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Time Encoding Machines with Multiplicative
Coupling, Feedforward and Feedback

Aurel A. Lazar,Fellow, IEEE

Abstract— We introduce a novel class of Time En-
coding Machines (TEMs) that exhibit multiplicative
coupling, and, feedforward and feedback. We show
that a machine with multiplicative coupling is I/O
equivalent with an Integrate-and-Fire neuron with a
variable threshold sequence. The same result holds for a
TEM with feedforward while a machine with feedback
is I/O equivalent with an Asynchronous Sigma/Delta
Modulator with variable thresholds. For all TEMs, an
input bandlimited signal can be perfectly recovered from
the zero crossings of the modulated signal and the
threshold sequence. We present the optimal decoding
algorithm and give conditions for perfect signal recovery.

Index Terms— Time encoding, time change, perfect
signal recovery, feedforward, feedback.

I. I NTRODUCTION

T IME encoding of a bandlimited functionu =
u(t), t ∈ R, is a representation ofu as a sequence

of strictly increasing times(tk), k ∈ Z, where R

and Z denote the set of real numbers and integers,
respectively. Alternatively, the output of the encoder
is a signalz = z(t), t ∈ R, with zeros at timestk, k ∈
Z. A Time Encoding Machine is the realization of
an asynchronoustime encoding mechanism. A Time
Decoding Machine (TDM) is the realization of an
algorithm for signal recovery with arbitrary accuracy.

The interest in time encoding in communications
is driven by the expected paradigm shift in the de-
sign and implementation of future analog to digi-
tal converters from information representation in the
amplitude domainto information representation in
the time domain. Due to the ever decreasing size
of integrated circuits and the attendant low voltage,
amplitude domain high precision quantizers are more
and more difficult to implement. TEMs leverage the
phenomenal device speeds that a temporal code can
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take advantage of [7]. The interest in temporal en-
coding in neuroscience is closely linked with the
natural representation of sensory stimuli (signals) as a
sequence of action potentials (spikes). Spikes are dis-
crete time events that carry information about stimuli.

Two classes ofinvertible TEMs have been investi-
gated in the literature. The first, the Asynchronous
Sigma/Delta Modulator arising in communications
was shown in [3] to be an invertible time encoding
mechanism that robustly represents information with
respect to parameter variations arising in analog VLSI
implementations [2]. The Integrate-and-Fire neuron
arising in neuroscience belongs to the second class
of TEMs. Both the leaky as well as the Integrate-and-
Fire neuron with a refractory period were shown to
be invertible in [4], [5].

In this brief we introduce a general class of Time
Encoding Machines that exhibit multiplicative cou-
pling, and, feedforward and feedback. The basic TEM
with multiplicative coupling consists of a garden va-
riety oscillator whose output feeds a zero crossings
detector. The detector generates the time sequence of
the zeros of the oscillator waveform. The oscillator is
in turn modulated by an input bandlimited signal.

We show that a TEM with multiplicative coupling is
I/O equivalent with an Integrate-and-Fire neuron with
variable threshold. The variable threshold sequence
is given by the difference between the consecutive
zeros of the waveform generated by the oscillator for
unit input. The same result holds for a TEM with
feedforward while a TEM with feedback is I/O equiv-
alent with an Asynchronous Sigma/Delta Modulator
with variable thresholds. For all TEMs considered,
we demonstrate that the input bandlimited signal can
be perfectly recovered from the zero crossings of
the modulated signal and the threshold sequence. We
provide an algorithm for perfect signal recovery.

The TEMs investigated here provide a rich class of
circuits for implementing novel A/D converters and
non-linear modulation schemes for sensor networks.
The theoretical methodology presented provides the
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first rigorous I/O equivalence results for non-linear
systems. It also unifies various modulation schemes
arising in communications and neuroscience.

II. T IME ENCODING MACHINES WITH

MULTIPLICATIVE COUPLING

The TEMs with multiplicative coupling considered
in this brief consist of two building blocks (see Figure
1). The first building block models the operation of
a garden variety oscillator (e.g., an oscillator that
generates a stable limit cycle [1]). The second building
block generates a set of time events, called trigger
times, from the output of the oscillator building block.

In the presence of a constant unit input, the output
of the oscillator is described by a set of state space
equations of the form

dx

dt
= f(x), (1)

wherex ∈ R
n andf ∈ R

n are column vectors andf :
R

n → R
n is a continuous function. We shall assume

that for an arbitrary initial conditionx(0) = x0 the set
of differential equations above has an unique solution;
see [1] for details. The zeros ofx1, the first coordinate
of x, denoted by(δk), k ∈ Z, are also called trigger
times. The model mechanism for generating the zeros
will be revisited in section III below.

Let u = u(t), t ∈ R, be a bounded continuous
function onR with |u| ≤ c; u models the input signal
to the TEM. Withmultiplicative coupling, the output
of the oscillator building block is given by

dy/dt = (b + u(t))f(y), (2)

where y ∈ R
n is a column vector andb > c is a

constant. Thus,b + u(t) > 0, for all t, t ∈ R. The
zero crossings building block in Figure 1 detects the
zeros ofy1(t). These zeros are denoted by(tk), k ∈ Z.

Remark 1 The defining building blocks of the TEM
with multiplicative coupling have each been employed
in a number of modulation schemes in the past. For
example, the oscillator building block of the TEM
with multiplicative coupling described by equation
(2) also arises in generalized frequency modulation
[8]. The zero crossing building block was previously
employed in irregular sampling [6].

Lemma 1 Given the initial conditiony(0) = x(0),

y = x(bt +

∫ t

0

u(s)ds), (3)

Integrator Zero Crossings

(tk)k∈Z

u(t)

b

f(·)

y(t)

Fig. 1. A Time Encoding Machine with Multiplicative
Coupling.

for all t, t ∈ R+, wherex = x(t), t ∈ R+, is the
solution to (1) starting atx0.

Proof: By differentiating the right hand side of equa-
tion (3) above, we obtain

dy

dt
=

dx(v)

dv
|v=bt+

R

t

0
u(s)ds · (b + u(t))

= (b + u(t)) · f(y).

Sincey(0) = x(0) the assertion follows.

Remark 2 The solution to equation (2) is derived
from the solution to equation (1) via the time change
t → bt +

∫ t

0
u(s)ds. In this light the condition

b + u(t) > 0 is very natural since it ensures that the
changed time remains increasing.

III. PERFECTRECOVERY

In what follows we shall assume that the observable
output of the oscillator building block is exactly one
of the coordinates ofx. Without any loss of generality
we will consider this coordinate to bex1. The zeros
of x1(t) are denoted by(δk), k ∈ Z. Therefore,

x1(δk) = 0, (4)

for all k ∈ Z. Recall that, the trigger times(tk), k ∈
Z, are the zeros ofy1(t).

Lemma 2 The set of trigger times(tk), k ∈ Z, and
the set of zeros(δk), k ∈ Z, verify the set of recursive
equations

∫ tk+1

tk

u(s)ds = δk+1 − δk − b(tk+1 − tk), (5)

for all k, k ∈ Z.

Proof: Since(δk), k ∈ Z, are the set of zeros ofx1,
and the zeros ofy1 are given by(tk), k ∈ Z, equation

x1(btk +

∫ tk

0

u(s)ds) = 0 (6)
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implies that

btk +

∫ tk

0

u(s)ds = δk (7)

and the result follows.
Equation (5) above defines thet-transform [3]; it

maps the amplitude information of(u(t)), t ∈ R,
into the time sequence(tk), k ∈ Z. Thus, encoding
information with a TEM with multiplicative cou-
pling is equivalent with encoding information with an
Integrate-and-Fire neuron [4] with variable threshold
(δk+1−δk), k ∈ Z. Both lead to the same trigger time
sequence(tk) for all k, k ∈ Z. Formally,

Proposition 1 Assume that the variable threshold se-
quence of an Integrate-and-Fire neuron is identical
to the difference between the consecutive zeros of the
oscillator waveform generated for unit input. Then the
TEM with multiplicative coupling and the Integrate-
and-Fire neuron are input/output equivalent.

In other words, the TEM depicted in Figure 1 and the
Integrate-and-Fire neuron with variable threshold rep-
resented in Figure 2 are I/O equivalent (the integrator
reset value is zero).

Spike triggered reset

Integrator
u(t)

b

y(t)

δk+1 − δk (tk)k∈Z

Fig. 2. The Integrate-and-Fire Neuron with Variable Threshold.

A. Recovery Algorithms

Informally, a linear function of the length of the in-
terval between two consecutive trigger times provides,
via thet-transform, an estimate of the integral ofu(t)
on the same interval. For a finite energy signalu,
this estimate used in conjunction with the bandlimited
and boundedness assumption on the same, enables a
perfect reconstruction of the signal even though the
trigger times are irregular. In order to achieve perfect
reconstruction, the distance between two consecutive
trigger times has to be, on average [4], [5], smaller
than the distance between the uniformly spaced sam-
ples in the classical sampling theorem.

The mathematical methodology for signal recovery
employed here is based on finding, under appropriate

conditions, the inverse of thet-transform. This inverse
perfectly recovers from the time sequence(tk), k ∈ Z,
the amplitude information of the signalu = u(t), t ∈
R. Our derivation below closely follows [3].

Let Ξ be the space of square integrable functions
defined onR that are bandlimited to[−Ω, Ω] (clearly
Ξ ⊂ L2(R)). We shall construct an operatorA :
Ξ → Ξ, and by starting from a good initial guess
followed by successive iterations, obtain successive
approximations that converge in theL2-norm to the
original signalu.

Let us assume thatu = u(t), t ∈ R, with |u(t)| ≤
c < b, is a function inΞ and let the operatorA be
given by:

Au =
∑
k∈Z

∫ tk+1

tk

u(s)ds g(t − sk),

whereg(t) = sin(Ωt)/πt andsk = (tk+1 + tk)/2.
The realization of the operatorA above is highly

intuitive. Dirac-delta pulses generated at timessk with
weight

∫ tk+1

tk

u(s)ds = δk+1 − δk − b(tk+1 − tk) are
passed through an ideal low pass filter with unity gain
for ω ∈ [−Ω, Ω] and zero otherwise. Note that the
values of (

∫ tk+1

tk

u(s)ds), k ∈ Z, are obtained, via the
t-transform, from the sequence(tk), t ∈ Z, and are
available at the TDM.

Let ul = ul(t), t ∈ R, be a sequence of bandlimited
functions defined by the recursion:

ul+1 = ul + A(u − ul), (8)

for all l, l ∈ N, with the initial conditionu0 = Au.
The supremum of the distance between two consec-
utive zeros in the unitary input case is denoted byδ,
i.e., δ = supk∈Z

(δk+1− δk). Let us define the vectors
g = [g(t−sk)], q = [δk+1−δk−b(tk+1−tk)] and the
matrix G = [Glk] = [

∫ tl+1

tl

g(s − sk) ds]; I denotes
the identity matrix andT the (matrix) transpose. In
addition, we assume that∪k∈Z[δk, δk+1) = R.

Theorem 1 (t-transform inverse) Let (δk) and(tk),
k ∈ Z, be the trigger times of the TEM with multi-
plicative coupling with unit input andb+u(t), t ∈ R+,
respectively. Ifδ < (b − c) π

Ω , the signalu can be
perfectly recovered from the trigger times(tk) and
(δk), k ∈ Z, as

lim
l→∞

ul(t) = u(t),

and
‖ u − ul ‖≤ rl+1 ‖ u ‖,
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where r = δ
b−c

Ω
π . Furthermore,ul(t) = gTPlq,

wherePl is given byPl =
∑l

k=0(I − G)k. Finally,

u(t) =
∑
k∈Z

ckg(t − sk), (9)

with c = G+q, whereG+ denotes the pseudo-inverse
of G.

Proof: The proof is based on observing that operator
A and the matrixG verify the equality(I−A)kgT =
gT (I − G)k. See [3] for further details. The signal
recovery algorithm given by equation (9) has a very
simple representation as shown in Figure 3 below.

LPF
u(t)

(tk)k∈Z

c = G+q

(ck)k∈Z

(sk)k∈Z

Fig. 3. Block Diagram Representation of the Recovery Algorithm.

IV. TEM S WITH FEEDFORWARD ANDFEEDBACK

In this section we consider two extensions of the
class of Time Encoding Machines with multiplicative
coupling. First, we introduce a number of feedfor-
ward schemes. Second, we present a simple feedback
mechanism that is representative for other feedback
schemes. The t-transform for both the feedforward
and feedback schemes can easily be derived using the
chain rule for derivatives.

A. TEMs with Feedforward

A TEM with a feedforward circuit accepts a pro-
cessed version of the bandlimited signalu = u(t), t ∈
R, as its input.

Example 1 Assume that the input to a TEM with
multiplicative coupling on the time interval[tk, tk+1]
is given byv(t)

∫ t

tk

v(s)ds, wherev(t) = b+u(t) > 0
for all t, t ∈ R. Figure 4 shows the block diagram
representation of the feedforward circuit followed by
the TEM with multiplicative coupling. For simplicity,
only the block diagram of the I/O equivalent Integrate-
and-Fire neuron is shown in the figure. The TEM with
multiplicative coupling and feedforward is described
for all k, k ∈ Z by the equation∫ tk+1

tk

v(s)

∫ s

tk

v(σ)dσds = δk+1 − δk

or∫ tk+1

tk

u(s)ds = [2(δk+1 − δk)]1/2 − b(tk+1 − bk).

Integrator

Integrator

b

δk+1 − δk

u(t) v(t)

Fig. 4. TEM with Multiplicative Coupling and Feedforward.

Thus, the TEM with feedforward shown in Figure 4 is
I/O equivalent with an Integrate-and-Fire neuron with
variable threshold sequence[2(δk+1 − δk)]1/2, k ∈ Z.

More generally, assume that the t-transform de-
scribing the operation of the TEM with a feedforward
circuit is described on the interval[tk, tk+1] by

h(

∫ tk+1

tk

v(s)ds) = δk+1 − δk, (10)

whereh is an arbitrary function onR. If equation (10)
above has a solution of the form∫ tk+1

tk

v(s)ds = h−1(δk+1 − δk),

the original bandlimited signalu can be again per-
fectly recovered from
∫ tk+1

tk

u(s)ds = h−1(δk+1−δk)−b(tk+1−tk) (11)

provided that r = δ
b−c

Ω
π < 1, with δ =

supk∈Z
h−1(δk+1 − δk). Thus,

Proposition 2 A TEM with multiplicative coupling
and feedforward is I/O equivalent with an Integrate-
and-Fire neuron with variable threshold. The variable
threshold sequence of the neuron can be explicitly
derived from the zeros of the oscillator’s waveform
for unit input.

B. TEMs with Feedback

The TEMs with feedback introduced in this section
derive their feedback from the output of the zero
crossings building block. For the simple examples
considered here, the t-transform of the TEMs with
feedback can be reduced to the t-transform describing
the Asynchronous Sigma/Delta Modulator [3].
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An example of a TEM with (multiplicative) feed-
back is shown in Figure 5. The feedback is easily
implemented by composing the inputz(t)u(t) + b,
wherez(t) = sgn(y1(t)) for all t, t ∈ R. Assuming
by convention thatz(t) = 1 for all t, t ∈ [t0, t1], the
t-transform of the TEM in Figure 5 is given by∫ tk+1

tk

u(s)ds = (−1)k[δk+1 − δk − b(tk+1 − tk)],

for all k, k ∈ Z. We recognize in the above equa-
tion the t-transform of an Asynchronous Sigma-Delta
Modulator [3] with variable thresholds. For the re-
covery of the bandlimited signalu the algorithm
presented in section III-A can be used.

Integrator Zero Crossings
z(t)u(t)

b

f(·)

y(t)

Fig. 5. A TEM with Multiplicative Coupling and Feedback.

Proposition 3 A TEM with multiplicative coupling
and feedback is I/O equivalent with an Asynchronous
Sigma/Delta Modulator with variable thresholds.

V. BUILDING TIME ENCODING MACHINES

TEMs with multiplicative coupling can be build
using a wide variety of oscillators including, the
harmonic oscillator, the Hodgkin-Huxley neuron, the
Van der Pol oscillator, etc.. The only requirement on
these oscillators is that the Nyquist-type rate condition
r < 1 remains valid.

Example 2 By using a Van der Pol relaxation oscil-
lator in the first building block of Figure 1, we obtain
the generalized frequency modulation scheme of [8].
The oscillator is described by:

dx1/dt = x2 (12)

dx2/dt = β(1 − x2
1)x2 − α2x1 (13)

For α = 500 and β = 0.5 this non-linear system
of equations has a periodic attractor. For the input
u = 0.2sin(2π20t)+0.3sin(2π30t)+0.5sin(2π40t),
a recovery error below5 ·10−4 can easily be achieved
(see Figure 6). The recovered signal and the original
are virtually indistinguishable. The system was ini-
tialized at (1, 0) and the results evaluated on the time
interval [25, 187.5] ms.
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Fig. 6. Error Recovery of a Bandlimited Signal.

VI. CONCLUSIONS

We considered the representation of bandlimited
signals in the time domain using a novel class of
TEMs with multiplicative coupling, feedback and
feedforward. The representation was shown to be
invertible. From the time domain sequence, the signal
can be perfectly recovered. The methodology pre-
sented here can also be employed to extract infor-
mation contained in all the observable waveforms
generated by the TEM oscillator using more general
parallel and serial processing circuits.
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