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Abstract

Time encoding is a formal method of mapping amplitude information into a time sequence. We
show that under simple conditions, bandlimited stimuli encoded with an integrate-and-"re neuron
with an absolute refractory period can be recovered loss-free from the neural spike train at its
output. We provide an algorithm for perfect recovery and derive conditions for its convergence.
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1. Introduction

A key question arising in theoretical neuroscience is how to represent an arbitrary
stimulus as a sequence of action potentials [1]. The temporal requirements imposed
on this representation might dependent on the information presented to the sensory
neurons. For example, the temporal precision of auditory processing involves mea-
surements of interaural time delays with sub-millisecond accuracy [3]. Rapid intensity
transients appear to be a key stimulus feature for triggering precisely timed spikes
[5]. The nervous system uses ensembles of neurons to encode information but direct
experimental insights into the operation of biological neural networks is scarce [6].
In [4] the question of stimulus (signal) representation was formulated as one of

time encoding, i.e., as one of encoding amplitude information into a time sequence.
Formally, a time encoding of a bandlimited function x=x(t); t ∈R, is a representation
of x as a sequence of strictly increasing times (tk); k ∈Z, where R and Z denote the
set of real numbers and integers, respectively.
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There are two natural requirements that a time encoding mechanism should satisfy.
The "rst is that the encoding should be implemented as a real-time asynchronous
circuit. Secondly, the encoding mechanism should be invertible, that is, the amplitude
information can be recovered from the time sequence with arbitrary accuracy. A time
encoding machine (TEM) is the realization of such an encoding mechanism.
The "rst example of a TEM satisfying the above requirements was given [4]. It

consists of a feedback loop that contains an adder, a linear "lter and a noninverting
Schmitt trigger. The invertibility property of the TEM is due to a representation of
the bandlimited function x(t), t ∈R, as a discrete set of integral values

∫ tk+1

tk
x(u) du.

This representation is invertible (or loss-free) provided that the diBerence between any
two consecutive values of the time sequence is bounded by the inverse of the Nyquist
rate. Hence, under simple conditions, bandlimited signals encoded with the TEM can
be recovered loss-free from the time sequence at its output. A time decoding machine
(TDM) is the realization of an algorithm for signal recovery with arbitrary accuracy.
In this paper we investigate a TEM consisting of an integrate-and-"re neuron that

incorporates an absolute refractory period. Although the refractory period seems intu-
itively to lead to information loss, we shall demonstrate that under simple conditions,
bandlimited stimuli encoded with an integrate-and-"re neuron with a refractory period
can be recovered loss-free from the neural spike train at its output.
This paper is organized as follows: Time encoding and representation of bandlim-

ited stimuli using an integrate-and-"re neuron is analyzed in Section 2. In Section
3 we present the perfect recovery algorithm in its operator and matrix formulations.
Section 4 concludes the paper.

2. Time encoding and representation

In this section we introduce a TEM consisting of an integrate-and-"re neuron with
an absolute refractory period and describe its key operational properties (see Fig. 1).
The integrator constant �, the threshold �, the bias b in Fig. 1 are strictly positive

real numbers; x=x(t); t ∈R, is a Lebesgues measurable function of "nite energy on R
that models the input stimulus to the TEM. Furthermore, x is bounded, |x(t)|6 c¡b,
and bandlimited to [ − �;�]. The output of the integrator in a small neighborhood

Fig. 1. Time encoding with the integrate-and-"re neuron.
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of t0 + �, t ¿ t0 + � is given by

y(t) = y(t0) +
1
�

∫ t

t0+�
[x(u) + b] du: (1)

Note that, due to the bias b, y=y(t) is a continuously increasing function. The output
of the TEM is a time sequence (tk), k ∈Z, that models the spike train. The tk ’s are
also called trigger times.

Lemma 1 (t-Transform). For all input stimuli x= x(t); t ∈R, with |x(t)|6 c¡b, the
output of the TEM is a strictly increasing set of trigger times (tk), k ∈Z, that satisfy
the recursive equation∫ tk+1

tk+�
x(u) du= −b(tk+1 − tk − �) + ��; (2)

for all k; k ∈Z.

Proof. The TEM is described in a small neighborhood of t0 + �, t ¿ t0 + �, by

1
�

∫ t

t0+�
[x(u) + b] du= �: (3)

Since the left-hand side is a continuously increasing function there exists a time t= t1,
t0 + �¡t1, such that the equation above holds. Thus, the (output) sequence of times
(tk)k∈Z, is strictly increasing for all k; k ∈Z, and the recursion (2) follows.

Corollary 1 (upper and lower bounds for trigger times). For all input stimuli x =
x(t); t ∈R, with |x(t)|6 c¡b, the distance between consecutive trigger times tk and
tk+1 is given by

��
b+ c

+ �6 tk+1 − tk6 ��
b− c + �; (4)

for all k; k ∈Z.

Proof. Since |x(t)|6 c, it is easy to see that

− c(tk+1 − tk − �)6
∫ tk+1

tk+�
x(u) du6 c(tk+1 − tk − �): (5)

By replacing the integral in the inequality above with its value given by Eq. (2) and
solving for tk+1 − tk we obtain the desired result. The upper and lower bounds are
achieved with a constant input x(t) = c for all t; t ∈R.

3. Time decoding and recovery

In this section we derive an algorithm for perfect recovery of the stimulus x based
on the knowledge of the trigger times (tk), k ∈Z. In order to achieve this goal we
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shall employ the operator A given by

Ax =
∑
k∈Z

∫ tk+1

tk+�
x(u) du g(t − sk); (6)

where g(t)=sin(�t)=�t and sk=(tk+1+ tk)=2. The construct of the operator A above is
highly intuitive. Dirac-delta pulses are generated at times sk with weight

∫ tk+1

tk+�
x(u) du

and then passed through an ideal low pass "lter with unity gain for !∈ [−�;�] and
zero otherwise. The values of

∫ tk+1

tk+�
x(u) du are available at the TDM through Eq. (2).

We have the following:

Proposition 1. If I is the identity operator,

‖I −A‖6 r + �r + �; (7)

where ‖ · ‖ denotes the norm, r = (��=(b− c) + �)�=� and �2 = �=(��=(b+ c) + �).

Proof. It is easy to see that the operator A∗ de"ned by

A∗x =
∑
k∈Z

x(sk)P1[tk+�;tk+1) (8)

is the adjoint of A, where P is the projection operator de"ned as P1[tk ;tk+1) =
(g ∗ 1[tk ;tk+1))(t) (the latter ∗ denotes the convolution operation) and 1[tk ;tk+1) is a pulse
of unit magnitude on [tk ; tk+1) and zero otherwise. We have

‖x −A∗x‖=
∣∣∣∣∣
∣∣∣∣∣x −

∑
k∈Z

x(sk)P1[tk+�;tk+1)

∣∣∣∣∣
∣∣∣∣∣6

∣∣∣∣∣
∣∣∣∣∣x −

∑
k∈Z

x(sk)1[tk+�;tk+1)

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣
∑
k∈Z

[x − x(sk)]1[tk ;tk+1) +
∑
k∈Z

x(sk)1[tk ;tk+�)

∣∣∣∣∣
∣∣∣∣∣ : (9)

Since ([2], Proposition 3)∣∣∣∣∣
∣∣∣∣∣
∑
k∈Z

[x − x(sk)]1[tk ;tk+1)

∣∣∣∣∣
∣∣∣∣∣6 r‖x‖ (10)

and noting that∣∣∣∣∣
∣∣∣∣∣
∑
k∈Z

x(sk)1[tk ;tk+�)

∣∣∣∣∣
∣∣∣∣∣6 �

∣∣∣∣∣
∣∣∣∣∣
∑
k∈Z

x(sk)1[tk ;tk+1)

∣∣∣∣∣
∣∣∣∣∣ (11)

with �2 = �=( ��b+c + �), inequality (9) becomes

‖x −A∗x‖6 r‖x‖ + �(1 + r)‖x‖ (12)

and, therefore,

‖x −Ax‖6 (r + �r + �)‖x‖: (13)

Let xl = xl(t), t ∈R, be a sequence of bandlimited functions de"ned by the recursion
xl+1 = xl +A(x − xl), for all l; l∈Z, with the initial condition x0 =Ax.
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Theorem 1 (Operator formulation). If r ¡ (1− �)=(1+ �), the operator A is invertible
and the stimulus x can be perfectly recovered as

lim
l→∞

xl(t) = x(t) (14)

and

‖x − xl‖6 (r + �r + �)l+1‖x‖: (15)

Proof. With r de"ned as above, the proof closely follows one of Theorem 1 in [4].
Let us de"ne g= [g(t − sk)]T, q= [

∫ tk+1

tk+�
x(u) du] and G= [

∫ tl+1

tl+�
g(u− sk) du].

We have the following:

Corollary 2 (Matrix formulation). If r ¡ (1 − �)=(1 + �), the bandlimited stimulus x
can be perfectly recovered from (tk)k∈Z as

x(t) = lim
l→∞

xl(t) = gG
+q; (16)

where G+ denotes the pseudo-inverse of G. Furthermore, xl(t) = gPlq, where Pl is
given by Pl =

∑l
k=0(I −G)k .

Proof. Formally identical to the proof of Theorem 2 in [4].

4. Conclusion

We have shown that the information contained in the spike train at the output of
an integrate-and-"re neuron with absolute refractory period enables the perfect recov-
ery of bandlimited stimuli. The condition for perfect recovery is rather simple. The
requirement that r ¡ (1 − �)=(1 + �) in Theorem 1, is equivalent to

��
b− c + �¡

1 − �
1 + �

· �
�
;

i.e., the diBerence between two consecutive trigger times is bounded by a weighed
inverse of the Nyquist rate.
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