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Abstract

We consider a formal model of stimulus encoding with a circuit consisting

of a bank of filters and an ensemble of integrate-and-fire neurons. Such models

arise in olfactory systems, vision and hearing. We demonstrate that bandlimited

stimuli can be faithfully represented with spike trains generated by the ensemble of

neurons. We provide a stimulus reconstruction scheme based on the spike times of

the ensemble of neurons and derive conditions for perfect recovery. The key result

calls for the spike density of the neural population to be above the Nyquist rate.

We also show that recovery is perfect if the number of neurons in the population

is larger than a threshold value. Increasing the number of neurons to achieve a

faithful representation of the sensory world is consistent with basic neurobiological

thought. Finally we demonstrate that, in general, the problem of faithful recovery

of stimuli from the spike train of single neurons is ill-posed. The stimulus can

be recovered, however, from the information contained in the spike train of a

population of neurons.

∗The work presented here was supported in part by NIH under grant number R01 DC008701-01 and
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1 Introduction

In this paper we investigate a formal model of stimulus encoding with a circuit
consisting of a filterbank that feeds a population of integrate-and-fire (IAF) neurons.
Such models arise in olfactory systems, vision and hearing (Fain, 2003). We investigate
whether the information contained in the stimulus can be recovered from the spike trains
at the output of the ensemble of integrate-and-fire neurons. In order to do so, we provide
a stimulus recovery scheme based on the spike times of the neural ensemble and derive
conditions for the perfect recovery of the stimulus. The key condition calls for the spike
density of the neural ensemble to be above the Nyquist rate. Our results are based on
the theory of frames (Christensen, 2003) and on previous work on time encoding (Lazar
& Toth, 2004), (Lazar, 2005), (Lazar, 2006), (Lazar, 2007).

Recovery theorems in signal processing are usually couched in the language of spike
density. In neuroscience, however, the natural abstraction is the neuron. We shall also
formulate recovery results with conditions on the size of the neural population as opposed
to spike density. These results are very intuitive for experimental neuroscience. We
demonstrate that, the information contained in the sensory input can be recovered from
the output of integrate-and-fire neuron spike trains provided that the number of neurons
is beyond a threshold value. The value of the threshold depends on the parameters of
the integrate-and-fire neurons. Therefore, while information about the stimulus can not
be perfectly represented with a small number of neurons, this limitation can be overcome
provided that the number of neurons is beyond a critical threshold value. Increasing the
number of neurons to achieve a faithful representation of the sensory world is consistent
with basic neurobiological thought.

We also demonstrate that the recovery of stimuli is not, in general, possible from
spike trains generated by individual neurons; rather a population of neurons is needed
to recover the stimulus of single neurons. This finding has important applications to
systems neuroscience since it suggests that the recovery of the stimulus that is applied
to single neurons can not be, in general, recovered from the spike train of single neurons.
Rather, the spike train of a population of neurons is needed to get faithful stimulus
recovery.

Our theoretical results provide, what we believe to be, the first rigorous model demon-
strating that the sensory world can be faithfully represented by using a ”critical size”
ensemble of sensory neurons. The investigations presented here further support the
need to shift focus from information representation using single neurons to population
of neurons. As such, our results have some important ramifications to experimental
neuroscience.

This paper is organized as follows. In section 2 the neural population encoding
model is introduced. The encoding model is formally described and the problem of
faithful stimulus recovery is posed. A perfect stimulus recovery algorithm is derived in
section 3. In the same section, we also work out our main result for neural population
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encoders using filterbanks based on wavelets. Two examples are given in section 4. The
first, details the stimulus recovery for filters with arbitrary delays arising in dendritic
computation models. The second, presents the recovery of stimuli for a gammatone filter
bank widely used in hearing research. For both examples, we show that the quality of
stimulus reconstruction gracefully degrades when additive white noise is present at the
input. Finally section 5 concludes our work and discusses the important ramifications
that formal neural population models can have in systems neuroscience.

2 A Neural Population Encoding Model

In this section we introduce a formal model of stimulus representation consisting of a
bank of N filters and an ensemble of N integrate-and-fire neurons (see Figure 1). Each
filter of the filterbank is connected to a single neuron in the ensemble. The stimulus is
modeled as a bandlimited function, i.e., a function whose spectral support is bounded.

2.1 Stimulus Encoding with Filter Banks and Integrate-and-

Fire Neurons

Let Ξ be the set of bandlimited functions with spectral support in [−Ω,Ω]. A function
u = u(t), t ∈ R, in Ξ models the stimulus and Ω is its bandwidth. Ξ is a Hilbert space
endowed with the L2-norm. A brief overview of Hilbert spaces can be found in Appendix
A. Let h : R 7→ RN be a (vector) filtering kernel defined as

h(t) = [h1(t), h2(t), . . . , hN(t)]T , (1)

were hj : R → R for all j, j = 1, 2, ..., N , and T denotes the transpose. Throughout
this paper we shall assume that supp(hj) ⊇ [−Ω,Ω] (supp denotes the spectral support).
Filtering the signal u with h leads to an N -dimensional vector valued signal v = v(t), t ∈
R, defined by

v(t) = (h ∗ u)(t) = [(h1 ∗ u)(t), (h2 ∗ u)(t), . . . , (hN ∗ u)(t)]T , (2)

where ∗ denotes the convolution operator.
A bias bj is added to the component vj of this signal and the sum is presented at the

input of the j-th integrate-and-fire neuron with integration constant κj and threshold
δj, for all j, j = 1, 2, ..., N (see Figure 1). (tjk), k ∈ Z, is the output sequence of trigger
(or spike) times generated by neuron j, j = 1, 2, ..., N .

The neural population encoding model in Figure 1 maps therefore, the input ban-
dlimited stimulus u into the vector time sequence (tjk), k ∈ Z, j = 1, 2, ..., N . It is an
instance of a Time Encoding Machine (TEM) (Lazar & Toth, 2004), (Lazar, 2006).
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Figure 1: Single-Input Multi-Output Time Encoding Machine.
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2.2 The t-Transform

The t-transform (Lazar & Toth, 2004) formally characterizes the Input/Output rela-
tionship of the TEM, i.e., the mapping of the input stimulus u(t), t ∈ R, into the output
spike sequence (tjk)k∈Z of the j-th neuron, j = 1, 2, . . . , N . The t-transform for the j-th
neuron can be written as

∫ tj
k+1

tj
k

((hj ∗ u) + bj)(s) ds = κjδj ,

or ∫ tj
k+1

tj
k

(hj ∗ u)(s) ds = qj
k, (3)

where qj
k = κjδj − bj(tjk+1 − tjk), for all k, k ∈ Z, and all j, j = 1, 2, . . . , N .

2.3 Recovery of the Encoded Stimulus

Definition 1. A neuronal population encoding circuit faithfully represents its input stim-
ulus u = u(t), t ∈ R, if there is an algorithm that perfectly recovers the input u from the
output spike train (tjk), k ∈ Z, j = 1, 2, ..., N .

We have seen that, the t-transform of the population encoding circuit in Figure 1
maps the input u into the time sequence (tjk), k ∈ Z, j = 1, 2, ..., N . The faithful recovery
problem seeks the inverse of the t-transform, that is, finding an algorithm that recovers
the input u based on the output vector time sequence (tjk), k ∈ Z, j = 1, 2, ..., N .

Let the function g(t) = sin(Ωt)/πt, t ∈ R, be the impulse response of a low pass filter
(LPF) with cutoff frequency at Ω. Clearly, g ∈ Ξ. Since u is a bandlimited function in
Ξ, the t-transform defined by equation (3) can be rewritten in an inner-product form as

< hj ∗ u, g ∗ 1[tj
k
,tj

k+1
] >= qj

k

or
< u, h̃j ∗ g ∗ 1[tj

k
,tj

k+1
] >= qj

k, (4)

where h̃j is the involution of hj, i.e., h̃j = hj(−t), for all t, t ∈ R, and for all k, k ∈ Z,
and j, j = 1, . . . , N . After firing, without any loss of generality, all neurons are reset to
the zero state. A description of the firing mechanism with arbitrary reset can be found
in (Lazar, 2005).

Equation (4) has a simple interpretation. The stimulus u is measured by projecting
it onto the sequence (h̃j ∗ g ∗ 1[tj

k
,tj

k+1
]), k ∈ Z and j = 1, 2, . . . , N . The values of these

measurements form the sequence qj
k, j = 1, 2 . . . , N , and is available for recovery. Thus

the TEM acts as a sampler on the stimulus u. Furthermore, since the spike times depend
on the stimulus, the TEM acts as a stimulus dependent sampler. How to recover the
stimulus from these measurements is detailed in the next section.
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3 Recovery of Stimuli Encoded with the Neural Pop-

ulation Model

As already discussed in the previous section, we assume N integrate-and-fire neurons
each with bias bj , integration constant κj and threshold δj for all j, j = 1, 2, . . . , N .
Before the stimulus u is fed to neuron j, the stimulus is passed through a linear filter
with impulse response hj = hj(t), t ∈ R. With (tjk), k ∈ Z, the spike times of neuron j,
the t-transform (4) can be written as

< u, φj
k >= qj

k. (5)

where φj
k = h̃j ∗g ∗1[tj

k
,tj

k+1
]. If the sequence φ = (φj

k), k ∈ Z, j = 1, 2, ..., N , is a frame for

Ξ, the signal u can be perfectly recovered. Thus, our goal in this paper is to investigate
the condition for the sequence φ to be a frame (called analysis frame in the literature
(Teolis, 1998),(Eldar & Werther, 2005)) and provide a recovery algorithm.

Before we proceed with the recovery algorithm we also need the following definition
of the filters that model the processing taking place in the dendritic trees.

Definition 2. The filters hj = hj(t), t ∈ R, are said to be bounded-input bounded-output
(BIBO) stable if

‖hj‖1 ,

∫

R

|hj(s)| ds <∞.

In the next section we investigate the faithful representation of the stimulus u given
the spike sequence (tjk), k ∈ Z, j = 1, 2, . . . , N , (Theorem 1) and provide sufficient condi-
tions for perfect recovery. An algorithm for stimulus recovery is explicitly given (Corol-
lary 1). We show that the sensory world modeled through the stimulus u can be perfectly
recovered provided that the number of neurons is above a threshold value (Theorem 2).

3.1 Faithful Stimulus Recovery

The t-transform in (5) quantifies the projection of the stimulus u onto the sequence
of functions (φj

k), k ∈ Z, j = 1, 2, ..., N . As such, it provides as set of constraints for
stimulus recovery. These constraints, might be related if the corresponding functions
are related. For example, for two integrate-and-fire neurons with the same parameters
and the same pre-processing filters, φ1

k = φ2
k, for all k, k ∈ Z. Thus the two neurons

impose identical constraints on recovery. For two neurons whose pre-processing filters
and biases are the same and the threshold of one of the neurons is an integer multiple
of the threshold of the other neuron, say δ1 = Lδ2,

∑L−1
l=0 φ

1
m+l = φ2

n for infinitely many
pairs of integers (m,n).

In the simple examples above, the constraints that a neuron imposes on stimulus
recovery can be linearly inferred from the constraints imposed by another neuron. This
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redundancy in the number of constraints is undesirable and in Theorem 1 we seek suffi-
cient conditions to avoid it.

Definition 3. The filters (hj), j = 1, . . . , N , are called linearly independent if there do
not exist real numbers aj, j = 1 . . . , N , not all equal to zero, and real numbers αj, j =
1, . . . , N , such that

N∑

j=1

aj(h
j ∗ g)(t− αj) = 0

for all t, t ∈ R (except on a set of Lebesgue-measure zero).

Proposition 1. If the filters (hj), j = 1, . . . , N , are linearly independent then the func-
tions (φj

k), k ∈ Z, j = 1, 2, ..., N , are also linearly independent.

Proof: The functions (φj
k), k ∈ Z, j = 1, 2, ..., N , are linearly dependent if there exist

real numbers aj, j = 1 . . . , N , not all equal to zero, integers kj , j = 1, . . . , N , and positive
integers Lj , j = 1, . . . , N , such that

N∑

j=1

aj




Lj−1∑

l=0

φj
kj+l(t)


 = 0, (6)

for all t ∈ R. By substituting the functional form of φj
k in the equation above, we obtain

N∑

j=1

aj(h̃
j ∗ g ∗ 1h

tj
kj

,tj
kj+Lj

i)(t) = 0. (7)

For (7) to hold, tjkj+Lj
− tjkj

= ∆ for all j, j = 1, . . . , N , with aj 6= 0, where ∆ is a

constant. By taking the Fourier transform of (7) we have

N∑

j=1

aj (̂h̃j)ĝ

(
e
−iωtj

kj
1 − e−iω∆

iω

)
= 0, (8)

where ĝ is the Fourier transform of g and i =
√
−1. By canceling the summation

independent terms and taking the inverse Fourier transform, we obtain

N∑

j=1

aj(h̃
j ∗ g)(t− tjkj

) = 0. (9)

The latter equality can only hold if the filters are not linearly independent. �
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Remark 1. In order to satisfy equation (7), the spikes generated by the N neurons do
not have to coincide. For two neurons, for example, the spikes might be generated at
times t1k = t2k +α while the pre-processing filters satisfy the relationship h1(t) = h2(t+α).
Here φ1

k = φ2
k, i.e., the constraints are linearly dependent. The allowance of time shifts

that also appears in the definition of linear independent filters is, therefore, essential.

Remark 2. Two neurons might generate spikes at the same time infinitely often. A
simple example is provided by the case when the first neuron is described, after generating
L spikes, by the t-transform

∫ t1
k+L

t1
k

(h1 ∗ u)(s)ds = L · κ1δ1 − b1(t1k+L − t1k)

and the second neuron is described between two consecutive spikes by

∫ t2
k+1

t2
k

(h2 ∗ u)(s)ds = κ2δ2 − b2(t2k+1 − t2k).

It is easy to see that, if the initial spikes coincide in time, i.e., t1k = t2k, the filters h1

and h2 and the other parameters of the two integrate-and-fire neurons can be chosen
in such a way as to have t1k+L = t2k+1. Thus, the spikes generated by the two neurons
are identical infinitely often. However, the spike coincidence just described will be of no
concern to us provided that the filters are linearly independent. This consideration arises
when constructing the synthesis frames throughout this paper.

We are now is position to state our main Theorem. It pertains to the neural circuit
model depicted in Figure 1.

Theorem 1. Assume that the filters hj = hj(t), t ∈ R, are linearly independent, BIBO
stable and have spectral support that is a superset of [−Ω,Ω] for all j, j = 1, 2, ..., N .
The stimulus u can be represented as

u(t) =

N∑

j=1

∑

k∈Z

cjkψ
j
k(t), (10)

where ψj
k(t) = h̃j ∗ g(t − sj

k) and cjk, k ∈ Z, j = 1, . . . , N , are suitable coefficients,
provided that

N∑

j=1

1

κjδj
(bj − c

∫

R

|hj(s)|ds) > Ω

π
, (11)

|u(t)| ≤ c.
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Proof: Clearly, the theorem holds if we can show that the sequences of functions the
sequence of functions (ψj

k(t)), k ∈ Z, j = 1, . . . , N , is, respectively, a frame for Ξ (called
the synthesis frame in the literature (Teolis, 1998),(Eldar & Werther, 2005)).

Given the structure of the t-transform in (5), and noting that the N filters are
independent, the definition of the lower spike density D (given in Appendix B) reduces
to (see also the evaluation of D below)

D = lim inf
t→∞

inf
t0∈R

N(t0, t0 + t)

t
, (12)

where N(a, b) is the number of spikes in the interval (a, b). Since

|vj(t)| = |
∫

R

hj(t− s)u(s)ds| ≤
∫

R

|hj(t− s)||u(s)|ds ≤ c

∫

R

|hj(s)|ds,

the condition for the spike density D becomes

D = lim inf
t→∞

inf
t0∈R

N∑

j=1

1

t

⌈∫ t+t0
t0

(bj + vj(s)) ds

κjδj

⌉
= lim inf

t→∞
inf
t0∈R

N∑

j=1

1

t

(∫ t+t0
t0

(bj + vj(s)) ds

κjδj

)

≥
N∑

j=1

1

κjδj
(bj − c

∫

R

|hj(s)|ds),

(13)

where ⌈x⌉ denotes the greatest integer less than or equal to x.
We note that the computation of the lower density above possibly includes identi-

cal spikes. However, the linear independence condition on the filters hj , j = 1, 2, ..., N ,
guarantees that the sequence (φj

k), k ∈ Z, j = 1, 2, ..., N , is a frame. The theorem holds
since condition (11) guarantees that the lower spike density is above the Nyquist rate,
and thus by Lemma 2, the sequence of functions (ψj

k(t)), k ∈ Z, j = 1, . . . , N , is a frame
for Ξ. �

Remark 3. Theorem 1 has a very simple interpretation. The stimulus u can be faithfully
represented provided that the number of spikes exceeds the lower bound in (11). This
lower bound is the Nyquist rate and arises in the Shannon sampling theorem (Lazar &
Toth, 2004). Thus, inequality (11) is a Nyquist-type rate condition.

According to Theorem 1 (see equation (10)), under a Nyquist-type rate condition the
stimulus u can be written as

u(t) =

N∑

j=1

∑

k∈Z

cjk(h̃
j ∗ g)(t− sj

k). (14)
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c = G+q

+
u

LPF

∑

k∈Z

δ(t − t
1

k
)

∑

k∈Z

δ(t − t
2

k
)

∑

k∈Z

δ(t − t
N

k
)

∑

k∈Z

c
1

k
δ(t − s

1

k
)

∑

k∈Z

c
2

k
δ(t − s

2

k
)

∑

k∈Z

c
N

k
δ(t − s

N

k
)

h̃
1

h̃
2

h̃
N

Figure 2: Single-Input Multi-Output Time Decoding Machine.
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The recovery algorithm of u in block diagram form is shown in Figure 2. It is an
instantiation of a Time Decoding Machine (Lazar & Toth, 2004), (Lazar, 2007).
This suggests the following recovery scheme in matrix notation.

Corollary 1. Let c = [c1, . . . , cN ]T ,with [cj ]k = cjk. Then

c = G+q, (15)

where T denotes the transpose, G+ denotes the pseudoinverse and

q = [q1, . . . ,qN ]T , [qj]k = κδj − bj(tjk+1 − tjk),

G =




G11 G12 . . . G1N

G21 G22 . . . G2N

...
...

. . .
...

GN1 GN2 . . . GNN


 , [Gij ]kl =

∫ ti
k+1

ti
k

(hi ∗ h̃j ∗ g)(s− sj
l ) ds.

(16)

Proof: Equation c = G+q can be obtained by substituting the representation of u in
equation (10) into the equation of the t-transform in (5).

< u, φj
l >=

N∑

i=1

∑

k∈Z

cik < ψi
k, φ

j
l >

and, therefore,

qj
l =

N∑

i=1

∑

k∈Z

cik[G
ij ]kl

for all i, i = 1, 2, ..., N , and l ∈ Z. Since the sequences φ and ψ are frames for Ξ the
result follows (Eldar & Werther, 2005). �

Remark 4. For the particular case of a TEM without filters, i.e., hj(t) = δ(t), where
δ(t) is the Dirac-delta function for all j, j = 1, 2, ..., N , we have

ψj
k(t) = (δ ∗ g)(t− sj

k) = g(t− sj
k),

for all k, k ∈ Z, and all t, t ∈ R. Consequently, we obtain the representation and recovery
results of (Lazar, 2007).

Remark 5. Assume that the bandlimited stimulus u is filtered with an arbitrary time
invariant filter with impulse response h. A bias b is added to the output of the filter
and the resulting signal is passed through an integrate-and-fire neuron with threshold δ.
Thus, the t-transform of the signal can be written as
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∫ tk+1

tk

(h ∗ u)(s) ds = κδ − b(tk+1 − tk), (17)

for all k, k ∈ Z. According to Theorem 1, under appropriate conditions the stimulus can
be written as

u(t) =
∑

k∈Z

ck(h̃ ∗ g)(t− sk), (18)

for all t, t ∈ R. In matrix notation, c = G+q, where [c]k = ck, [q]k = κδ − b(tk+1 −
tk), k ∈ Z, and [G]kl =

∫ tk+1

tk
(h ∗ h̃ ∗ g)(s − sk) ds. Alternatively, in order to recover

the stimulus u, we can first obtain h ∗ u using the classical recovery algorithm (Lazar &
Toth, 2004) and then pass h ∗ u through the inverse filter h−1.

Theorem 1 provides a technical condition for faithful representation in terms of the
minimum density of spikes as in (11). Instead of this technical condition we give a much
simpler condition in terms of the number of neurons. Such a condition is more natural
in the context of encoding stimuli with a population of neurons. The latter also provides
a simple evolutionary interpretation (see Remark 6 below).

Theorem 2. Assume that the filters hj = hj(t), t ∈ R, are linearly independent, BIBO
stable and have spectral support that is a superset of [−Ω,Ω] for all j, j = 1, 2, ..., N . If
the input to each neuron is positive, i.e., bj + vj ≥ εj > 0, and

∑N
j=1 ε

j/κjδj diverges in
N , then there exists a number N such that if N ≥ N , the stimulus u, |u(t)| ≤ c, can be
recovered as

u(t) =
N∑

j=1

∑

k∈Z

cjkψ
j
k(t), (19)

where the constants cjk, k ∈ Z, j = 1, . . . , N , are given in matrix form by c = G+q.

Proof: Since bj + vj ≥ εj for all j, j = 1, 2, ..., N , the lower spike density amounts to

D = lim inf
t→∞

inf
t0∈R

N∑

j=1

1

t

(∫ t+t0
t0

(bj + vj(s)) ds)

κjδj

)
≥

N∑

j=1

εj

κjδj
(20)

and the lower bound diverges in N . Therefore, there exists an N such that for N > N ,

D >
Ω

π

and the theorem follows.

Remark 6. The result of Theorem 2 has a simple and intuitive evolutionary interpre-
tation. Under the condition that every neuron responds to the stimulus with a positive
frequency, the stimulus can be faithfully represented with a finite number of neurons.
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3.2 Stimulus Representation and Recovery Using Overcomplete

Filterbanks

Receptive fields in a number of sensory systems, including the retina (Masland, 2001)
and the cochlea (Hudspeth & Konishi, 2000) have been modeled as filter banks. These
include wavelets and Gabor frames.

c = G+q

+
u

LPF

∑

k∈Z

δ(t − t
1

k
)

∑

k∈Z

δ(t − t
2

k
)

∑

k∈Z

δ(t − t
N

k
)

∑

k∈Z

c
1

k
δ(t − s

1

k
)

∑

k∈Z

c
2

k
δ(t − s

2

k
)

∑

k∈Z

c
N

k
δ(t − s

N

k
)

Ds1
h̃

Ds2
h̃

DsN
h̃

Time Encoding Machine Time Decoding Machine

Figure 3: Time Encoding Machine using an overcomplete wavelet filterbank for stimulus
representation. Recovery is achieved with a Time Decoding Machine.

We briefly demonstrate how to apply the results obtained in the previous section
when using the Overcomplete Wavelet Transform (OCWT) (Teolis, 1998). A similar
formulation is also possible with other classes of frames (e.g., Gabor frames). Let u
be a bandlimited stimulus, h the analyzing wavelet and sn, n = 1, . . . , N , the scaling
factors used in the filterbank representation (for more information see for example (Teolis,
1998)). Then the filters hj are defined by hj = Dsj

h, j = 1, 2, . . . , N , where Ds is the

dilation operator (Dsu)(t) = |s|1/2u(st).
From Theorem 1 and the simple relation (Dsh)

˜ = Dsh̃, the stimulus can be repre-
sented as

u(t) =

N∑

j=1

∑

k∈Z

cjk(g ∗Dsj
h̃)(t− sj

k), (21)

where c = G+q with [q] = [q1,q2, . . . ,qN ]T and [qj ]k = κjδj − bj(tjk+1− tjk). The matrix
G is given by

[Gij]kl =

∫ ti
k+1

ti
k

(
Dsi

h ∗Dsj
h̃ ∗ g

)
(s− sj

l ) ds. (22)
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Note that the representation (21) uses the same filters (Dsj
h̃), j = 1, 2 . . . , N , for

recovery as the ones that are employed in the classical signal representation with filter-
banks (Teolis, 1998). The density condition for (21) calls for the sum of the whole neuron
population activity to exceed the Nyquist rate. As before, by adding more neurons and
filters to the filterbank results, in general, in an improved representation. The Time
Encoding Machine and Time Decoding Machine realizations are shown in Figure 3.

Remark 7. Our analysis above provides an algorithm for recovering the stimulus even
in the case where the actual input is undersampled by each of the neurons. Thus, our
findings in this section extend the results of (Lazar, 2005).

4 Examples

In this section we present two numerical examples of the theory presented above,
that have direct applications to stimulus representation in sensory systems.

4.1 Neural Population Encoding Using Filters with Arbitrary

Delays

We present an example realization of the recovery algorithm for a filterbank consisting
of filters that introduce arbitrary, but known, delays on the stimulus. Such filters model
dendritic tree latencies in the sensory neurons (motor, olfactory) (Fain, 2003). They are
analytically tractable as their involutive instantiations can be easily derived. Indeed, a
filter that shifts the stimulus in time by a quantity α has an impulse response h(t) =
δ(t− α). Consequently, h̃(t) = δ(t+ α). Note that although the filter h̃ is, in this case,
non-causal it can easily be implemented by delaying the recovery.

It is assumed that each filter hj shifts the stimulus in time by an amount αj, where
αj is an arbitrary positive number for all j, j = 1, 2 . . . , N . The quantities of interest
become according to the equations (10) and (16)

ψj
k(t) = g(t− sj

k + αj)

[Gij ]kl =

∫ ti
k+1

ti
k

g(s− sj
l − αi + αj)ds.

(23)

The stimulus u(t) is given in the standard Shannon form

u(t) =
35∑

k=1

u(kT )
sin (Ω(t− kT ))

π(t− kT )
, (24)

with Ω = 2π · 80 Hz, T = π/Ω. Out of the 35 samples the first and last five were set to
zero. Thus shifts of the stimulus in the time window do not lead to any loss of important
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information. The rest of the 25 active samples were chosen randomly from the interval
[−1, 1]. A total of 16 neurons were used for recovery. Filter delays were randomly drawn
from an exponential distribution with mean T/3, biases bj , j = 1, . . . , 16, were randomly
drawn from a uniform distribution in [0.8, 1.8] and the thresholds δj, j = 1, . . . , 16, were
drawn randomly from a uniform distribution in [1.4, 2.4]. Finally, all neurons had the
same integration constant κ = 0.01. The stimulus and three of its translates, each
delayed by the filters, as well as the spikes generated by the 16 neurons in the time
window of interest [6T, 30T ], are shown in Figure 4.
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Figure 4: Bandlimited stimulus u(t) and three of its translates (left), and the spike train
generated by each of the sixteen neurons (right).

The recovered stimulus based on the spikes from 1, 2, 3, 4, 8 and all 16, neurons,
respectively, is depicted from top to bottom in Figure 5. Note the different amplitude
scale at the top and at the bottom row of Figure 5. The recovered signal converges to
the original one with the number of neurons used. The recovery becomes acceptable
when the spikes of at least the first 4 neurons are used. Since the density of the sinc
functions is invariant under a time shift, the density criterion of Theorem 1 above can
be applied. Here we have 27 samples, and the individual neurons elicit between 7 and
17 spikes, respectively. The threshold is exceeded when the first four or more neurons
are used. The recovery results in Figure 5 are consistent with this observation.

To quantify accuracy of the recovered signal we provide the mean square error (MSE)
for the various recovery scenarios. The MSE is defined as

MSE = 10 log10

(
1

Tmax − Tmin

∫ Tmax

Tmin

[u(s) − ûj(s)]2 ds

)
, (25)

where [Tmin, Tmax] is the interval of interest ([6T, 30T ] in our case) and ûj(s) denotes the
result of stimulus recovery with a total of j, j = 1, 2, . . . , 16, neurons. In Figure 6 we
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Figure 5: Stimulus recovery as a function of the number of neurons.
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show the dependence of the MSE on the relative interspike rate. The relative interspike
rate is defined as the number of interspike intervals per second divided by the Nyquist
rate. Figure 6 demonstrates that when the relative rate is below 1, meaning the average
spike rate is less than the Nyquist rate, then the MSE is big and the recovery inaccurate.
However, when the spike rate exceeds the Nyquist rate, the MSE decreases dramatically
and the recovery improves substantially. Moreover, the MSE decreases overall as more
neurons are added to stimulus representation and, recovery.
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Figure 6: Dependence of the Mean Square Error on the relative interspike rate and the
number of neurons.

Remark 8. The MSE in Figure 6 is shown as both a function of the relative spike rate
and the number of neurons. In neuroscience the natural abstraction, however, is the
number of neurons. Consequently, in what follows, we shall only provide the MSE as a
function of the number of neurons.

Remark 9. It is easy to see that, the filters hj(t) = δ(t − αj), j = 1, 2, ..., 16, above
do not satisfy the independence condition of Definition 3. Nevertheless, as the example
illustrates, the input can be perfectly recovered. Similarly, if no pre-processing filters
are used, the stimulus can be perfectly recovered from the representation provided by a
population of integrate-and-fire neurons (Lazar, 2007). Thus, having linear independent
filters is a sufficient but not a necessary condition for recovery.

It is important to note that the input to each neuron can not be, in general, faithfully
recovered from the spike train generated by single neurons. To see that, we applied
the classical time decoding algorithm (Lazar & Toth, 2004) for signal recovery solely
using the spike train of each individual neuron. The results for four of the neurons are
illustrated in Figure 7. The other twelve neurons exhibited similar results. As one can
see, the recovered dendritic currents are significantly different from the stimulus.
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Figure 7: Recovery of the dendritic currents for four of the neurons, using the classical
time decoding algorithm.

The recovery is not perfect because each individual neuron only generates sparse
neural spike trains (less than 28 spikes). However, this sparsity did not affect perfect
recovery of the original stimulus because the total number of neurons fired a significant
number of spikes. These results have some important ramifications to experimental
neuroscience because they demonstrate that, in general, stimuli of individual neurons
cannot be faithfully recovered from the spike train they generate. Rather, the spike
trains from a larger population of neurons that encode the same stimulus needs to be
used.

Finally, we briefly show the effect of noise on the performance of the recovery al-
gorithm. The setting is as before, except that we also applied additive independent
white Gaussian noise at the input of each filter. Since all filters in this example are
performing delay operations, delayed white noise reaches the integrators. The average
MSE (in dB) is shown in Figure 8 for the noiseless case and for five variance values
σ2 = 0.001, 0.003, 0.01, 0.03, 0.1. For each value of the variance one hundred repetitions
of the simulation were performed. The 95% confidence interval, measured here as twice
the standard deviation of the MSE, was in each case between 3 and 5 dB (not shown).
Even though we added an infinite bandwidth white noise component to a narrow band
stimulus, we see a predictable degradation of the MSE as a function of the noise variance.

4.2 Neural Population Encoding with a Gammatone Filter-

bank

In this section we present a simple example of stimulus representation and recov-
ery using gammatone filterbanks. The stimulus of interest is bandpass with frequency
support essentially limited to [150, 450] Hz and a duration of 250 ms. The filterbank
consists of 16 gammatone filters that span the range of frequencies [100, 500] Hz. The
gammatone filters, developed by Patterson et. al (Patterson et al., 1992), are widely
used in cochlear modeling. The general form of the (causal) gammatone filter is

h(t) = αtn−1 exp (−2πβ · ERB(fc)t) cos(2πfct), t ≥ 0, (26)
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where ERB is a psychoacoustic measure of the bandwidth of the auditory filter at each
point along the cochlea. The filters employed were generated using Slaney’s auditory
toolbox (Slaney, 1998). This toolbox generates the auditory filterbank model proposed
by Patterson et. al. (Patterson et al., 1992). The bandwidth of each filter with a center
frequency at fc is given by ERB(fc) = 0.108fc + 24.7. Parameter n corresponds to the
filter order, and is picked to be equal to 4 (n = 4). For this filter order, Patterson et.
al proposed β = 1.019. Finally, the scalar α is picked in such a way that each filter has
unit gain at its center frequency. Gammatone filterbanks are approximately equivalent
to wavelet filterbanks since all the impulse responses are obtained from dilated versions
of the kernel function (26) (mother wavelet) at its center frequency. Moreover, the
center frequencies are spaced logarithmically along the frequency axis, giving rise to an
overcomplete filterbank.

The frequency responses of the sixteen filters and the entire filterbank support are
shown in Figure 4.2. The filterbank support is defined as

N∑

j=1

|Hj(ω)|2, (27)

where Hj(ω) =
∫

R
hj(s)e−iωs ds is the Fourier transform of the j-th filter impulse re-

sponse.
The biases and the thresholds of the neurons were picked randomly from the interval

[1, 2]. Each neuron produced approximately 25 spikes, for a total of approximately 400
spikes. In Figure 10 we show the recovery of the stimulus when 2, 4, 8 or all 16 filters
were used, respectively. Note the amplitude scale at the top and at the bottom row of
Figure 10.

To quantify the recovery results and also the effect of noise, the MSE is depicted as a
function of the number of neurons in Figure 11 for the noiseless case and for white noise
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Figure 9: Characterization of the Gammatone filterbank.
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Figure 10: Stimulus recovery using a Gammatone Filterbank as a function of the size of
the population of neurons.

with 5 different variances. The noise variances were again σ2 = 0.001, 0.003, 0.01, 0.03, 0.1
and the noise was applied again at the input of the filters. However since each filter in
the gammatone filterbank has only a limited frequency support, most of the noise gets
filtered out. Thus, the effect of the white noise on the accuracy of the recovery is much
smaller here when compared to its effect in the delay filterbank example (see also Figure
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8). Again, as an overall trend, the MSE decreases as the size of neuron population
increases and as the noise power decreases.
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Figure 11: MSE of Recovery.

5 Discussion

The problem of stimulus recovery based on the spike trains generated by a population
of neurons is central to the field of neural representation and encoding. In order to
achieve a faithful stimulus representation, our method assigns a kernel function to each
neuron. With these kernels, a frame can be constructed by spike dependent shifts. Frame
theory provides the machinery needed for faithful stimulus recovery.

In the reverse correlation method (Rieke, Warland, Steveninck, & Bialek, 1997), the
recovered stimulus is obtained by convolving the output spike train with a suitable
kernel. The choice of the kernel is actively investigated (Tripp & Eliasmith, 2007).
Kernel methods have also been investigated for sparse representations of auditory and
visual stimuli in (Smith & Lewicki, 2005) and (Olshausen, 2002), respectively. The
models used lack, however, explicit neural encoding schemes. In addition, the faithful
representation of stimuli has not been addressed.

Related work in information coding with a population of neurons is based on stochas-
tic neuron models. These neuron models (known as LNP models) produce spikes with
underlying Poisson statistics. The activity of the neurons is measured in spikes per
seconds rather than actual spike times, and it is given as a (nonlinear) function of the
projection of the stimulus on a suitable vector modeling the receptive field. For a pop-
ulation of neurons different receptive field models can be used; the latter can be chosen
so as to span the space of interest. Computational models, based mostly on maximum
likelihood techniques, for the suitable choice of receptive fields/neurons, and of actual
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encoding/decoding mechanisms based on such setups have been extensively studied in
the literature. See, e.g., (Deneve, Latham, & Pouget, 1999) or (Sanger, 2003) for a
review and (Huys, Zemel, Natarajan, & Dayan, 2007) for a more recent treatment.

Our neural population model is in contrast deterministic. This assumption allowed
us to formally focus on the question of faithful representation of stimuli. The key result
shows that faithful representation can be achieved provided that the total number of
spikes of the neural ensemble is above the Nyquist rate. We have demonstrated that
this condition can be replaced with a more intuitive one that stipulates that the size
of the population of neurons is beyond a threshold value. We have also shown that, in
general, the stimulus of a neuron can not be recovered from the neural spike train that
it generates. Rather, a population of neurons is needed to achieve faithful recovery.

The basic population encoding circuit investigated in this paper significantly extends
previous work on population time encoding (Lazar, 2005), (Lazar, 2007). From a mod-
eling standpoint, it introduces a set of constraints on the number of spikes that can be
generated by an individual neuron. In addition, it incorporates arbitrary filters that can
model the dendritic tree of the neurons and/or their receptive fields. Note that, the
present work formalizes the results of (Lazar, 2007) by using frame arguments and by
introducing the notion of linear independent pre-processing filters that guarantees that
each neuron can provide additional information about the stimulus being encoded.

Our theoretical results provide, what we believe to be, the first rigorous model demon-
strating that the sensory world can be faithfully represented by using a ”critical size”
ensemble of sensory neurons. The investigations presented here further support the
need to shift focus from information representation using single neurons to population
of neurons. As such, our results have some important ramifications to experimental
neuroscience.

Although the model investigated in this paper only employs ideal IAF neurons, it
is highly versatile for modeling purposes. It provides theoretical support for modeling
arbitrary linear operations associated with dendritic trees. For example, arbitrary stable
filters can be used to characterize synaptic conductances. Moreover, the I/O equivalence
of IAF neurons with other more complex neuron models (Hodgkin-Huxley, and conduc-
tance based models in general) (Lazar, n.d.) elevates the proposed circuit to a very
general framework for faithful stimulus representation with neural assemblies.
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A Basic Concepts of Hilbert Spaces

Definition 4. A nonnegative real-valued function ‖ · ‖ defined on a vector space E is
called a norm if for all x, y ∈ E and α ∈ R

‖x‖ = 0 ⇔ x = 0

‖x+ y‖ ≤ ‖x‖ + ‖y‖
‖αx‖ = |α|‖x‖.

(28)

Definition 5. A normed linear space is called complete if every Cauchy sequence in the
space converges, that is, for each Cauchy sequence (xn), n ∈ N, there is an element x in
the space such that xn → x.

Definition 6. An inner product on a vector space E over C or R, is a complex-valued
function < ·, · >: E ×E 7→ C such that

< x+ y, z > =< x, z > + < y, z >

< αx, y > = α < x, y >

< x, y > =< y, x >∗

< x, x > ≥ 0, < x, x >= 0, if x = 0.

(29)

Definition 7. A complete vector space whose norm is induced by an inner product is
called a Hilbert Space.

Example 1. Let L2 be the space of functions of finite energy, i.e.,

L2(R) =

{
f :

∫

R

|f(s)|2 ds <∞
}

(30)

with norm ‖f‖ =
(∫

R
|f(s)|2 ds

)1/2
. L2(R) endowed with the inner product < x, y >=∫

R
x(s)y(s) ds is a Hilbert Space.

Definition 8. For a given Ω > 0,

Ξ =
{
f ∈ L2(R) : suppf̂ ⊆ [−Ω,Ω]

}
, (31)

endowed with the L2 inner product is called the space of bandlimited functions.
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B Basic Theorems on Frames

A formal intoduction to the theory of frames can be found in (Christensen, 2003).
For a signal processing approach see (Teolis, 1998). Here we present all the necessary
definitions and propositions that were used throughout the paper. In what follows I
denotes a countable index set (e.g., N,Z, [1, 2, . . . ,M ]).

Definition 9. A (countable) sequence (φk)k∈I in H is a frame for the Hilbert space H
if there exist frame bounds A,B > 0 such that for any f ∈ H

A‖f‖2 ≤
∑

k∈I

| < f, φk > |2 ≤ B‖f‖2. (32)

Proposition 2. If a sequence (φk)k∈I in H is a frame for H, then span{(φk)k∈I} = H.

Proof: See (Christensen, 2003), pages 3-4 for a proof for finite dimensional spaces.
The proof for infinite dimensional spaces is essentially the same.

Proposition 3. Let (φk)k∈I be a frame for H with bounds A,B, and let U : H 7→ H
be a bounded surjective operator. Then (Uφk)k∈I is a frame sequence with frame bounds
A‖U+‖−2, B‖U‖2, where U+ denotes the pseudoinverse operator of U .

Proof: See (Christensen, 2003), page 94.

Definition 10. The frame operator of the frame (φk)k∈I is the mapping S : H 7→ H
defined by

Sf =
∑

k∈I

< f, φk > φk. (33)

Proposition 4. Let (φk)k∈I be a frame for H with frame operator S. Then

1. S is bounded, invertible, self-adjoint and positive.

2. For all f ∈ H we have

f =
∑

k∈I

< f, S−1φk > φk, (34)

where S−1 is the inverse of the frame operator.

Proof: See (Christensen, 2003), pages 90-91.
Finally we state some basic results about frames of exponentials and their relationship

to frame sequences in the space of bandlimited functions.

Definition 11. A sequence (λk)k∈I is called relatively separated if there exists an ε > 0
such that for any n,m ∈ I we have |λm − λn| ≥ ε.

The following result is due to Jaffard (Jaffard, 1991).
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Lemma 1 (Jaffard’s lemma). Let Λ = (λk)k∈I be a sequence of real numbers that is
relatively separated. Let N(a, b) the number of elements of Λ that are contained in the
interval (a, b). Then the sequence (exp(−i λk ω))k∈I generates a frame for the space
L2(−Ω,Ω) if

D = lim inf
t→∞

inf
t0∈R

N(t0, t0 + t)

t
>

Ω

π
. (35)

Proof: See (Jaffard, 1991).
This result is connected to results about frames in the space of bandlimited functions

by the following proposition.

Proposition 5. If the sequence (exp(−i λk ω))k∈I is a frame for the space L2(−Ω,Ω)
then the sequence (g(t− λk))k∈I is a frame for the space of bandlimited functions Ξ.

Proof: Let F denote the Fourier transform. Then we clearly have Fg(t− λk) = e−i λk ω.
By definition, the sequence (g(t−λk))k∈I is a frame for Ξ if there exist positive constants
A,B > 0 such that

A‖u‖2 ≤
∑

k∈I

| < u(t), g(t− λk) > |2 ≤ B‖u‖2, (36)

for all u ∈ Ξ. From Parseval’s identity we have that ‖u‖ = ‖Fu‖ and < u(t), g(t −
λk) >=< (Fu)(ω), e−i λk ω >. Therefore (36) can be rewritten as

A‖Fu‖2 ≤
∑

k∈I

| < (Fu)(ω), e−i λk ω > |2 ≤ B‖Fu‖2. (37)

But this holds since Fu ∈ L2(−Ω,Ω) and the sequence (exp(−i λk ω))k∈I is a frame for
the space L2(−Ω,Ω). �

C Three Frames

Lemma 2. Assume that the lower density of spikes satisfies the Nyquist rate, i.e., D > Ω
π
.

The following holds:

(i) (g(t− sj
k)), k ∈ Z, j = 1, . . . , N , with sj

k = (tjk+1 + tjk)/2, is a frame for Ξ;

(ii) (ψj
k(t)) =

(
h̃j ∗ g

)
(t− sj

k), k ∈ Z, j = 1, . . . , N , is a frame for Ξ;

(iii) (φj
k(t)) =

(
h̃j ∗ g ∗ 1[tj

k
,tj

k+1
]

)
(t), k ∈ Z, j = 1, . . . , N , is a frame for Ξ,

provided that the filters hj , j = 1, . . . , N , are BIBO stable, and their spectral support is
a superset of [−Ω,Ω].
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Proof: (i) The derivation is based on Jaffard’s lemma (Jaffard, 1991) (Lemma 1, Ap-
pendix B) and is given in Proposition 5 in the same Appendix. See also Jaffard’s lemma
for a definition of D, the lower density of the spikes.
(ii) Let S be the frame operator of the frame (g(t − sj

k)), k ∈ Z, j = 1, . . . , N (the defi-
nition of the frame operator is given in Appendix B). Then each function u ∈ Ξ has a
unique expansion of the form

u =

N∑

j=1

∑

k∈Z

aj
kg(t− sj

k), (38)

with aj
k =< u, S−1g(· − sj

k) >. Note that any operator defined on the functions of the
frame is well defined for the whole space of bandlimited functions Ξ. Let us now define
the nonlinear operator U : Ξ 7→ Ξ as

Uu ≡ U
(

N∑

j=1

∑

k∈Z

aj
kg(t− sj

k)

)
,

N∑

j=1

∑

k∈Z

aj
kψ

j
k(t). (39)

In order to prove that the sequence of functions (ψj
k(t)), k ∈ Z, j = 1, . . . , N , is a

frame for Ξ, we use a key proposition from (Christensen, 2003), page 94, also included as
Proposition 3 in Appendix B. According to Proposition 3, the family (ψj

k), k ∈ Z, j = 1, . . . , N ,
is a frame for Ξ, if the operator U is bounded and has closed range. To show these two
properties, we observe that U can be written as the synthesis of N operators U1, . . . ,UN ,
with Un : Ξ 7→ Ξ, n = 1, 2, . . . , N , defined as

Unu ≡ Un

(
N∑

j=1

∑

k∈Z

aj
kg(t− sj

k)

)
,
∑

k∈Z

an
k(h̃n ∗ g)(t− sn

k) +

N∑

j=1j 6=n

∑

k∈Z

aj
kg(t− sj

k). (40)

Then U = U1U2 · · · UN and U is bounded and has closed range whenever all the operators
U i, i = 1, 2, ..., N , are. But U i is bounded if and only if the filter with impulse response
h̃i(t) and therefore also the one with hi(t) is BIBO stable.

Moreover, U i has closed range if for any sequence un ∈ Ξ, n ∈ N, that converges
to u ∈ Ξ, the sequence U iun also converges to an element in Ξ. Since the sequence
(g(t− sj

k)), k ∈ Z, j = 1, . . . , N , is a frame for Ξ, un ∈ Ξ can be represented as

un(t) =
N∑

j=1

∑

k∈Z

aj
k,ng(t− sj

k),

with aj
k,n =< un, S

−1g(· − sj
k) > and

u(t) =
N∑

j=1

∑

k∈Z

aj
kg(t− sj

k),
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with aj
k =< u, S−1g(· − sj

k) >. From the continuity of the inner product it follows that
limn→∞ aj

k,n = an
k , and therefore, we have that limn→∞ U iun = U iu ∈ Ξ. Therefore the

operator U has closed range and (ψj
k), k ∈ Z, j = 1, . . . , N is a frame.

(iii) Since (g(· − sj
k)), k ∈ Z, j = 1, . . . , N , is a frame for the space of bandlimited

functions with finite energy, any function u ∈ Ξ can be uniquely represented as

u(t) =

N∑

j=1

∑

k∈Z

aj
kg(t− sj

k) (41)

for all t, t ∈ R, with aj
k =< u, S−1g(· − sj

k) >, where S is the frame operator. Consider
the operator U : Ξ 7→ Ξ defined as

Uu(t) , U
(

N∑

j=1

∑

k∈Z

aj
kg(t− sj

k)

)
=

N∑

j=1

∑

k∈Z

aj
k(g ∗ 1[tj

k
,tj

k+1
])(t). (42)

The right hand side of (42) can be rewritten as

Uu(t) =
N∑

j=1

∑

k∈Z

aj
k

∫ tj
k+1

tj
k

g(t− s) ds

=
N∑

j=1

∑

k∈Z

aj
k

(∫ +∞

t

g(s− tjk+1) ds−
∫ +∞

t

g(s− tjk) ds

)
.

(43)

The integral operator is bounded and the sequence (g(· − tjk)), k ∈ Z, j = 1, 2, ..., N ,
is a frame because of the Nyqist density condition in Jaffard’s lemma. Therefore the
operator U is bounded. Moreover by following a similar reasoning as before U has closed

range. Proposition 3 implies that
(
(g ∗ 1[tj

k
,tj

k+1
])(·)

)
, k ∈ Z, j = 1, . . . , N , is a frame for

Ξ. Finally by working as in (ii) we conclude that (φj
k), k ∈ Z, j = 1, . . . , N is also a

frame for Ξ. �
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