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Abstract

Time encoding is a mechanism of mapping amplitude information into a time sequence. We

show that multichannel time encoding using filter banks and integrate-and-fire neurons

provides, under natural conditions, an invertible representation of information, i.e., a sensory

stimulus can be recovered from its multidimensional spike train representation loss-free. We

describe an algorithm for perfect stimulus recovery and derive conditions that guarantee its

convergence.
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1. Introduction

In [6] the question of sensory stimulus (signal) representation was formulated as
one of time mapping, i.e., as one of encoding amplitude information into a time
sequence. Formally, a time encoding of a bandlimited function xðtÞ; t 2 R; is a
representation of xðtÞ as a sequence of strictly increasing times ðtkÞ; k 2 Z: The
bandlimited function models the stimulus whereas the time sequence models the
spike train.
see front matter r 2004 Published by Elsevier B.V.
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A time encoding machine (TEM) is a realization of a time encoding mechanism
that is both asynchronous and invertible. The first example of a TEM satisfying these
requirements was given [6]. It consists of a feedback loop that contains an adder, a
linear filter and a non-inverting Schmitt trigger. The TEM investigated in [5] consists
of an integrate-and-fire neuron with an absolute refractory period. Although the
refractory period seems to lead to information loss, it is shown in [5] that under
simple conditions, bandlimited stimuli encoded with an integrate-and-fire neuron
can be perfectly recovered from the neural spike train at its output. A time decoding
machine (TDM) is the realization of an algorithm for stimulus recovery with
arbitrary accuracy.
Receptive fields arising in a number of sensory systems, including the retina [8] and

the cochlea [3] have been modeled as bank of filters, with each of the filters feeding a
signal into a leaky integrate-and-fire neuron. Such a model represents an
instantiation of a multichannel time encoding mechanism that maps the amplitude
information of the stimulus into a multidimensional spike train. The model raises a
number of questions. The one addressed in this paper is whether such a multichannel
time encoding mechanism is invertible and if so, what algorithm achieves perfect
stimulus recovery.
We shall demonstrate that multichannel time encoding based on filter banks and

leaky integrate-and-fire neurons provides, under certain natural conditions, an
equivalent representation of information, i.e., the stimulus ðxðtÞÞ; t 2 R; can be
recovered loss-free from its multidimensional spike train representation ðtm

k Þ; k 2 Z

and m ¼ 1; 2; . . . ;M : We describe an algorithm for perfect recovery and give
conditions that guarantee its convergence.
This paper is organized as follows. Time encoding with single (leaky) integrate-

and-fire neurons is investigated in Section 2. The analysis of time encoding and
synthesis of time decoding is presented in Sections 2.1 and 2.2, respectively. A
multichannel canonical model for employing filter banks and integrate-and-fire
neurons for time encoding and stimulus recovery is briefly presented in Section 3.
Section 4 concludes the paper.
2. Time encoding with a leaky integrate-and-fire neuron

The TEM considered in this paper is a leaky integrate-and-fire neuron. It consists
of a bias, a linear RC-filter and a thresholding device. Its basic operation is very
simple. The bounded stimulus jxðtÞjpcob; is biased by a constant amount b before
being applied to the linear filter. This bias guarantees that the RC-filter’s output yðtÞ

is an increasing function of time. When the output of the filter reaches a (time-
dependent) threshold value d; a spike is triggered at time tk at the output.
Immediately thereafter the system is reset to an initial state, assumed here to be yðt0Þ:
Therefore, a spike is triggered when the output of the integrator reaches the
triggering mark d (called a quanta). Using a signal-dependent sampling mechanism,
the TEM maps the amplitude information of ðxðtÞÞ; t 2 R; into timing information
ðtkÞ; k 2 Z:



ARTICLE IN PRESS

A.A. Lazar / Neurocomputing 65–66 (2005) 401–407 403
2.1. Time encoding and representation

In what follows, we shall assume that x ¼ xðtÞ; t 2 R; with jxðtÞjpcob; is a finite
energy signal on R bandlimited to ½�O;O�:
The filter parameters R and C, the neuron threshold d; the bias b are strictly

positive real numbers and x ¼ xðtÞ is a Lebesgues measurable function that models
the input signal to the TEM for all t; t 2 R: The output of the RC-filter in a small
neighborhood of t0; t4t0 is given by

yðtÞ ¼ yðt0Þ exp �
t � t0

RC

� �
þ
1

C

Z t

t0

½xðuÞ þ b� exp �
t � u

RC

� �
du: (1)

Note that y ¼ yðtÞ is a continuous function for all t; tXt0:

Lemma 1 (t-Transform). For all input signals x ¼ xðtÞ; t 2 R; with jxðtÞjpcob; the

output of the integrate-and-fire neuron is a strictly increasing set of trigger times ðtkÞ;
k 2 Z; obtained from the recursive equation

Z tkþ1

tk

xðuÞ exp �
tkþ1 � u

RC

� �
du

¼ Cðd� bRÞ þ C½bR � yðt0Þ� exp �
tkþ1 � tk

RC

� �
ð2Þ

for all k; k 2 Z; provided that yðt0Þodoðb � cÞR:

Proof. The TEM is described in a small neighborhood of t0; t4t0; by

yðt0Þ exp �
t � t0

RC

� �
þ
1

C

Z t

t0

½xðuÞ þ b� exp �
t � u

RC

� �
du ¼ d: (3)

Since the left-hand side is a continuously increasing function, there exists a time
t ¼ t1; t0ot1; such that the equation above holds. The largest such t1 is obtained
when xðtÞ ¼ �c; for all t; t 2 R; and

t1 ¼ t0 þ RC ln 1�
d� yðt0Þ

d� ðb � cÞR

� �
: (4)

Note that t14t0 if yðt0Þodoðb � cÞR: Thus, the (output) sequence of times ðtkÞk2Z; is
strictly increasing for all k; k 2 Z; and recursion (2) follows. &

Corollary 1 (upper and lower bounds for trigger times). For all input signals x ¼

xðtÞ; t 2 R; with jxðtÞjpcob; the distance between two consecutive trigger times tk and

tkþ1 is given by

0oRC ln 1�
d� yðt0Þ

d� ðb þ cÞR

� �
ptkþ1 � tkpRC ln 1�

d� yðt0Þ

d� ðb � cÞR

� �
(5)

for all k; k 2 Z provided that yðt0Þodoðb � cÞR:
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Proof. Since jxðtÞjpc; it is easy to see that

�c 1� exp �
tkþ1 � tk

RC

� �h i
p

1

RC

Z tkþ1

tk

xðuÞ exp �
tkþ1 � u

RC

� �
du

pc 1� exp �
tkþ1 � tk

RC

� �h i
:

By replacing the integral in the inequality above with its value given by Eq. (2) and
solving for tkþ1 � tk we obtain the desired result. The lower bound is achieved for a
constant input xðtÞ ¼ c for all t; t 2 R: &

2.2. Time decoding and recovery

In this section we derive an algorithm for perfect recovery of the stimulus x based
on the knowledge of the trigger times ðtkÞ; k 2 Z: In order to achieve this goal we
shall employ the operator A given by

Ax ¼
X
k2Z

Z tkþ1

tk

xðuÞ exp �
tkþ1 � u

RC

� �
du gðt � skÞ; (6)

where gðtÞ ¼ sinðOtÞ=pt and sk ¼ ðtkþ1 þ tkÞ=2: The construct of the operator A
above is highly intuitive and utilizes the filtered version of xðtÞ on the interval
½tk; tkþ1�: Dirac-delta pulses are generated at times sk with weightZ tkþ1

tk

xðuÞ exp �
tkþ1 � u

RC

� �
du

and then passed through an ideal low pass filter with unity gain for o 2 ½�O;O� and
zero otherwise. The values ofZ tkþ1

tk

xðuÞ exp �
tkþ1 � u

RC

� �
du

are available at the TDM through Eq. (2).

Lemma 2. If I is the identity operator,

kI �Akpr þ �r þ �; (7)

where k � k denotes the norm and

r ¼ RC ln 1�
d� yðt0Þ

d� ðb � cÞR

� �
O
p
and � ¼

d� yðt0Þ

ðb � cÞR � yðt0Þ
:

Proof. Similar to proposition 1 of [5]. &

Let xl ¼ xlðtÞ; t 2 R; be a sequence of bandlimited functions defined by the
recursion:

xlþ1 ¼ xl þAðx � xlÞ; (8)

for all l; l 2 Z; with the initial condition x0 ¼ Ax:
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Proposition 1 (operator formulation). Let x ¼ xðtÞ; t 2 R; be a bounded signal

jxðtÞjpcob bandlimited to ½�O;O�: If roð1� �Þ=ð1þ �Þ; the operator A is invertible

and the signal x can be perfectly recovered as xðtÞ ¼ liml!1 xlðtÞ; and

kx � xlkprlþ1kxk:

Proof. Closely follows Theorem 1 in [5]. &

Let us define the vectors

g ¼ ½gðt � skÞ�
T; q ¼

Z tkþ1

tk

xðuÞ exp �
tkþ1 � u

RC

� �
du

� �

and the matrix

G ¼

Z tlþ1

tl

gðu � skÞ exp �
tlþ1 � u

RC

� �
du

� �
:

We have the following:

Corollary 2 (matrix formulation). Under the assumptions of Proposition 1 the

bandlimited signal x can be perfectly recovered from ðtkÞk2Z as

xðtÞ ¼ lim
l!1

xlðtÞ ¼ gGþq;

where Gþ denotes the pseudo-inverse of G: Furthermore, xlðtÞ ¼ gPlq; where Pl is given

by Pl ¼
Pl

k¼0 ðI�GÞ
k:

Proof. Formally identical to the proof of Theorem 2 in [6]. &
3. A canonical model for time encoding

The canonical model for time encoding and decoding consists of an information
representation (analysis) subsystem and an information recovery (synthesis)
subsystem. The representation subsystem is shown in Fig. 1. It consists of a generic
filter bank followed by a cascade of TEMs. The output of each filter is encoded with
a TEM modeling the operation of an integrate-and-fire neuron. The recovery
subsystem consists of a cascade of TDMs followed by appropriately chosen filters.
The filter banks can be designed using various methodologies. The one considered

here is based either on the wavelet transform or the Gabor transform [2]. The
conditions for invertibility on the generated filter banks are quite standard.
Informally, they only require that overall no signal frequency is lost due to filtering.
This does not rule out overcomplete representations. Since under this condition the
filter bank representations (e.g., the wavelet and Gabor) are invertible in their own
right, the signal can be recovered loss-free from the multidimensional time sequence.
Readers unfamiliar with the filter bank representation and recovery formalism are
referred to [4].
Filter bank representations of bandlimited signals have been extensively studied in

the literature (see, e.g., [1] and the references therein). However, the sampling of the
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Fig. 1. Canonical model for time encoding.
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output of the filter bank is achieved by traditional amplitude sampling and,
therefore, the data set for representing stimulus information is substantially different
from ours.
4. Conclusions

In this paper we presented a canonical model for time encoding and stimulus
recovery for sensory systems. The model consists of a filter bank followed by a
cascade of leaky integrate-and-fire neurons. The key advantage of the model is its
flexibility in modelling various sensory systems. Under natural conditions, the
canonical model is invertible even though the constituent filters have overlapping
frequency bands and the integrate-and-fire neurons operate with possibly different
threshold values. The invertibility property is remarkable particularly because the
individual TEMs are non-linear devices.
The canonical model helps elucidate some of the key open questions of temporal

coding for sensory systems. First, stimuli encoded by a single leaky integrate-and-fire
neuron can be recovered loss-free from the neural spike train. The recovery of the
stimulus requires information about the trigger times. There is no need to repeat an
experiment to obtain additional spike train data about the stimulus. For sensory
systems using spikes for recovering the stimulus from a single running experiment is
a defining biological requirement. Second, the canonical model shows that the same
stimulus can be recovered using different filter transfer functions and integrate-and-
fire neuron parameters. The latter result seems to be particularly noteworthy because
the choice of bounded thresholding functions leads to different representations of the
stimulus without information loss. An algorithm that performs perfect recovery and
is insensitive with respect to the value of the threshold appears in [7].
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