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Abstract

We describe a simple model of spike processing build with a number of neural hardware primitives including integrate-and-fire

neurons, dendritic trees, integrators, inhibition logic and one-to-many axonal/dendritic tree connectivity. Functionally, our model

consists of neuro-modulators, communication channels, neuro-demodulators and filters. Integrate-and-fire neurons play the role of

neuro-modulators. They represent dendritic currents in the spike domain through a process of reversible computation. Neuro-

demodulation and irreversible computation takes place in dendritic trees as time domain linear and/or non-linear operations. Assuming

that the stimulus at the input of an integrate-and-fire sensory neuron is bandlimited, we demonstrate how to construct a linear operator

that maps an arbitrary stimulus into a desired neuronal signal.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The model of spike processing considered in this paper is
shown in Fig. 1. The time encoding machine maps the
amplitude information at its input u ¼ uðtÞ; t 2 R, into a
spike train (or time sequence) ðtkÞ; k 2 Z. Conversely, the
time decoding machine maps the time sequence at its input
into a continuous waveform. The time domain computing
block in Fig. 1 transforms the spike train at its input into a
desired time sequence.

In what follows, we shall examine the realizability of the
spike processing model shown in Fig. 1 using neural
hardware primitives such as integrate-and-fire neurons,
one-to-many dendritic tree connectivity, dendritic trees,
inhibition logic, integrators, etc. Our work builds on [3,4]
where we have shown that integrate-and-fire models of
sensory neurons act akin modulators in communications.
They represent analog inputs (i.e., aggregated dendritic
currents) in the spike domain without loss of information.
The perfect recovery algorithm, however, calls for the
computation of a pseudo-inverse.

For a TEM consisting of an integrate-and-fire neuron
with bias, we demonstrate that a recursive algorithm
e front matter r 2006 Elsevier B.V. All rights reserved.
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already investigated in [3,4] provides an approximate
recovery method that can be readily implemented in neural
hardware. We also demonstrate that an arbitrary linear
operator (filter) can be implemented as a parallel filter bank
consisting of integrators with feedback. The integrators
model synapses. A combination of these integrators and an
appropriate choice of their parameters results in the desired
transfer function of the filter. Each operational integrator
contributes to the overall transfer function of the filter. The
integrators are operational only if spikes are routed to their
inputs. A simple mixing circuit can be used to block or to
allow through individual spikes. This allows for a very
flexible routing of spikes to the appropriate integrators
and, consequently, the construction of the desired filter by
simple inhibition logic. Arbitrary time invariant filters can
be realized in this manner from neural hardware primitives.
Functionally, our model of spike processing consists of

neuro-modulators, communication channels, neuro-demo-
dulators and filters. Integrate-and-fire neurons play the role
of neuro-modulators. They represent dendritic currents in
the spike domain through a process of reversible computa-
tion (non-linear modulation). Communication channels
model axons. Irreversible computation takes place, at least
in part, in dendritic trees. Such a model offers a platform
for a calculus with spikes including learning algorithms. In
[7,1], the authors argue on experimental grounds that the
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Fig. 1. Block diagram representation of the spike processing model.

Fig. 2. Information representation with an integrate-and-fire neuron and perfect recovery.
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dendritic tree decodes the received spike trains and executes
linear operations on the decoded waveforms. Thus, our
investigations of spike processing in a network consisting
of neural hardware primitives provide a rigorous theore-
tical model for the above-mentioned assertions and, more
broadly, spike computation.

This paper is organized as follows. In Section 2 the
mapping of a dendritic current into a spike train by a TEM
consisting of an integrate-and-fire neuron with bias is
reviewed. An algorithm for the loss free recovery of the
dendritic current based on reading the neural spike train is
briefly discussed. The neural hardware realization of the
recovery algorithm is investigated in Section 3. In Section 4
a methodology for the implementation of arbitrary linear
operators is presented. Section 5 concludes the paper.

2. Information representation in the spike domain

Consider an integrate-and-fire neuron representing a
dendritic current u ¼ uðtÞ; t 2 R, as a sequence of trigger
times ðtkÞ; k 2 Z, where R and Z denote the set of real
numbers and integers, respectively. The trigger times
represent the time instances when spikes are generated.
The block diagram of an integrate-and-fire neuron is
shown on the left-hand side of Fig.2. We assume that the
dendritic current u, juðtÞjpcob, has finite energy on R and
is bandlimited to ½�O;O�.

In [3,4] we established that, under natural conditions (see
below), an observer reading the spike train generated by an
integrate-and-fire neuron can recover the dendritic current
loss-free. The structure of the perfect decoder is shown on
the right-hand side of Fig. 2. Its operation is highly
intuitive. Dirac-delta pulses (spikes) are generated at times
sk with weight ck, k 2 Z, and then passed through an ideal
low pass filter with unity gain for o 2 ½�O;O� and zero
otherwise.

Thus, the integrate-and-fire neuron is, under certain
conditions, invertible and the mapping of the input
dendritic current uðtÞ; t 2 R, into the sequence of trigger
times ðtkÞ; k 2 Z, can be interpreted, as the result of a
process of reversible computation. The condition for
invertibility for the case of an ideal integrate-and-fire
neuron with capacity k is particularly simple. It is given
below as part of the formal recovery algorithm. Let
½c�k ¼ ck, ½q�k ¼

R tkþ1

tk
uðsÞds and ½G�lk ¼

R tlþ1

tl
gðs� skÞds.

We have the following [3,4],

Theorem 1 (Recovery algorithm). If kdoðb� cÞðp=OÞ, the

bandlimited stimulus u ¼ uðtÞ; t 2 R, can be perfectly

recovered from ðtkÞk2Z as

uðtÞ ¼
X
k2Z

ck � gðt� skÞ, (1)

where gðtÞ ¼ sinðOtÞ=pt and sk ¼ ðtkþ1 þ tkÞ=2. Finally,
c ¼ Gþq, where Gþ denotes the pseudo-inverse of G.
3. Stimulus recovery with neurohardware

Can the recovery algorithm, shown in block diagram
form in Fig. 2, be implemented by only using neural

hardware primitives? By this we mean, integrate-and-fire
neurons, simple integrators, dendritic trees, inhibition
logic, one-to-many axonal/dendritic tree synaptic connec-
tivity, etc. An indication of the solution space to this
question can be obtained by investigating the neural
hardware realization of the pseudo-inverse building block
and the LPF building block of Fig. 2.
3.1. Formulation of a recursive recovery algorithm

In order to investigate the implementation of the pseudo-
inverse building block, we shall first reformulate the
recovery algorithm as a recursion [3,4] (see also [6]). We
will show that already the zeroth order approximation of
this recursion offers a good approximation of the
bandlimited stimulus.
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Consider the operator A described by

Au ¼
X
k2Z

Z tkþ1

tk

uðsÞds gðt� skÞ

¼
X
k2Z

½kd� bðtkþ1 � tkÞ�gðt� skÞ,

where gðtÞ¼sinðOtÞ=pt and sk¼ðtkþ1 þ tkÞ=2. Let ul ¼ ulðtÞ,
t 2 R, be a sequence of bandlimited functions defined by
the recursion:

ulþ1 ¼ ul þAðu� ulÞ,

for all l; l 2 N, with the initial condition u0 ¼Au.

Theorem 2 (Recursive recovery algorithm). If kdoðb� cÞ

p=O, the bandlimited stimulus u; uðtÞpcob, t 2 R, can be

perfectly recovered from ðtkÞk2Z as

lim
l!1

ulðtÞ ¼ uðtÞ and ku� ulkprlþ1kuk, (2)

where r ¼ kd=ðb� cÞðO=pÞ. Furthermore, ulðtÞ ¼ gTPlq,
where Pl is given by Pl ¼

Pl
k¼0ðI�GÞk.

Since zeroth order approximation of uðtÞ amounts to

u0ðtÞ ¼
X
k2Z

½kd� bðtkþ1 � tkÞ� gðt� skÞ,

the associated frame coefficients are given by

ck ¼ kd� bðtkþ1 � tkÞ ¼

Z tkþ1

tk

uðsÞds.

In other words G ¼ I and thus c ¼ q. Consequently, the
zeroth order approximation of the recursive recovery
algorithm has an exceedingly simple implementation as
there is no need to compute the pseudo-inverse Gþ. The
bound on the performance of this approximate recovery
algorithm can be obtained by setting l ¼ 0 in the inequality
in (2) of Theorem 2. See [5] for examples.

3.2. Neurohardware realization of the LPF

The answer to the question of neural hardware realiz-
ability of the linear low pass filter in Fig. 2 turns out to be
Fig. 3. Modeling stimulus reco
surprisingly simple. It is inspired by the graph structure of
the typical axonal/dendritic tree connectivity. For example,
the linear low pass filter in Fig. 2 has a parallel connection
realization [2] in terms of simple integrators with feedback
whose parameters can be arbitrarily set or learned (or are
programmable in the language of VLSI). These filters
model the synapses and the dendritic tree that, in the
parallel implementation, receive the same input spike train
through broadcast (see Fig. 3). As before, the primary
neuron generates a spike train that is fed into the dendritic
tree of a secondary neuron.
The Laplace transform of the (single-input single-

output) filter bank described in Fig. 3 is given by

HðpÞ ¼
XN

k¼1

ak

p� pk

,

where the pks are the poles and the aks are a set of
constants for all k; 1pkpN. This realization is
particularly amenable to neural implementation as it
consists of a set of parallel integrators with feedback.
Each of these filters models a synaptic junction between
the axon of a primary neuron and the dendritic tree
of a secondary neuron. Clearly, an arbitrarily precise
approximation of an ideal low pass filter with unity
gain on ½�O;O� and zero otherwise can be obtained in
this way.
In what follows we shall assume that there is an

abundance of integrators for constructing arbitrary filters.
While this assumption used to be violated in classical
realizability theory of linear time invariant filters [2], it
appears to be reasonable in the context of the dense
synaptic connectivity that often exists between primary and
secondary cortical neurons.
4. Elements of spike processing

Building on these observations, the question that we
investigate in this section is whether an arbitrary linear
very with a dendritic tree.



ARTICLE IN PRESS

Fig. 4. Parallel connection realization of an arbitrary operator.
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operator of the type

zðtÞ ¼

Z
R

hðt� sÞuðsÞds, (3)

can be realized in the spike domain, that is, by directly
computing with spikes. Here h ¼ hðtÞ; t 2 R, is the impulse
response of an arbitrary causal filter. The design of such
linear operators is a well established art in the linear
systems literature [2]. A biologically inspired implementa-
tion in the spike domain is pursued below.

A simple realization of such an operator can be achieved
in time domain by using methods of linear algebra and
linear system theory. Informally, under appropriate con-
ditions,

zðtÞ ¼

Z
R

hðt� sÞ
X
k2Z

ckgðs� skÞds

¼
X
k2Z

ck

Z
R

hðt� sÞgðs� skÞds ¼
X
k2Z

ckf ðt� skÞ,

where f is the impulse response of a filter bandlimited to
½�O;O�. The linear filter with impulse response f admits, as
the low pass filter mentioned in the previous section, a
parallel connection realization.

Assume that the Laplace transform of f is given by

F ðpÞ ¼
X
k2I

bk

p� pk

,

where I � N represents the indices of a subset of
integrators. Such a filter can be realized from a large
number of parallel integrators with feedback as shown in
Fig. 4. All integrators that do not belong to the set I are
simply rendered non-operational by inhibition, or equiva-
lently, disconnected. This is obtained in Fig. 4 by a
multiplication of the input spike train with a one or zero
valued signal (mixing). The integrators that belong to the
set I simply remain connected to the upstream (primary)
axon. More general transfer functions are also amenable to
analysis (complex poles, higher order poles, etc.). Details
on the realization methodology can be found in [2,8].
Therefore, this scheme allows for the realization of
arbitrary filters using integrators modeling synaptic con-
nectivity. Finally, we note that the values of the bks and pks
can be preset or more generally obtained through various
learning algorithms. Similarly, the mixing signal can be
derived from the spike train of the primary or other
neurons.

5. Conclusions

By realizing an arbitrary linear operator in the spike
domain we have demonstrated that any sequence of linear
operations on stimuli can be executed in the time domain.
The following picture of spike processing emerges for an
arbitrary network of integrate-and-fire neurons densely
interconnected through synaptic contacts at the axonal/
dendritic tree interface.
Integrate-and-fire neurons act as neuro-modulators.

They represent analog inputs (corresponding to aggregated
dendritic currents) in the spike domain through a process
of reversible computation. All irreversible processing in the
network takes place in the dendritic tree as time domain
linear and/or non-linear operations. The spike train
generated by a primary neuron is first decoded by the
dendritic tree of a secondary neuron. Linear and/or non-
linear operations are then executed on the decoded
waveform using simple integrators and inhibition logic.
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