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Abstract— Time encoding is a novel real-time asynchronous
mechanism for encoding amplitude information into a time
sequence. The analog bandlimited input is fed into a simple
nonlinear neuron-like circuit that generates a strictly increasing
time sequence based on which the signal can be reconstructed.
The heart of the reconstruction is solving a system of ill-
conditioned linear equations. This contribution shows that the
equations can be manipulated so that the reconstruction becomes
feasible using a Cellular Neural Network (CNN) with a banded
system matrix. In particular, the system is first transformed into a
well-conditioned smaller system; and then, the Lanczos process is
used to lay it out into a set of even smaller systems characterized
by a set of tridiagonal matrices. Each of these systems can directly
be solved by CNNs, whereas the preprocessing (transformation
and Lanczos algorithm) and simple postprocessing phases can be
partly or fully implemented by using the digital capabiliti es of the
CNN Universal Machine (CNN-UM). Each step of the proposed
formulation is confirmed by numerical (digital) simulation s 1.

I. I NTRODUCTION

Section I-A gives a short overview of irregular sampling, a
topic that is closely related to time encoding and is also used
later on. Section I-B summarizes the basic concept of time
encoding. A numerical example is presented in Section I-C.
Section I-D reviews how related problems are solved by CNN.
Section I-E shows how linear equations are solved using neural
networks and what extra conditions are needed for a CNN
implementation. Section II presents the proposed formulation.

A. Irregular Sampling

Let the analog signalx(t) be bandlimited to[−Ω, Ω]. The clas-
sical sampling theorem ([14], [24]) calls for representingx(t)
based on its samples taken uniformly at or above the Nyquist
rate. Researchers have long been fascinated of how uniform
(traditional) sampling can be generalized. Starting from early
achievements [8] substantial results have been accumulated
over the years both in theory [26], [12] and efficient numerical

1Proceedings of the Seventh Seminar on Neural Network Applications in
Electrical Engineering, NEUREL 2004, pp. 97-102, Belgrade, Serbia and
Montenegro, September 23-25, 2004.

solutions [9], [10], just to mention a few. Ifsk, is a strictly
increasing time sequence, a possible representation is given by

x(t) =

∞
∑

k=−∞

ckg(t − sk) (1)

whereck ’s are appropriate scalars andg(t) = sin(Ωt)/(πt) is
the impulse response of an ideal lowpass filter with bandwidth
Ω. Evaluating both sides of (1) att = sℓ gives

x(sℓ) =

∞
∑

k=−∞

ckg(sℓ − sk), (2)

or in matrix form
q = Gc (3)

with unknown vector[c]k = ck and known vectorq and matrix
G given by:

[q]ℓ = x(sℓ), and [G]ℓ,k = g(sℓ − sk), (4)

If the average density of thesk ’s is at or above the Nyquist
rate then the unknownc can in principle be obtained from (3)
[12]. The practical solution, however, is challenging because

• G is typically ill-conditioned,
• q, c, G should in principle have infinite dimensions.

B. Time encoding

Although a large number of theoretical papers have been
published in the area of irregular sampling, its practical
applications are limited to a few areas including astronomical
measurements, medical imaging, and the lost-data problem in
communication theory [1]. The use of irregular sampling in
communications is even more limited because of two main
reasons. First, as mentioned in Section I-A, the reconstruction
for c based on (3) is difficult. Second, both the timessk ’s
and the amplitudesx(sk)’s are needed for the reconstruction.
Therefore, if the average density of thesk ’s are at the Nyquist-
rate, then two times as much information is needed for
transmission as that in the case of regular sampling where
sk+1 − sk is fixed for anyk. Thus in the regular sampling



case, thesk ’s carry no information and, therefore, do not need
to be transmitted.

A technique related to pulse position modulation (PPM)
addressed this problem as follows (see, e.g., [21]). Thesk ’s
are defined as the zero-crossings of the difference signal
x(t) − f(t) wheref(t) is known. Therefore,x(sk) no longer
carries information sincex(sk) = f(sk) holds and all the
information is carried by thesk ’s. A simple implementation
can be given by feeding the differencex(t) − f(t) into a
comparator that fires at exactlyt = sk. By choosingf(t)
properly (usually as a periodic ramp or sinusoid signal with
appropriate amplitude and frequency) the required densityof
the sk ’s can be guaranteed. Still, the method has not became
popular because the high sensitivity to noise and the exact
shape off(t) that VLSI implementations cannot guarantee
with high accuracy.
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Fig. 1. A possible robust TEM configuration.

An improved time encoding scheme, referred to as Time
Encoding Machine (TEM), is depicted in Figure 1 [16].
As shown, the TEM consists of an ideal integrator and a
noninverting Schmitt trigger in a feedback arrangement. The
outputz(t) takesb or −b values at transition times denoted by
tk. It can be shown [16] that this circuit can also be described
by (1) and (3) where we have

[q]ℓ = (−1)k [2κδ − b(tk+1 − tk] , (5)

[G]ℓ,k =

∫ tℓ+1

tℓ

g(t − sk)dt, and sk =
tk + tk+1

2
(6)

with the same condition for the density of thetk ’s as that
for the sk ’s in the case of irregular sampling. This circuit can
be shown to be robust in terms of additive noise and circuit
imperfections. Intuitively this makes sense, since replacing the
Schmitt trigger by a clocked quantizer (a comparator followed
or preceded by a sampler) a popular robust circuit, a first
order Sigma-Delta modulator is obtained [22]. Although the
circuit parametersκ and δ appear in the expression forq
(see (5)), with alternative formulations [18] this dependence
can also be eliminated, andx(t)/b can be recovered in
terms of the time differencestk+1 − tk only. Due to lack of
space and in order to keep the formulation relatively simple,
however, subsequently (3) together with (5) and (6) will be
used. Following the terminology introduced in [16] the overall
reconstruction procedure/implementation will be referred to as
the Time Decoding Machine (TDM).

The formulation in (3), (5) and (6) assumes that the di-
mensionality of the matrices and vectors used is infinite. In
practice (and simulations), however, only a finite time window
can be used, when the right-hand-side (RHS) of (1) merely
approximatesx(t) on its left-hand-side (LHS). Therefore, ifL
denotes the number of thetk’s within some known observation
interval Tobs, then

x(t) ≃

L−1
∑

k=0

ckg(t − sk), (7)

whereq andc in (3) haveL components, andG is anL by
L matrix. Let the reconstruction error, the difference between
the RHS and the LHS of (7), and its root-mean-square (RMS)
value be denoted bye(t) andE , respectively. It can be shown
[16], [18] that e(t) can be decreased by increasingL for a
givenTobs that in turn results in ill-conditionedG as illustrated
in the example of I-C below:

C. Example

Let x(t) be given by its familiar sampling representation

x(t) =

∞
∑

k=−∞

x(kT )
sin(Ω(t − kT )

Ω(t − kT )

where T = π/Ω is the Nyquist-period, and the sam-
ples x(T ) through x(12T ), are respectively, -0.1961,
0.186965, 0.207271, 0.0987736, -0.275572, 0.0201665,
0.290247, 0.138374, -0.067588, -0.145661, -0.11133, -
0.291498,x(kT ) = 0, for k ≤ 0 and k > 12. The rest of
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Fig. 2. Simulation results for the signals in Fig. 1.

parameters areb = 1, δ = 0.6, κ = 6.667 µs, Ω = 2π · 40
kHz henceT = 12.5 µs. The evaluation of thetk’s was carried
out in the interval−2T ≤ t ≤ 15T (Tobs = 17T ) based on
the numerical simulation of the TEM in Figure 1. Figure 2
shows the inputx(t), the integrator outputy(t), and the TEM
outputz(t). In this example we have

L = 26 (8)

number oftk ’s (only 18 are shown in Fig. 2) determined with
high accuracy, when (using the spectral norm,‖ · ‖2) the



condition number ofG turned out to be:

cond(G) = 1.476 × 1011 = 233 dB (9)

Since such an ill-conditioned matrix cannot be inverted di-
rectly, c in (3) was calculated by [25]

c = G+q (10)

whereG+ stands for the pseudo (Moore-Penrose)2 inverse
of G. Using “perfect”tk ’s the simulation result is shown by
the solid trace of Figure 3.
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Fig. 3. Simulation results for the error function,e(t), with perfect
tk ’s and tk ’s quantized toN = 14 andN = 20 bits.

The extremely small RMS error,E , cannot be achieved
if the tk ’s are inaccurate. In particular, if time encoding is
used in telecommunications, then only quantizedtk ’s can be
transmitted. Ifx(t) < c holds for some givenc, then the
differencetk+1 − tk turns out to be bounded [16] as:

2κδ

b + c
≤ tk+1 − tk ≤

2κδ

b − c
(11)

Therefore, if 2κδ/(b − c) is known, only the difference of
the upper and lower bound in (11) needs to be quantized. In
this way, if N bits are used for time quantization, then the
corresponding error oftk+1− tk−2κδ/(b+c) is in the range:

∆ =
1

2N

(

2κδ

b − c
−

2κδ

b + c

)

=
2κδ

2N

2c

b2 − c2

The quantization oftk+1−tk−2κδ/(b+c) can be implemented
by a single clock with frequency1/∆ started attk and stopped
after the appearance oftk+1. From these values the (erroneous)
tk ’s, that are needed for generating the matrixG (see (6)),
can easily be calculated. Figure 3 shows the corresponding
simulation results withc = 0.3 (seex(t) in Figure 2) for
N = 14 and N = 20. As seen, with time quantization the
error signals are substantially increased as opposed to using
perfecttk’s (machine-precision with 64 bits).

2If G is nonsingular (appropriately well-conditioned), thenG
+

= G
−1.

D. Neural networks for time encoding

After the appearance of the TEM in Section I-B, similar cir-
cuits have been disclosed. The TEM investigated in [17] con-
sists of an integrate-and-fire neuron with an absolute refractory
period. Although the refractory period seems intuitively to
lead to information loss, it is shown in [17] that under simple
conditions, bandlimited signals encoded with an integrateand
fire neuron can be perfectly recovered from the neural spike
train at its output.

Many time-coding related problems can be solved via the
CNN Universal Machine (CNN-UM) [5]. One particularly
interesting problem is the hyperacuity in time mechanisms
[20] with sparse global line in each row. This is a key feature
of the interaural time difference computing mechanism in the
barn owl [13]. In addition, the CNN dynamics is described
by a system of nonlinear differential equations characterized
by a band matrix. Its solution with programmable parameters
can be made, for a128× 128 system, in a few microseconds.
This means, that for a properly formulated TDM problem the
CNN-UM based visual microprocessor chip [23] might serve
as an ideal physical implementation. If some additional terms
are needed in the feedback matrix [4], a few special, additional
terms could be added, to make it a special purpose TDM chip.

E. Neural networks for solving linear equations

Based on (3) the heart of the reconstruction in time encoding
and irregular sampling is to solve a set of ill-conditioned linear
equations. This and related problems have been addressed
by using neural networks. In [6] neuron-like processors, in
essence classical analog computers, were proposed for the
real-time solution of ill-conditioned linear equations. Further
generalizations and simplifications were presented for solving
linear least squares problems in [7] including new on-chip
adaptive learning algorithms. These methods, however, are
not directly applicable for CNN solutions where one cell is
allowed to be connected mainly to its neighbors. In terms of
linear equations this means that the system matrix has to have
a banded structure: the matrix elements are zero apart from
its main and a few neighboring diagonals. For time encoding
the matrixG is dense. As it is shown below, recent results for
CNNs [2] can be also used for implementing time decoding.
Thus, a complete CNN or a CNN-convertible approach can
be designed to perform a full time encoding and decoding
procedure between analog bandlimited input and output points
[2].

II. A CNN- COMPATIBLE TIME DECODING

Section II-A gives a general overview of the proposed recon-
struction techniques while Section II-B discusses the details.

A. General scheme and CNN considerations

The original time encoding and decoding scheme [16] is
depicted in Figure 4, where the TEM’s output is represented
by irregularly spacedL pulses with common (unity) weights.
In agreement with (10) and (7), the reconstruction is based on
calculating the pseudo-inverse of the dense and ill-conditioned
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Fig. 4. Original reconstruction [16].

L by L matrixG; and the output signal is obtained by passing
irregularly spaced pulses with the weightsck through an ideal
lowpass filter (LPF) with impulse responseg(t).

Figure 5 depicts the general scheme of the proposed formu-
lation. The Parallel Algorithm block first reduces the original
L equations toM , (M < L ) well-conditioned equations.
Then, using the Lanczos algorithm theK by K matrices
T1, . . . ,TM are generated so that each has a tridiagonal form
(see also (25)) and reduced size (K < M ). In terms of these
matricesM linear equationsTnxn = e1 have to be solved
for xn wheren = 0, . . . , M − 1 ande1 is the first column of
a K by K identity matrix, as seen. These computations are
well-suited for parallel processing, typically for the structural
needs of CNNs. Also, as opposed to the original reconstruction
in Figure 4, x(t) is now recovered by passingregularly
spaced pulses through the LPF. This clearly has practical
advantages. The computations of the Parallel Algorithm and
the Postprocessing blocks can be implemented digitally using
dedicated circuitry and/or the digital capabilities of CNNs by
placing them into the Global Analog Control Unit (GACU).

In particular, the CNNA matrix in (8) of [4] and the
equivalent matrixT in (25) of this paper have the same
structure. If we are using a spatially variant form of the
simple CNN with a template[ρ, α, β], thenρ, α, and β are
locally variant. In that case a special GACU for the additional
computation, i. e. a special-purpose CNN-UM chip can be
built. Details of the required accuracy and algorithmic control
are to be developed. The use of the CNN-UM chip with a
combined DSP to be integrated into a single chip is particularly
challenging.

B. Parallel Algorithm

As illustrated in I-C theL by L matrix G in (3) is ill-
conditioned. The first idea of the proposed formulation is to
express the functionsg(t − sk) by using oversampled and
regularly spaced sampling times as

g(t − sk) ≃

M−1
∑

n=0

Fn,kg(t − nTs) (12)

with givenM and appropriate coefficientsFn,k. Sinceg(t−sk)
is approximated by similar functions,g(t−nTs), intuitively it
makes sense to expect a good approximation forM < L. In
terms ofM and Tobs the sampling periodTs is set toTs =

.  .  .
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Tobs/M . Substituting (12) into (7) gives

x(t) ≃

M−1
∑

n=0

xng(t − nTs), xn = [x]n, x = Fc (13)

where[F]n,k = Fn,k andc was introduced in (3). Evaluating
both sides of (12) att = mTs givesD ≃ BF with

[D]m,k = g(mTs − sk) and [B]m,n = g((m − n)Ts).
(14)

Therefore, with appropriateM < L we have:

F ≃ B−1D (15)

Substituting now (12) into (6) gives

G ≃ D̂F with [D̂]k,n =

∫ tk+1

tk

g(t − nTs)dt. (16)

Therefore, (3) and the third relationship in (13) implyq =
Gc ≃ D̂Fc = D̂x. Multiplying both sides byD givesDq ≃
DD̂x, from which we havex ≃ (DD̂)−1Dq, sinceDD̂ is a
quadratic (M by M ) matrix with smaller size and improved
condition number as opposed toG. The condition can further
be improved by defining

F̂ ≃ D̂B−1 (17)

when using (15) gives

x ≃ B−1(FF̂)−1Fq (18)

as the solution for the transformed system in (13).
Based on numerical simulations we found that cond(FF̂)

is substantially smaller than cond(DD̂). Intuitively, this is



becauseB is structurally similar not only toD but also
to D̂ as well due to the mean value theorem,[D̂]k,n =
(tk+1−tk)g(ξk−nTs) with appropriateξk ∈ [tk, tk+1]. In this
way, sinceDD̂ = BFF̂B, the multiplication of the inverse
of B acts as a preconditioner on both sides ofDD̂.

Since B is a fixed symmetric Toeplitz matrix [3], [19],
its inverse can be precalculated with arbitrary accuracy and
stored; and only the multiplications in (15) and (17) are
to be carried out on-line. In addition, not only the inverse
but other parametrized forms ofB can be calculated be-
forehand. For example, using its eigenvalue decomposition
B = Udiag(λk)U−1 with modal matrixU and eigenvalues
λk a possible generalization ofB−1 is

X = Udiag(λ−1

k )αU−1, (19)

and therefore
x ≃ X(FF̂)−1Fq (20)

where
F = XD and F̂ = D̂X. (21)

Choosingα = 1 givesX = B−1, hence the solution forx in
(20) becomes the same as that in (18). The example in II-B.1
below demonstrates that cond(FF̂) can further be improved
by appropriately choosing the parameterα without affecting
the RMS error as opposed to the case obtained byα = 1.

The rest of the formulation is the direct application of
the method developed by Feldmann and Freund [11] for
implementing an efficient algorithm for computing the Padé
approximation of Laplace-domain transfer functions via the
Lanczos process. As shown in the Appendix, the coefficients
xn in (13) are given by

xn = lTnreT
1 T−1

n e1 (22)

wheree1 was defined earlier (see also Figure 5). Similarly,
denoting then-th column of anM by M identity matrix by
ên the parameters in (22) are

lTn = êT
nX, A = FF̂, r = Fq, (23)

whereTn areK by K (K ≤ M ) tridiagonal matrices intro-
duced in Figure 5. The Appendix contains the relationships
(Lanczos Algorithm) for calculating the elements ofTn in
(25).

As a result, the Postprocessing block of Figure 5 calculates
xn = lTnreT

1 xn wherexn is the solution ofTnxn = e1. The
example in II-B.1 below shows thatK can be substantially
less thanM without noticeably increasing the RMS error,E .

1) Example:Using the parameters andtk ’s of the example
in I-C numerical simulations were carried out to determine
the RMS recovery error,E , and cond(FF̂). Figure 6 shows
the results obtained for different values byM andα = 1. For
M = 22 and different values ofα the simulation results for
cond(FF̂) are shown in Figure 7. As shown, in agreement
with these figures, forM = 22 and α = 1 we have
cond(FF̂) = 739.4 ≃ 57.4 dB, whereas withM = 22 and
α = 0.8 cond(FF̂) = 35.36 ≃ 31 dB.
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Finally, for M = 22 and α = 0.8 (see Figure 7), the
matrices T1, . . . ,TM were generated for severalK, and
the corresponding RMS error was calculated. As shown in
Figure 8, the size ofT1, . . . ,TM can be reduced from 22 to
12 resulting in practically the sameE . The RMS error obtained
for K ≥ 12 matches with that shown in Figure 6 forM = 22.
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APPENDIX

A simplified form of the result in [11] can be written as

lT (pI − A)−1r ≃ lT reT
1 (pI − T)−1e1 (24)

where the RHS is the Padé approximant of the LHS. Here
p is a scalar,I denotes the identity matrix (with appropriate
dimensions), superscriptT denotes transposition,l and r are
given vectors withM elements, andA is a givenM by M
matrix. On the RHST is aK by K matrix ande1 was defined
earlier (see also Figure 5). IfK = M , then (24) holds as an
equality, whereas forK < M an approximation takes place
in a certain range forp. Matrix T has the tridiagonal form

T =



















α1 β2 0 0 · · · 0 0
ρ2 α2 β3 0 · · · 0 0
0 ρ3 α3 β4 · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 · · · ρK−1 αK−1 βK

0 0 0 · · · 0 ρK αK



















(25)

where in terms ofl, r, and A the parametersρk, αk, and
βk are calculated by the following well-known iterative
procedure:

The classical Lanczos Algorithm:[15]
In the initialization part setρ1 =‖ r ‖2, η1 =‖ l ‖2. In the
n-th step of the algorithm we need to calculate the scalardn

and the vectorsvn and wn with setting the initial values as
d0 = 1, v0 = w0 = 0, v1 = r/ρ1, andw1 = l/η1. Then, for
n = 1, 2, . . . , K do:

1) Computedn = wT
nvn.

2) Set

αn =
wT

nAvn

dn

, βn =
dn

dn−1

ηn, γn =
dn

dn−1

ρn,

3) Calculate the auxiliary parametersv andw as

v = Avn − vnαn − vn−1βn

w = ATwn − wnαn − wn−1γn

4) Setρn+1 =‖ v ‖2, ηn+1 =‖ w ‖2, and

vn+1 =
v

ρn+1

, wn+1 =
w

ηn+1

,

The algorithm can be implemented very efficiently, but for ill-
conditioned(pI − A) a breakdown (triggered by division by
zero) typically occurs.

Using ên defined before (23), and using (20), the coeffi-
cients in (13) can be calculated by:

xn = êT
nx ≃ êT

nX(FF̂)−1Fq

Therefore, using (24) withp = 0 gives (22).
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[1] A. Aldroubi and K. Gröchenig, “Non-uniform sampling and reconstruc-
tion in shift-invariant spaces”,SIAM Review, Vol. 43, pp. 585-620, 2001.

[2] D. Castro, R. Espejo, A. Rodrı́gues-Vázques, A. Carmona, P. Földesy,́A.
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for time encoded bandlimited signals” ,BNET Technical Report, #1-04,
Department of Electrical Engineering, Columbia University, New York,
NY 10027, June 2004.
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