natural video with the introduced methodology, namely how
to properly segment a long natural sequence into multiple segments of videos.
Since the spatio-temporal receptive field has temporal memory of length S ,
supp(h), i.e., it extends S seconds into the past, the timing of a spike at a
time tk is affected by the stimulus on the time interval of length S preceding
the spike, i.e., by values of the stimulus u(t) on t ∈ (tk − S, tk]. Therefore,
when recording spikes in response to a stimulus u(t), care should be taken so
that the recording is longer than the temporal support of the receptive field
and only those spikes occurring S seconds after the start of the recording are
used.
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window size

......

... ...

(a)

... ...

(b)

Figure E.19: Schematic illustration of segmenting a continuous visual stimulus used in
identification into overlapping video clips and choosing the valid spikes for each video clip.
(a) If the temporal support of the receptive field is S (top), one can choose a video clip
of duration Tt > S. The spikes that are valid for this video clip are shown in green at the
bottom. Although the spikes indicated in red are generated during the presentation of this
video clip, they are not valid since they contain information outside the duration of this
video clip. (b) In identification, a continuous stream of visual stimuli can be presented
to the neural circuit. To perform identification, the continuous visual stimulus needs to
be segmented into overlapping video clips with appropriate spikes chosen for each of the
video clips. Here, an example with window size 0.2 [s] and S = 0.1 [s] is given. The cut-off
times of each video clip are shown with rectangular boxes of various colors. The valid
spikes for each video clip are shown in their respective color. As a result, only a small
number of measurements are discarded.

In Figure 19(a), we illustrate the valid spikes given a window size Tt and filter
size S: The sliding window is of the same length as the temporal period of
the RKHS and is shown in blue. The corresponding clip of the signal u(t) is
highlighted by blue. The filter h(t) (the shape of h(t) in Figure 19(a) is shown
for illustration purposes only) has temporal support of S. From all spikes
generated in [0, Tt], only the spikes generated in the interval (S, Tt] (green
spikes) can be used in identification. Phrased differently, if the window size
is Tt and one uses spikes generated in the interval (R, Tt] in identification,
then the identified receptive field is only valid if the temporal support of it
is within [0, R].

The sliding window size we choose is 0.2s and the step between windows is
0.1s, as schematically shown in Figure 19(b), where the color of the spikes
indicates its use in the corresponding window. Note that practically no spikes
are discarded as the windows overlap.
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