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Abstract— Time encoding is a novel real-time asynchronous solutions [9], [10], just to mention a few. i, is a strictly

mechanism for encoding amplitude information into a time jncreasing time sequence, a possible representationds giy
sequence. The analog bandlimited input is fed into a simple

nonlinear neuron-like circuit that generates a strictly increasing e
time sequence based on which the signal can be reconstructed x(t) = Z ckg(t — si) (1)
The heart of the reconstruction is solving a system of ill- k=—o0

conditioned linear equations. This contribution shows tha the , . . .
equations can be manipulated so that the reconstruction bemes Wherecx’s are appropriate scalars ap(t) = sin(2)/(nt) is
feasible using a Cellular Neural Network (CNN) with a banded the impulse response of an ideal lowpass filter with bandwidt
system matrix. In particular, the system is first transformed intoa ). Evaluating both sides of (1) at= s, gives

well-conditioned smaller system; and then, the Lanczos peess is

used to lay it out into a set of even smaller systems charactieed _ = 5
by a set of tridiagonal matrices. Each of these systems canrdctly x(se) = Z crg(se — sk), 2
be solved by CNNs, whereas the preprocessing (transformaii k=—oc0

and Lanczos algorithm) and simple postprocessing phasesrcée ; ;
partly or fully implemented by using the digital capabiliti es of the or in matrix form
CNN Universal Machine (CNN-UM). Each step of the proposed q=Gc (3)

formulation is confirmed by numerical (digital) simulations 2. . .
Y (digital) with unknown vectofc], = ¢, and known vectog and matrix

G given by:

Section I-A gives a short overview of irregular sampling, a lale = @(se), - and [Glok = glse = s), @
topic that is closely related to time encoding and is alsalusH the average density of the,’s is at or above the Nyquist
later on. Section I-B summarizes the basic concept of timate then the unknowa can in principle be obtained from (3)
encoding. A numerical example is presented in Section I-{12]. The practical solution, however, is challenging hes=a
Section I-D reviews how related problems are solved by CNN., G is typically ill-conditioned,
Section I-E shows how linear equations are solved usingaheur , ¢, ¢, G should in principle have infinite dimensions.
networks and what extra conditions are needed for a CNN
implementation. Section Il presents the proposed forrimriat B- Time encoding

Although a large number of theoretical papers have been
A. Irregular Sampling published in the area of irregular sampling, its practical

Let the analog signal(t) be bandlimited t4—, Q]. The clas- applications are limited to a few areas including astrorai

sical sampling theorem ([14], [24]) calls for representir(g) measurements, medical imaging, and the lost-data proliiem i

based on its samples taken uniformly at or above the Nqucsqmmunlcatlon theory [1]. The use of irregular sampling in

. - communications is even more limited because of two main
rate. Researchers have long been fascinated of how unifofm

(traditional) sampling can be generalized. Starting frarlye reasons. First, as mentioned in Section I-A, the reconsbmc

achievements [8] substantial results have been accurdulfft%r c based on (3) is difficult. Second, both the timess

) . ._and the amplitudes(s;)’s are needed for the reconstruction.
over the years both in theory [26], [12] and efficient numalric Therefore, if the average density of thes are at the Nyquist-

1 . , _ rate, then two times as much information is needed for
Proceedings of the Seventh Seminar on Neural Network Agipdics in

Electrical Engineering, NEUREL 2004, pp. 97-102, Belgra&erbia and transmlsspn ‘?‘S that in the case (_)f regular sampllng \_Nhere
Montenegro, September 23-25, 2004. sk+1 — Sk IS fixed for anyk. Thus in the regular sampling
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case, thes,’s carry no information and, therefore, do not need The formulation in (3), (5) and (6) assumes that the di-
to be transmitted. mensionality of the matrices and vectors used is infinite. In
A technique related to pulse position modulation (PPMractice (and simulations), however, only a finite time vawd
addressed this problem as follows (see, e.g., [21]). §i® can be used, when the right-hand-side (RHS) of (1) merely

are defined as the zero-crossings of the difference sig@proximates:(¢) on its left-hand-side (LHS). Therefore, if
x(t) — f(t) where f(t) is known. Thereforez(s;) no longer denotes the number of thig’s within some known observation
carries information since:(s;) = f(sr) holds and all the interval Typs then

information is carried by the,’s. A simple implementation I—1

can be given by _feedlng the differencdt) — f(t)_ into a a(t) ~ Z gt — su), @)
comparator that fires at exactly = s;. By choosing f(t) o

properly (usually as a periodic ramp or sinusoid signal with

aopropriate amplitude and frequency) the required dersit whereq andc in (3) have L components, an€ is an L by
ppropri phitu quency) qu Y énatrix. Let the reconstruction error, the difference betwe

the s;’s can be guaranteed. Still, the method has not beca .
RHS and the LHS of (7), and its root-mean-square (RMS)

popular because the high sensitivity to noise and the ex be d d d velv. | be sh
shape of f(¢) that VLSI implementations cannot guarante alue be denoted biy(t) andé, respective Y- tcan. € shown
16], [18] thate(t) can be decreased by increasingfor a

with high accuracy. . . L . ;
g y givenTgpsthat in turn results in ill-conditione€ as illustrated

Noninverting Schmitt trigger in the example of I-C below:
z C. Example
Integrator b ) ) N ) )
0 : ;/dt v | 5y (1) Let z(t) be given by its familiar sampling representation
Yy " ) i (kT)sin(Q(t—kT)
z(t) = T —_—
- = Q(t = kT)
where T = 7/Q is the Nyquist-period, and the sam-
ples z(7T) through z(127), are respectively, -0.1961,
Fig. 1. A possible robust TEM configuration. 0.186965, 0.207271, 0.0987736, -0.275572, 0.0201665,

0.290247, 0.138374, -0.067588, -0.145661, -0.11133, -
An improved time encoding scheme, referred to as Tin®291498,z(kT) = 0, for £ < 0 andk > 12. The rest of
Encoding Machine (TEM), is depicted in Figure 1 [16].
As shown, the TEM consists of an ideal integrator and a (t) 2(t) y(t)
noninverting Schmitt trigger in a feedback arrangemene Th = _/ —_— ——

outputz(t) takesb or —b values at transition times denoted by
tx. It can be shown [16] that this circuit can also be described
by (1) and (3) where we have

[ale = (—=1)" [266 — b(trr1 — ta], )

toya
[Gkk=/° gt~ si)dt, and s, = EEEL ()
te -0.5¢
with the same condition for the density of thg's as that
for the si’s in the case of irregular sampling. This circuitcan ;1 [ | | ] [ | | [ ] [ ]
be shown to be robust in terms of additive noise and circuit 0 20 40 60 80 100 120 140
imperfections. Intuitively this makes sense, since raptathe
Schmitt trigger by a clocked quantizer (a comparator fotidw Fig. 2. Simulation results for the signals in Fig. 1.
or preceded by a sampler) a popular robust circuit, a first
order Sigma-Delta modulator is obtained [22]. Although thearameters aré = 1, § = 0.6, & = 6.667 us, Q2 = 27 - 40
circuit parameterss and & appear in the expression fag kHz_hencéZ_“ = 12.5 ps. The evaluation of thg,’s was carried
(see (5)), with alternative formulations [18] this depemce ©Ut in the interval—2T" < ¢ < 15T (Tops = 177) based on
can also be eliminated, and(t)/b can be recovered in the numerl_cal S|mulat|01_1 of the TEM in Figure 1. Figure 2
terms of the time differences..; — ¢, only. Due to lack of shows the mpuir_(t), the integrator outpug(¢), and the TEM
space and in order to keep the formulation relatively simpl@Utputz(t). In this example we have
however, subsequently (3) together with (5) and (6) will be L — 2 @)
used. Following the terminology introduced in [16] the aler
reconstruction procedure/implementation will be refdti@@as number oft;’s (only 18 are shown in Fig. 2) determined with
the Time Decoding Machine (TDM). high accuracy, when (using the spectral noin; ||2) the
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condition number ofG turned out to be: D. Neural networks for time encoding

After the appearance of the TEM in Section I-B, similar cir-
cuits have been disclosed. The TEM investigated in [17] con-

Since such an ill-conditioned matrix cannot be inverted dfSS Of an integrate-and-fire neuron with an absolute cirg

. period. Although the refractory period seems intuitivety t
rectly, ¢ in (3) was calculated by [25] lead to information loss, it is shown in [17] that under simpl

c=G'q (10 conditions, bandlimited signals encoded with an integaaie
fire neuron can be perfectly recovered from the neural spike

where G* stands for the pseudo (Moore-Penro$dhverse train at its output.

of G. Using “perfect’t;’s the simulation result is shown by Many time-coding related problems can be solved via the
the solid trace of Figure 3. CNN Universal Machine (CNN-UM) [5]. One particularly

interesting problem is the hyperacuity in time mechanisms

condG) = 1.476 x 10" = 233 dB 9)

e(t) [20] with sparse global line in each row. This is a key feature
Ta ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ of the interaural time difference computing mechanism i th
x105, N = 14, £ ~ —97 dB barn owl [13]. In addition, the CNN dynamics is described
4r b ] by a system of nonlinear differential equations charaoteri
x 1012, exactt;s, £ ~ —239 dB . . K
by a band matrix. Its solution with programmable parameters
2 can be made, for 428 x 128 system, in a few microseconds.
ol This means, that for a properly formulated TDM problem the
CNN-UM based visual microprocessor chip [23] might serve
_ol as an ideal physical implementation. If some additionahter
are needed in the feedback matrix [4], a few special, adtditio
-4¢ terms could be added, to make it a special purpose TDM chip.

E. Neural networks for solving linear equations

Based on (3) the heart of the reconstruction in time encoding
Fig. 3. Simulation results for the error function(t), with perfect and irregular sampling is to solve a set of ill-conditionigetar
ti's andt;’s quantized toN = 14 and N = 20 bits. equations. This and related problems have been addressed
by using neural networks. In [6] neuron-like processors, in
The extremely small RMS errog/, cannot be achieved essence classical analog computers, were proposed for the
if the ¢,’s are inaccurate. In particular, if time encoding igeal-time solution of ill-conditioned linear equationsurther
used in telecommunications, then only quantizgd can be generalizations and simplifications were presented forisgl
transmitted. Ifz(t) < c holds for some giverr, then the |inear least squares problems in [7] including new on-chip

0 20 40 60 80 100 120 140 _{S

differencety.1 — t) turns out to be bounded [16] as: adaptive learning algorithms. These methods, however, are
not directly applicable for CNN solutions where one cell is
2Kk0 2K0 . . .
e <tpgr —tr < A (11) allowed to be connected mainly to its neighbors. In terms of
& — C

linear equations this means that the system matrix has t® hav
Therefore, if215/(b — ¢) is known, only the difference of @ banded structure: the matrix elements are zero apart from

the upper and lower bound in (11) needs to be quantized.i{f main and a few neighboring diagonals. For time encoding
this way, if N bits are used for time quantization, then théhe matrixG is dense. As it is shown below, recent results for

corresponding error af,, 1 — t, — 26 /(b+c¢) is in the range: CNNs [2] can be also used for implementing time decoding.
Thus, a complete CNN or a CNN-convertible approach can

1 (286 266\  2r6 2c be designed to perform a full time encoding and decoding
TN \b—c¢ b+c) 2N p2_¢2 procedure between analog bandlimited input and outputoin
2].

The quantization ofy 1 —tx—2kd/(b+c) can be implemented 2

by a single clock with frequencly/ A started at;, and stopped [I. A CNN-COMPATIBLE TIME DECODING

after the appearance of;,. From these values the (erroneousgection I-A gives a general overview of the proposed recon-

ty's, that are needed for generating the mat@x(see (6)), struction techniques while Section II-B discusses theildeta

can easily be calculated. Figure 3 shows the corresponding ) .

simulation results withe = 0.3 (seex(t) in Figure 2) for A. General scheme and CNN considerations

N = 14 and N = 20. As seen, with time quantization theThe original time encoding and decoding scheme [16] is

error signals are substantially increased as opposed g usilepicted in Figure 4, where the TEM’s output is represented

perfectt,’'s (machine-precision with 64 bits). by irregularly spaced. pulses with common (unity) weights.
In agreement with (10) and (7), the reconstruction is based o

2If G is nonsingular (appropriately well-conditioned), thent = G—1.  calculating the pseudo-inverse of the dense and ill-cadid
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Fig. 4. Original reconstruction [16]. Tl‘ TM"
0 O H B
Tix1 = e Tuxym = e

L by L matrix G; and the output signal is obtained by passing il « v . xum 1 o
irregularly spaced pulses with the weights through an ideal ) L] 0
lowpass filter (LPF) with impulse respongét). ‘ Postprocessing ‘ er=| . K

Figure 5 depicts the general scheme of the proposed formu- x (‘)
lation. The Parallel Algorithm block first reduces the omigfi AR
L equations toM, (M < L) well-conditioned equations. LPF R o Trr—1
Then, using the Lanczos algorithm tHé by K matrices g9(t) . ¢
Ti,..., Ty are generated so that each has a tridiagonal form ¢ 0 T, 2T, (M —1)T,
(see_also (25)) and redqced siZ€ € M). In terms of these x(t) K<M<L
matricesM linear equationsl’,,x,, = e; have to be solved /\/

for x,, wheren =0,..., M — 1 ande; is the first column of _
a K by K identity matrix, as seen. These computations are Fig. 5. Proposed reconstruction.
well-suited for parallel processing, typically for thewsttural
needs of CNNs. Also, as opposed to the original reconstrnucti I . .
in Figure 4, z(t) is now recovered by passingegularly Tops/M. Substituting (12) into (7) gives
spaced pulses through the LPF. This clearly has practical
advantages. The computations of the Parallel Algorithm and z(? Z zng(t —nTy), zn =[x],, x=Fc (13)
the Postprocessing blocks can be implemented digitallygusi
dedicated circuitry and/or the digital capabilities of C&INy where[F],, , = F,, , andc was introduced in (3). Evaluating
placing them into the Global Analog Control Unit (GACU). both sides of (12) at = mT, givesD ~ BF with

In particular, the CNNA matrix in (8) of [4] and the
equivalent matrixT in (25) of this paper have the same [Dlini = g(mTs = s) and [Blmn = g((m —n)T).
structure. If we are using a spatially variant form of th (14)
simple CNN with a templatép, «, 5], thenp, a, and g are
locally variant. In that case a special GACU for the addigion F~B D (15)
computation, i. e. a special-purpose CNN-UM chip can be
built. Details of the required accuracy and algorithmicteon Substituting now (12) into (6) gives
are to be developed. The use of the CNN-UM chip with a , . thta
combined DSP to be integrated into a single chip is partibula G ~DF with [Dlkn = / (t —nTs)d

challenging. "
Therefore, (3) and the third relationship in (13) imply=

B. Parallel Algorithm Gc ~ DFc = Dx. Multiplying both sides byD givesDq ~

1
As illustrated in I-C theL by L matrix G in (3) is ill- D]Zé(r;tr(c)rzéfwglc?wv)v?ng?:/e( trgDs]r:r:;IIe]r);]’ 2'2%%])? Irsoae d
conditioned. The first idea of the proposed formulation is @(L)jndtoln n mger as o g(s(\;\g@) The conldzton caln fp rtf\ller
express the functiong(t — sx) by using oversampled and . u bp ” u

regularly spaced sampling times as be improved by defining

q’herefore, with appropriatd/ < L we have:

(16)

M—-1 ]?:I‘ = ]ADB71 (17)
gt —sx) = > Foxg(t—nTy) (12) when using (15) gives
n=0 A
x ~ B Y(FF) 'Fq (18)

with givenM and appropriate coefficients, . Sinceg(t—sy,)
is approximated by similar functiong(t — nT5), intuitively it as the solution for the transformed system in (13).

makes sense to expect a good approximationMok: L. In Based on numerical simulations we found that c((FﬁJ)
terms of M and Typs the sampling period’s is set toT; = is substantially smaller than co@ﬂ]f)). Intuitively, this is



becauseB is structurally similar not only toD but also

to D as well due to the mean value theoref];, = 50 . e
(te1 —tr)g(&, —nT) with appropriates € [ty tet]. In this ol *COTFF)de)* x

way, sinceDD = BFFB, the multiplication of the inverse

of B acts as a preconditioner on both sidesDiD. .50 ¢ @)

Since B is a fixed symmetric Toeplitz matrix [3], [19],
its inverse can be precalculated with arbitrary accuraay an - 100
stored; and only the multiplications in (15) and (17) are
to be carried out on-line. In addition, not only the inverse -150
but other parametrized forms d8 can be calculated be- M
forehand. For example, using its eigenvalue decomposition 16 18 20 2
B = Udiag\\x)U~! with modal matrixU and eigenvalues
A\ a possible generalization &~! is

Fig. 6. Simulation results for€ and condFF) with X = B~!
(aw=1) in terms of M.

X = Udiag)\,:I)O‘Ufl, (19)
F) (d
and therefore T ;?)ndFF)( X
x ~ X(FF) 'Fq (20)
where 6ol
F=XD and F=DX. (21)

Choosinga = 1 givesX = B1, hence the solution fox in 507

(20) becomes the same as that in (18). The example in 1I-B.1
below demonstrates that cofiéF) can further be improved 4o}
by appropriately choosing the parametemwithout affecting
the RMS error as opposed to the case obtained by 1. 30l
The rest of the formulation is the direct application of ‘ ‘ ‘ ‘ ‘ N
the method developed by Feldmann and Freund [11] for 0.6 0.7 0.8 0.9 1
Implem.emmg an efficient aIgont_hm for computlr_lg the _Pad'(:-:'ig. 7. Simulation results for cor((FF) with M = 22 and different
approximation of Laplace-domain transfer functions via th,j,es ofa in (19).
Lanczos process. As shown in the Appendix, the coefficients

, in (13) are given by

z, =1re] T, 'e; (22)  Finally, for M = 22 and o = 0.8 (see Figure 7), the
wheree; was defined earlier (see also Figure 5). Similarly?]amceS Tl"".’TM were generated for severdl’, and .
. . . . he corresponding RMS error was calculated. As shown in
denoting then-th column of anM by M identity matrix by _. .
&, the parameters in (22) are Figure 8,_ tht_a size 0_11“1, ..., Ty can be reduced from 2_2 to
" 12 resulting in practically the sanée The RMS error obtained
1" =el'X, A= F]f:; r = Fq, (23) for K > 12 matches with that shown in Figure 6 fof = 22.

whereT,, are K by K (K < M) tridiagonal matrices intro-
duced in Figure 5. The Appendix contains the relationships

. . . £ (dB
(Lanczos Algorithm) for calculating the elements &f, in T 0( :
(25).

As a result, the Postprocessing block of Figure 5 calculates 2%}
r, = 1Lrel'x, wherex, is the solution ofT,,x,, = e;. The - 40}
example in [I-B.1 below shows thak can be substantially 6ol
less than)M without noticeably increasing the RMS errér,

80|

1) Example:Using the parameters ang's of the example
in I-C numerical simulations were carried out to determine- 100}
the RMS recovery erroi, and condFF). Figure 6 shows ~120!
the results obtained for different values by anda = 1. For
M = 22 and different values ofv the simulation results for :
condFF) are shown in Figure 7. As shown, in agreement & 10 12 14 16 18 20 2 K
with these figures, forM = 22 and o = 1 we have g g Simulation results fo€ in terms of different values ok
condFF) = 739.4 ~ 57.4 dB, whereas with\/ = 22 and
o = 0.8 condFF) = 35.36 ~ 31 dB.
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APPENDIX

(1]
(2]

A simplified form of the result in [11] can be written as

17(pI — A) " 'r ~ 1Trel (pI — T) ley (24)
where the RHS is the Padé approximant of the LHS. Here
p is a scalarI denotes the identity matrix (with appropriate
dimensions), superscrigt denotes transpositioh,andr are
given vectors withM elements, and\ is a givenM by M
matrix. On the RHST is a K by K matrix ande; was defined
earlier (see also Figure 5). K = M, then (24) holds as an
equality, whereas fol < M an approximation takes place
in a certain range fop. Matrix T has the tridiagonal form

(3]

(4]

(5]
(6]

(&3] 62 0 0 s 0 0
p2 az fp3 0 .- 0 0
0 p3 a3 B - 0 0 7]
T=| . . (25)
0 0 0 - px-1 ax-1 Pk 8]
L O O O O PK [077¢ |

where in terms ofl, r, and A the parametersy, ax, and [
0B, are calculated by the following well-known iterative
procedure:

[10]
The classical Lanczos Algorithnfil5]
In the initialization part sep; =| r |2, ;1 =] 1 ||2. In the
n-th step of the algorithm we need to calculate the scalar
and the vectory,, andw,, with setting the initial values as
do=1,vog=wg=0, vy = I‘/pl, andw; = 1/771. Then, for [12]
n=1,2...,K do:

1) Computed,, = wlv,.
2) Set

(11]

[13]

[14]
dn,
dn -1

— dn
T]nv 'Yn - d

n—1

T
w,, Av,

d,

Qp = Bn = Pns

3) Calculate the auxiliary parametevsandw as [15]

\4
W

Avn — VpQpn — Vn—lﬁn

ATwW,, — Wpot — Wn_17n [16]

4) Setpn+1 :” \4 H2a Tn+1 :” w ”2’ and
[17]
A%
Vi1 = s
Pn+1

w

WnJrl - )
Mn+1

The algorithm can be implemented very efficiently, but for il (18]

conditioned(pI — A) a breakdown (triggered by division by
zero) typically occurs.

Using &,, defined before (23), and using (20), the coeffitdl
cients in (13) can be calculated by:
~ &IX(FF) 'Fq [20]

z, =élx

Therefore, using (24) witlhp = 0 gives (22).
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